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Introduction

A Cozxeter group is a group which admits a group presentation of a certain
typical type. Omne of the most active fields in the recent researches on Cox-
eter groups is the isomorphism problem of Coxeter groups; that is the problem
of deciding which Coxeter groups are isomorphic as abstract groups, and of
studying further properties of isomorphisms between Coxeter groups. Several
results and observations for this problem have been given in this decade, par-
ticularly in the case of finitely-generated Coxeter groups. However, only a few
observations have been given for non-finitely-generated cases. The aim of this
dissertation is to give a breakthrough for the isomorphism problem of Coxeter
groups without the assumption of the finiteness of generators. Moreover, we
also give some more results on abstract groups and on Coxeter groups, which
are of independent importance and interest.

This dissertation consists of two parts, each containing an independent pa-
per discussing topics related to the isomorphism problem of Coxeter groups. In
Part I, entitled “On the direct indecomposability of infinite irreducible Coxeter
groups and the Isomorphism Problem of Coxeter groups”, we study a relation-
ship between the isomorphism problem and irreducible components of Coxeter
groups; our result reduces the problem to the case of infinite irreducible Cox-
eter groups. Moreover, an analogue of the Krull-Remak-Schmidt Theorem on
indecomposable decompositions of abstract groups is provided, and the auto-
morphism groups of Coxeter groups and the centralizers of normal subgroups
in Coxeter groups generated by involutions are also described.

In Part II, entitled “Almost central involutions in split extensions of Cox-
eter groups by graph automorphisms”, we give a sufficient condition for an
isomorphism between two Coxeter groups to be reflection-preserving. This is
an important step of the study of the isomorphism problem of Coxeter groups.
More detailed examination of this condition will be done in a forthcoming paper
of the author which is now in preparation. We also study a split extension of any
Coxeter group by Coxeter graph automorphisms, determining the involutions in
such an extension whose centralizer has finite index. Moreover, certain special
elements of Coxeter groups and the fixed-point subgroups in Coxeter groups by
Coxeter graph automorphisms are also studied.
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ON THE DIRECT INDECOMPOSABILITY OF INFINITE
IRREDUCIBLE COXETER GROUPS AND THE ISOMORPHISM
PROBLEM OF COXETER GROUPS

KOJI NUIDA

In this paper we prove that any irreducible Coxeter group of infinite
order, which is possibly of infinite rank, is directly indecomposable
as an abstract group. The key ingredient of the proof is that we can
determine, for an irreducible Coxeter group W, the centralizers in W
of the normal subgroups of W that are generated by involutions. As
a consequence, the problem of deciding whether two general Coxeter
groups are isomorphic is reduced to the case of irreducible ones. We
also describes the automorphism group of a general Coxeter group
in terms of those of its irreducible components.

key words: Coxeter groups; indecomposability; Isomorphism Prob-
lem; automorphism groups; centralizers.
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1 Introduction

In this paper, we prove that all infinite irreducible Coxeter groups are di-
rectly indecomposable as abstract groups (Theorem 3.3).

Regarding direct indecomposability of Coxeter groups, it is well known that
there exist finite irreducible Coxeter groups which are directly decomposable
(such as the Weyl group Gs). On the other hand, for infinite irreducible Coxeter
groups, no general result has been known until recently. In a recent paper [9],
L. Paris proved the direct indecomposability of all infinite irreducible Coxeter
groups of finite rank, by using certain special elements called essential elements
which are used also in [6]. However, by definition, a Coxeter group of infinite
rank never possesses an essential element, so that the proof cannot be applied
directly to the case of infinite ranks.

Our result here is obtained by a different approach. Let W be an irreducible
Coxeter group whose order is infinite, possibly of infinite rank. We give a com-
plete description of the centralizer C' of any normal subgroup N of W which is
generated by involutions (Theorem 3.1). From the description it follows that,
unless N = {1} or C' = {1}, there is a subgroup H C W which contains both
N and C. Once this is proved, the direct indecomposability of W is clear, since
any direct factor of W is a normal subgroup and is generated by involutions
(since it is a quotient of W), and its centralizer contains the complementary
factor.

As a consequence of the direct indecomposability of infinite irreducible Cox-
eter groups, we give results on the isomorphisms between two Coxeter groups
(Theorem 3.4). Since we also know how each finite irreducible Coxeter group
decomposes into directly indecomposable factors, our results imply that we can
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determine whether or not two given Coxeter groups are isomorphic if we can
determine which infinite irreducible Coxeter groups are isomorphic. In addi-
tion, our results also give certain decompositions of an automorphism of a gen-
eral Coxeter group W (Theorem 3.10). One decomposition describes its form
from the viewpoint of the directly indecomposable decomposition of W; an-
other decomposition describes its form from the viewpoint of the decomposition
W = Wapn X Wint, where W, (resp. Wiye) is the product of the finite (resp.
infinite) irreducible components of W in the given Coxeter system. Note that
these results can also be deduced from the Krull-Remak-Schmidt Theorem in
group theory, if the Coxeter group has a composition series. Theorem 3.4 is also
a generalization of Theorem 2.1 of [9]; our proof here is similar to, but slightly
more delicate than that in [9], by the lack of finiteness of the ranks. Note also
that, in another recent paper 7], M. Mihalik, J. Ratcliffe and S. Tschantz also
examined the “Isomorphism Problem” (namely, the problem of deciding which
Coxeter groups are isomorphic) for the case of finite ranks, by a highly different
approach.

Contents. Section 2 collects the preliminary facts and results. In Section
2.1, we give some remarks on general groups, especially on the definition and
properties of the core subgroups. Sections 2.2 and 2.3 summarize definitions,
notations and properties of Coxeter systems, Coxeter graphs and root systems
of Coxeter groups. In Section 2.4, we recall a method, given by V. V. Deodhar
[2], for decomposing the longest element of any finite parabolic subgroup into
pairwise commuting reflections. Owing to this decomposition, we can compute
easily the action of the longest element on a root, even if it is not contained in
the root system of the parabolic subgroup. As an application, in Section 2.5,
we determine all irreducible Coxeter groups of which the center is a nontrivial
direct factor. (This is not a new result, but is included there since the result
is used in the following sections.) Some properties of normalizers of parabolic
subgroups are summarized as Section 2.6.

Our main results are stated and proved in Section 3. The direct indecom-
posability of infinite irreducible Coxeter groups is shown in Section 3.1 (Theo-
rem 3.3). Note that the theorem also includes the description, which has been
known, of all nontrivial direct product decompositions of finite irreducible Cox-
eter groups. In Section 3.2, we reduce the Isomorphism Problem of general
Coxeter groups to the case of infinite irreducible ones (Theorem 3.4). In the
proof, we give a result on such a problem in a slightly wider context (Theorem
3.9), by which our result is deduced. Moreover, another result in Section 3.3
describes the automorphism group of a general Coxeter group in terms of those
of the irreducible components (Theorem 3.10 (ii)). Note that a Coxeter group
possesses some ‘natural’ automorphisms, which arise from automorphisms of
the irreducible components together with a permutation of isomorphic compo-
nents. We also give a characterization of Coxeter groups for which the group of
the ‘natural’ automorphisms has finite index in the whole automorphism group
(Theorem 3.10 (iii)).

Our proof of Theorem 3.3 is based on our description of the centralizers of
the normal subgroups, which are generated by involutions, in irreducible Cox-
eter groups (Theorem 3.1). This theorem is proved in Section 4.1 by using a
description, given in Sections 4.2-4.4, of the core subgroups of normalizers of
parabolic subgroups.

Acknowledgement. I would like to express my deep gratitude to every-
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one who helped me, especially to Professors Itaru Terada and Kazuhiko Koike
for their precious advice and encouragement, and also to the referee for the
careful examination and several important suggestions for improvement.

2 Preliminaries

2.1 Notes on general groups

In this paper, we treat two kinds of direct products of groups G with (pos-
sibly infinite) index set A; the complete direct product (whose elements (gx)a
are all the maps A — UueA G, A — gx such that gy € G)\) and the restricted
direct product (consisting of all the elements (g, ) such that gy is the unit el-
ement of G for all but finitely many A € A). Note that these two products
coincide if |A| < co. Since here we treat mainly the latter type rather than the
former one, we let the term “direct product” alone and the symbol [] mean the
restricted direct product throughout this paper. (The complete one also appears
in this paper, always together with notification.)

For two groups G, G’, let Hom(G, G’), Isom(G, G') denote the sets of all ho-
momorphisms, isomorphisms G — G’ respectively. Put End(G) = Hom(G, G)
and Aut(G) = Isom(G,G). The following lemma is easy, but will be referred
later.

Lemma 2.1. Assume that the center Z(G) of a group G is either trivial or a
cyclic group of prime order. Then the following three conditions are equivalent:
(I) Z(G) =1 or Z(G) is not a direct factor of G.

(I1) If f € Hom(G, Z(G)), then f(Z(G)) = 1.

(IIT) If G’ is a direct product of (arbitrarily many) cyclic groups of prime order
and f € Hom(G,G'), then f(Z(G)) = 1.

Proof. This is trivial if Z(G) = 1, so that we assume that Z(G) is a cyclic group
of prime order. Note that the implication (III) = (II) is obvious.

(I) & (II): If (I) is not satisfied, and G = Z(G) x H, then the projection G —
Z(@G) does not satisfy the conclusion of (IT). Conversely, if f € Hom(G, Z(G))
and f(Z(G)) # 1, then f(Z(G)) = Z(G), ker f N Z(G) = 1 (since Z(G) is
simple) and so we have G = Z(G) X ker f.

(IT) = (III): This is clear if G’ itself is a cyclic group of prime order (by
noting that Hom(Z/pZ,Z/¢Z) = 1 for distinct primes p, £). For a general case,
apply it to the composite map 7o f for every projection m from G’ to one of its
factors. O

Here we define the following multiplication for the set Hom(G, Z(G)) by
which it forms a monoid. First, we define a map Hom(G, Z(G)) — End(G),
fe by

o (w) = wf(w)™" for all w € G.
This is well defined since Z(@G) is central in G. The image of H C Hom(G, Z(Q))

by the map is denoted by H”. Now define the product f * g of two elements
f,9 € Hom(G, Z(G)) by

(f * g)(w) = f(w)g(w)(f o g)(w)™* for all w € G.
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This is also well defined, and then Hom(G, Z(G)) forms a monoid with the trivial
map (denoted by 1) as the unit element (for example, we have the associativity

((f*g)*h)(w) (f* (g h))(w
F(w)g(w)h(w)(f o g)(w)~ 1( h)(w) " (go h)(w) " (fogoh)(w) (2.1)
= (f*h)(w)(f*ogoh’)(w)

for f,g,h € Hom(G, Z(@G))). Let Hom(G, Z(G))* denote the group of invertible
elements of Hom(G, Z(G)) with respect to the multiplication *. On the other
hand, End(G) also forms a monoid with composition of maps as multiplication;
then the group of invertible elements in the monoid End(G) is precisely the
group Aut(G).

Moreover, Aut(G) acts on the monoids Hom(G, Z(G)) and End(G) by

h-f=hofoh™" for h € Aut(G), f € Hom(G, Z(G)) or End(G).

Lemma 2.2. (i) The map f + f° is an injective homomorphism Hom(G, Z(G))
End(G) of monoids compatible with the action of Aut(G).
(ii) For f € Hom(G, Z(G)), the following three conditions are equivalent:

(I) f € Hom(G, Z(G))*. (II) f° € Aut(G).

(III) The restriction f°| ) is an automorphism of Z(G).
(i) If H C Hom(G, Z(G))* is a subgroup invariant under the action of Aut(G),
then its image H® is a normal subgroup of Aut(G).

Proof. The claim (i) is straightforward, while (iii) follows from (i), (ii) and
definition of the action of Aut(G). From now, we prove (ii). The implication (I)
= (II) is obvious. On the other hand, (IT) implies (III) since any automorphism
preserves the center. Moreover, if (III) is satisfied, then we can construct the
inverse element f’ of f € Hom(G, Z(G)) by f'(w) = (fb|Z(G))_1(f(w))_1 (we
G); we have

(f * )w) = f'(w) f(w)f' (fw) ™ = f(wf(w)™") fw )

= (Plz)  (fwfw) ™)) 7 f(w)
= ("l G) (f w))) " f(w)
Flw) ™ f(w) =

so that f/ % f = 1. Similarly, we have f x f/ = 1. Hence the claim holds. O

Lemma 2.3. If a group G is abelian, then the embedding Hom(G, Z(G)) —
End(G), f — f?, is an isomorphism with inverse map f — f°. Moreover, its
restriction is an isomorphism Hom(G, Z(G))* — Aut(G).

Proof. Note that Z(G) = G, so that Hom(G, Z(G)) = End(G) as sets. Thus
the map End(G) — Hom(G, Z(G)), f +— f° is well defined. Now we have
(f*)2(w) = wf’(w)~t = f(w) for all f € End(G) and w € G, so that (f*)" = f.
Thus the first claim holds. Now the second one follows from Lemma 2.2 (ii). O

Note that, if G = G; x Ga, then the sets Hom(G;, Z(G)) (i = 1,2) are em-
bedded into Hom(G, Z(G)) via the map f +— f om; (where 7; is the projection
G — G;). It is easily checked that, if f,g € Hom(G;, Z(G)), then f*g €
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Hom(G;, Z(G)), thus Hom(G;, Z(G)) forms a submonoid of Hom(G, Z(G)).
Moreover, the above formula of the inverse element f' of f € Hom(G, Z(G))
implies that, if f € Hom(G;, Z(Q)) is invertible as an element of Hom(G, Z(G)),
then its inverse belongs to Hom(G;, Z(G)). Thus the notation Hom(G;, Z(G))*
is unambiguous.

Lemma 2.4. (i) Let f,g € Hom(G, Z(QG)) such that f(Z(G)) = g(Z(G)) = 1.
Then f,g € Hom(G, Z(G))* and (f * g)(w) = f(w)g(w) for all w € G (so that
fxg = gxf by symmetry). Moreover, the map w — f(w)~! is the inverse
element of f in Hom(G, Z(G))*.
(i) Suppose that G = Gy x G2 and Z(G2) = 1. Then Hom(G, Z(G))* =
Hy x Hy where Hy = Hom(G3, Z(Q)), Hy = Hom(G1, Z(G1))*. Moreover, Hy
is abelian, (f * g)(w) = f(w)g(w) for f,g € Hy and fxg* f' = f>ogo ()1
for f € Hy and g € Hy, where f' is the inverse element of f € Hs.
Proof. (i) By the hypothesis, f” is identity on Z(G), so that f is invertible by
Lemma 2.2 (ii) (and g is so). The other claims follow from definition (note that
now fog=1).
(ii) Note that Z(G) = Z(G1) by the hypothesis. Then by (i), H; is an abelian
subgroup of Hom(G, Z(G))* in which the multiplication is as in the statement.
For f € Hy and g € H;, the formula (2.1) implies that f x g x f/ is as in
the statement (note that f x f/ = 1 and f’b = (f*)71). In particular, we have
frgxf(G1) C f2og(Gy) =1, since f' € Hy and so f’b(Gl) C G1. This means
that f % g* f’ € Hy. Since obviously H; N Hy = 1, we have H;Hy = H; x H.
Finally, let f € Hom(G, Z(G))*. Take g € Hy such that g(w) = fomy(w) ™!
where 7y is the projection G — G4 (this is the inverse element of f o my € Hy).
Then for w € G2, we have

(9% F)(w) = g(w) f(w)g(f(w)) ™" = flw) ™ flw) =1

since ¢(Z(G)) = 1. This means that g * f € Hom(G1, Z(G1)), while it is
invertible since both f and g are so. Thus we have g x f € Hy and f =
(fomy)xgx* f € H Hy. Hence Hom(G, Z(G))* = Hy; x Hs. O

In the proof of our results, we use the following notion. For a group G, we
write H < G, H < G if H is a subgroup, normal subgroup of G, respectively.

Definition 2.5. For H < G, define the core Coreq(H) of H in G to be the
unique mazimal normal subgroup of G contained in H (namely, (), cq wHw™1).

The following properties are deduced immediately from definition:

If H; < Hy < @G, then Coreg(H;) C Coreg(Hs). (2.2)
If Coreq(H) < Hy < G, then Coreq(H) C Coreg(Hy).
If Hy <G (X € A), then Coreg( ﬂ H)) = ﬂ Coreg(Hy). (2.4)
A€A AeA
If HH < Hy, <G, we G and wHyw ' N Hy =1, then Hy N Coreg(Hsz) = 1.
(2.5)
Lemma 2.6. Let G; < G < ---, Hi < Hy < --- be two infinite chains

of subgroups of the same group such that G; N H; = H; for all ¢ < j. Put
G =U;2,Gi and H = J;2, H;. Then Coreq(H) C |J;2, Coreg;, (H;).
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Proof. It is enough to show that Coreq(H)NH; C Coreg,(H;) (or more strongly,
Coreq(H) N H; < G;) for all i. Note that the hypothesis implies G; N H = H;.
Then for g € G; and h € Coreg(H) N H;, we have ghg~! € Coreg(H) and
ghg™! € G, so that ghg™ € G; N H = H;. Thus the claim holds. O

The next lemma describes the centralizers of normal subgroups in terms of
the cores of certain subgroups. Before stating this, note the following easy facts:

If H <G, then the centralizer Zg(H) of H is also normal in G. (2.6)
If X1, X2 C G are subsets and Xy C Zg(X2), then Xo C Zg(Xy).  (2.7)

Lemma 2.7. Let H be the smallest normal subgroup of G containing a subset
X CG. Then Zg(H) = Coreq(Za(X)) = ,ex Corea(Za(x)).

Proof. The second equality follows from (2.4). For the first one, the inclusion
C is deduced from (2.6) (since Zg(H) C Zg(X)). For the other inclusion, the
centralizer of Coreg(Zg(X)) in G is normal in G (by (2.6)) and contains X, so
that it also contains H. Thus the claim follows from (2.7). O

2.2 Coxeter groups and Coxeter graphs

Here we refer to [5] for basic definitions and properties. A pair (W, S) of a
group W and its generating set S is a Cozeter system (and W itself is a Coxeter
group) if W has the presentation

W = (S| (st)™" =1if s,t € S and m(s,t) < o)

where m: S x S — {1,2,...} U{oo} is a symmetric map such that m(s,t) =1
if and only if s = ¢t. (W,S) is said to be finite (infinite) if the group W is
finite (infinite, respectively). The cardinality of S is called the rank of (W, S)
(or even of W). Throughout this paper, we do not assume, unless otherwise
noticed, that the rank of (W, S) is finite (or even countable). Note that, owing
to the well-known fact that the element st € W above has precisely order m(s, t)
in W, this map m can be recovered uniquely from the Coxeter system (W, .S).

Two Coxeter systems (W, S) and (W', S") are said to be isomorphic if there
is some f € Isom(W,W’) such that f(S) = S’. Then there is a one-to-one
correspondence (up to isomorphism) between Coxeter systems and the Cozeter
graphs; which are simple (loopless), undirected, edge-labelled graphs with labels
in {3,4,...}U{oo}. The Coxeter graph I" corresponding to (W, S) has the vertex
set S, and two vertices s,¢ € S are joined in I" by an edge with label m(s,t) if
and only if m(s,t) > 3 (by convention, the labels ‘3’ are usually omitted). I" (or
(W, 5)) is said to be of finite type if W is finite. It is also well known that, when
W denotes the parabolic subgroup of W generated by a subset I C .S, (Wy,I)
is also a Coxeter system with Coxeter graph I'; which is the full subgraph of I"
on the vertex set I.

A Coxeter system (W, .S) is called irreducible if the corresponding Coxeter
graph I' is connected. In this case, W is also said to be irreducible. As is well
known, W is decomposed as the direct product of its irreducible components,
which are the parabolic subgroups W; of W corresponding to the connected
components I't of I' (in this case, each subset I is also said to be an irreducible
component of S). A parabolic subgroup W; C W is said to be irreducible if
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the Coxeter system (Wj,I) is irreducible. As we mentioned in Introduction,
an irreducible Coxeter group may be directly decomposable (as an abstract
group) in general. Our main result determines which irreducible Coxeter group
is indeed directly indecomposable.

In this paper, we use the following notations for some Coxeter graphs.

Definition 2.8. We use the notations in Fig. 1. For each of the Cozeter graphs,
let s; denote the vertex having label i. Moreover, for each Cozeter graph I'(T;)
in Fig. 1 (T =A, B, D, E, F, H), let I'(T;) (k < n) be the full subgraph
of I'(Tn) on vertex set {s; | 1 < i < k}. For any T, let (W(T),S(T)) be the
Cozxeter system corresponding to the Coxeter graph I'(T).

4
1 2 3 4 1 2 3 4
2

o |
I(Deo) = I'(Es) = o—o0—o0—o0—o0

2073 4 5 1 3 4 5 6 7 8

4 5 m

I'(Fy) = o—o—o—o0 I'(H))= o—o—o—o0 I'(Iy(m)) = o—o

1 2 3 4 1 2 3 4 1 2
INAxe)= -+ —o—o0o—o0o—o0o—o—o—o— --- DI (Ax)

-3 -2 -1 0 1 2 3
Figure 1: Some connected Coxeter graphs

By definition, I'(7Ts) (T = A, B, D) and I'(Ax ) are Coxeter graphs with
countable (infinite) vertex sets. On the other hand, it is well known that the
Coxeter graphs I'(A,) (1 <n < 00), I'(By) (2<n <o), I'(Dy,) (4 <n < o),
I'(Eg), I'(E7), I'(Es), I'(Fy), I'(Hs), I'(Hy) and I'(I2(m)) (5 < m < o0) are
all the connected Coxeter graphs of finite type (up to isomorphism). Note that
I'(By) =I'(Dy) = I'(Ay), while I'(D3) ~ I'(A; X A1) and I'(D3) ~ I'(A3) (but
the vertex labels are different).

2.3 Root systems of Coxeter groups

For a Coxeter system (W, S), let II be the set of symbols o (s € S) and V
the vector space over R containing the set II as a basis. We define the symmetric
bilinear form (, ) on V for the basis by

(s, o) = — cos(m/m(s,t)) if m(s,t) < oo, (as,a:) = —1if m(s,t) = co.

Then W acts faithfully on the space V by s-v = v —2{as,v)as (s € S, v € V).
Let @ = W - II, the root system of (W,S). The above rule implies that the
action of W preserves the bilinear form; as a consequence, any element (root)
of ® is a unit vector. It is a crucial fact that ® is a disjoint union of the set &+
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of positive roots (i.e. roots in which the coefficient of every ag € II is > 0) and
the set ®~ = —®T of negative roots. It is well known that the cardinality of
the set ® [w] = {y € ®T | w-~v € &} is (finite and) equal to the length ¢(w)
of w € W with respect to the generating set S. From the fact it follows easily
that the set ® [w] characterizes the element w € W; namely,

if w,u e W and ® [w] = @ [u], then w =u (2.8)

(observe ® [wu~'] =0 and so wu~! =1).

The reflection along a root v = w - as € ® is defined by s, = wsw™t € W.
This definition does not depend on the choice of w and s, and s, indeed acts as
a reflection on the space V; s, - v = v — 2(v,v)y for v € V. Note that s, = s
for s € S. The following fact is easy to show (by the fact that ® = ®* U &~ ):

if s€5,v€®" and (as,7) > 0, then s, - as € &, (2.9)

For v € V, put

v = Z([as] v)a and supp(v) = {s € S | [as] v # 0}.

ses

For I C S, let V; be the subspace of V' spanned by the set II; = {a; | s € I}
and ®; = ® N V; (namely, the set of all v € ® such that supp(y) C I). Then
it is well known that ®; coincides with the root system W - II; of the Coxeter
system (Wp,I) (cf. Lemma 4 of [3], etc. for the proof). This fact yields the
following:

If v € @, then (7 € ®gupp(y) and so) the set supp(y) is connected in I
(2.10)
Moreover, it is well known (cf. [5], Section 5.8, Exercise 4, etc.) that:

If I C Sand~ye®, then s, € Wy if and only if v € ®;. (2.11)
For I C S, let

It ={seS~TI|st=tsforalltecl}
= {s € S~ 1] sisadjacent in I" to no element of I}

= {s € S| as is orthogonal to every a; € II;}.
Then we have the following properties:

If v € ®" and supp(y) ¢ I C S, then w-~ € &7 for all w € W7. (2.12)

If y € ® T =supp(y) and s € S~ (T UT), then supp(s-v) = I U {s}.
(2.13)

(For (2.12), take some ¢t € supp(7y) \ I, then w - v has the same (positive)
coefficient of «; as +. For (2.13), note that (s, ) < 0 by the hypothesis.)
For I C S and w € W, let <I>I+ =@, N®T, &7 = &, NP and ¢;[w] =

Lemma 2.9. Let w € W, I,J C S and suppose that INJ =0, w-II; = II;
andw-11; C ®. Then@IUJ[w]zéfuJ\q)[.



PART I 11

Proof. Let v € ®}; such that [as]y > 0 for at least one s € J (note that
w-as; € ®7). Now if w-a, € 7, then oy = w™' - (w - a5) must be a linear
combination of II; (since w - II; = IIy), but this is impossible. Thus we have
[ag] (w - as) < 0 for some ¢t € S~ I. Moreover, the hypothesis implies that
[ay] (w-ag) =0forall ¢ € I and o] (w-ay) <0 for all s’ € J. Thus we have

adw ) =la] (1w ¥ (i)

s'eluJ

Y (law]m) [ad (w-ay) < as]ylad] (w - as) <0.
s'€IuJ

Hence the claim holds, since w - <I>}" C ®* by the hypothesis. O

Definition 2.10. For a Cozeter system (W, S), we define the odd Coxeter graph
redd of (W, S) to be the subgraph of I' obtained by removing all edges labelled
by an even number or co.

It is well known (cf. [5], Section 5.3, Exercise, etc.) that, for s,¢ € S,

oy € W - ay if and only if s,t are in the same connected component of 1°99,
(2.14)
Moreover, the following lemma is deduced immediately from the definition that
all fundamental relations of W are of the form (st)™(Y =1 (s,t € S).

Lemma 2.11. Any f € Hom(W, {£1}) assigns the same value to every vertex
s € S of a connected component of I'°Y. Conversely, any mapping S — {1}
having this property extends uniquely to a homomorphism W — {£1}.

2.4 Reflection decompositions of longest elements

If Wy is a finite parabolic subgroup of a Coxeter group W, then let wq (1)
denote the longest element of Wy. This element is an involution and maps the
set II; onto —II;, so that there is an involutive graph automorphism o; of the
Coxeter graph I'; such that

wo(I) - as = =ty () for all s € 1.

It is well known that, for an irreducible Coxeter system (W, S), we have Z(W') #
1 if and only if W ~ W(T) for one of T = A;, B, (n < o), Dy, (k > 4 even),
E;, Eg, Fy, Hs, Hy and Is(m) (m > 6 even). This condition is also equivalent to
that |[W| < oo and og = idg. Moreover, Z(W) = {1, w(S)} if Z(W) # 1, while
og is determined as the unique non-identical automorphism of I" whenever W
is finite, irreducible and Z(W) = 1. Note that any automorphism 7 € Aut(I)
induces naturally an automorphism of W, which maps each element wy(I) to
’wo(T(I))

The next lemma introduces certain normal subgroups Gp,,, Gp, of W(B,,),
W(D,,), respectively, which play an important role in later sections.

Lemma 2.12. (See Definition 2.8 for notations.)
(i) Let 1 < n < oo. Then the subgroup Gp, of W(B,) generated by all
wo(S(B;)) (1 <i<n,i<oo)isnormal in W(B,,).
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(i) Let 1 < n < oco. Then the smallest normal subgroup Gp, of W(D,,) con-
taining all wo(S(D2r)) (1 < k < 00, 2k < n) is the subgroup generated by all
wo(S(D;)) 2<i<n,i<o0).

(iit) Moreover, each of the above normal subgroups is an elementary abelian
2-group with the generating set given there as the basis.

Proof. For the case n < 0o, we refer to Section 2.10 of [5] the following realiza-
tions of W(B,,) and W(D,,). Namely, W(DB,,) is isomorphic to the semidirect
product K, x Sym,, of an elementary abelian 2-group K,, ~ {£+1}", where the
i-th element of the basis is denoted by &;, by the group Sym,, of permutations of
the x;’s. The isomorphism sends s; to k1 and s; (i > 2) to (i—14) € Sym,,. Now
it is easily checked that wo(S(B;)) = K1k2 - - ki, so that we have G, = K,.
Moreover, W (D,,) is isomorphic to K;' x Sym,, where K, is the subgroup of
K,, generated by k;k;y1 (1 < i < n — 1), and the isomorphism sends s; to
Kikz - (1 2) and s; (1 > 2) to (i — 1 7). Now wo(S(D;)) = K1ka---k; if i > 2 is
even and wo(S(D;)) = kakg -+ -k if i > 2 is odd, so that we have Gp, = K}
By those observations, the claims (i)—(iii) are deduced immediately.

For the remaining case n = oo, note that W (By,) is the direct limit of the
sequence W (By) C W(Bg) C ---, and similarly for W(Dy). Thus the claims
are also deduced in this case by the argument in the previous paragraph. O

In the paper [2], Deodhar established a method (in the proof of Theorem 5.4)
for decomposing any involution w € W as a product of commuting reflections.
From now, we apply this method and then obtain a decomposition of any longest
element wq (1), which we call here a reflection decomposition. Among the various
expressions of the elements wg(I), this decomposition possesses an advantage
in a computation of the action on the space V. First, to each finite irreducible
Coxeter system (W,S) = (W(T),S(T)) of type T, we associate a (or two)

positive root(s) ar = &ﬁrl) (and &g)), as follows (where we abbreviate c;ay +

caqa + -+ cpa, €V to (c1,¢2,...,¢,) in some cases):
n n—1
&An:Zai (1<n<o0), &Dn:a1+ag+22ai+@n (4 <n<o0),
i=1 =3

n n—1

625313 :041+Z\/§04i, &'gj =\/§Q1+Z2ai+an (2<n<o0),
i=2 i=2

ap, = (1,2,2,3,2,1), ag, =(2,2,3,4,3,2,1), ag, =(2,3,4,6,5,4,3,2),

as) =(2,3,2v2,V2), a¥) = (vV2,2v2,3,2),
G, = (c+1,2¢,¢), am, = (3c+2,4c+2,3¢+1,2¢) (where ¢ = 2cos%),

1 1
a = > 5 odd
Az(m) ZSin(ﬂ/Qm)al * 2sin(7/2m) az (mz5odd),
~(d) cos(m/m) 1 S )
- ; ~; (m>5even,i=12).
A1 (m) sin(m/m) sin(m/m) s (m evemt )

To check that each of these is actually a root of (W (T), S(7)), note the equality
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c? = ¢+ 1 and the following formula for the root system of type Io(m):

If w=(---s28152) € W(I2(m)) (k elements), then

sin(kw/m) oy 4 sin((k+1)m/m) Qo if k is odd

sin(mw/m) sin(mw/m)

w- o = sin((k+1)7r/m)a + sin(kw/m) o

sin(mw/m) sin(r/m) if £ is even.

For example, we have

G\ — 5,505354508382 - @ a?
F, = 51525354528352 - 011, F

. = S4535251838283 * Qu,

A, = 525152515382 - 1, QH, = 5§4535251525153525154535251525354 * QA H,,
~ - ~()  _ k—1
ary(2k4+1) = (- 828152) - 1 (k elements), Oy ) = (s3-58:)" ‘s34 - .

By (2.14), if T # B, F4, Io(m) (m even), then ® consists of a single orbit
W(T)- a1 (and so it contains a7). On the other hand, if T = B,,, Fy or I5(4k),
then (2.14) implies that ® consists of two orbits (namely, W - oy and W - ay if
T = By, I2(4k), and W - and W - ay if T = Fy). In these case, &%}) lies in
the orbit W - a7 and &g) lies in the other one.

In contrast with the above cases, if T = I(4k + 2), then ® consists of two
orbits W(T) - a3 and W(T) - aa, and now we have &9) e W(T) - ag (and &g)
lies in the other orbit). In fact, we have &Z)(4k+2) = (s348)% az_; fori=1,2.

To simplify the description, we denote the reflection along the root aﬁﬁ) by
7(T,7). If we have only one root 62%3), namely 7 # B, Fy, Io(m) (m even),
then we also write 7(7) = 7(7,1).

Remark 2.13. By the above observation, if T = B, Fy or I(4k), then ¥(T,1)
is conjugate to s1, and 7(T,2) is conjugate to so (if T = B, or I2(4k)) or to
sy (if T = Fy). On the other hand, if T = Is(4k + 2), then 7(T,1), 7(T,2) are
conjugate to sq, S1, respectively.

Lemma 2.14. (i) If T # A, (n > 2), Is(m) (m odd), then for the root &g),
there is an index N (T i) such that (&gi), a;) =0 forall j # N(T,t). Moreover,
we have (&gf),aN(T,m >0 and @ [7(T,i)] = T\ g7 (If we have
only one root &E,i-), then we also write N(T) = N(T,1).)

(i) If T = A, (n > 2) or Ia(m) (m odd), then there are two indices N1(T), No(T)
such that (ar, an;(T)) > 0 for j = 1,2 and (a1, ;) = 0 for all j # N1(T), N2(T).
Moreover, we have ® [7(T)] = @+ \ @57

\{SN(T,i)}'

SNy () SNa (T e
Proof. (i) The first claim follows from a direct computation, by putting

N(A))=1, N(Bp,1)=n, N(B,2)=n—-1, N(D,) =n-—1,

N(E¢) =2, N(E;)=1, N(Eg)=8, N(Fy,1)=1 N(Fy2) =4,
For the second one, expand the equality (&(7?), &(71;)> =1 and use the first claim.
Now the third one follows from (2.9) and Lemma 2.9.

(ii) The former claim also follows from a direct computation, by putting

The remaining proof is similar to (i). O
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Now our method for obtaining a reflection decomposition of wq(I), which is
the same as a decomposition given by Deodhar’s method ([2], proof of Theorem
5.4), is summarized as follows:

(I) If I = @, then this algorithm finishes with the (trivial) decomposition
wo(I) = 1. If I # (), choose an irreducible component J of I. Let J = S(T).

(II) If T # A, (n > 2), I2(m) (m odd), take the (or one of the two)
root(s) &%2-). By Lemma 2.14 (i), #(T, ) commutes with all elements of K = I~
{sn(T.9)}» and we have wo (1) = 7(T, i)wo (K) (since @ [wo(I)] = @ [7(T,i)wo(K)] =
@7 cf. (2.8)). Then apply this algorithm inductively to the (smaller) set K.

(IID) If T = A, (n > 2) or Ia(m) (m odd), then similarly, 7(7) commutes
with all elements of K = I \ {sn,(7),sn,(m)} and wo(l) = 7(T)wo(K) by
Lemma 2.14 (ii). Then apply this algorithm inductively to the (smaller) set K.

By collecting the subset K C I appearing in the step (II) or (III) of every
turn, we obtain a decreasing sequence (Ko = I,) K1,...,K,_1, K, = (. We call
this a generator sequence (of length r) for the set I.

2.5 Direct product decompositions of finite Coxeter groups

As an application of the reflection decomposition introduced in Section 2.4,
we determine easily which finite irreducible Coxeter groups have the center as a
nontrivial direct factor. Although this result itself is not a new one, we restate
it here since the result is used in later sections.

For a Coxeter system (W,S), let W™ denote the normal subgroup of W
(of index two) consisting of elements of even length. This coincides with the
kernel of the map sgn € Hom(W, {#1}) such that sgn(w) = (—1)“®). Since any
reflection in W has odd length, the following lemma follows from (the proof of)
Lemma 2.1:

Lemma 2.15. If (W,S) is a finite irreducible Coxeter system and Z(W) # 1,
then we have W = Z(W) x W if and only if some (or equivalently, any)
generator sequence for S (cf. Section 2.4) has odd length.

Theorem 2.16. Let (W, S) be an irreducible Coxeter system such that Z(W) #
1 (so that |W| < o0). Then Z(W) (=W (A1)) is a proper direct factor of W if
and only if W ~ W(T) for T = Bojy1, Ia(4k +2) (k > 1), E7 or Hs. In the
first two cases, W is isomorphic to W (A1) X W (Dagy1), W(A1) x W(I2(2k+1))
respectively. In the last two cases, we have W = Z(W) x WT.

Proof. Note that Z(W') ~ {£1} by the hypothesis. Since Z(W(A;)) = W(4,),

we may assume W #£ W (Ay).
Case 1. W = W(B,,) (n > 2): First, we have Hom(W, {£1}) = {1,sgn,e1,e2}

by Lemma 2.11, where 1 denotes the trivial map, e1(s1) = —1, e1(s;) = 1,
ga(s1) = 1 and e5(s;) = —1 (i # 1). Now we consider the following reflection
decomposition:

wo(S) = ?(Bn, 1)77(Bn_1, 1) R %V(BQ, 1)81.

By Remark 2.13, each reflection 7(Bj, 1) is conjugate to s;. This implies that
any expression of 7(By, 1) as a product of generators contains an odd number
of s1 and an even number of s; (i # 1). Thus we have

sgn(7(Bg, 1)) = e1(7(Bk, 1)) = —1 and eo(7(B, 1)) = 1.
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If n is even, then all f € Hom (W, {£1}) maps wg(S) to 1 by the above property.
Thus by Lemma 2.1, Z(W) is not a direct factor.

On the other hand, if n is odd, then we have €1 (wy(S)) = —1 and so W =
Z(W) x ker g1 by the proof of Lemma 2.1. Note that kere; consists of elements
in which s; appears an even number of times. Since s; commutes with all s;
(3 <i < n), it can be deduced directly that kere; is generated by s] = s15251
and all s} = s; (2 < i <n). Moreover, kere; forms a Coxeter group of type D,,;
in fact, s,..., s, satisfy the fundamental relations of type D,, (so that kere;
is a quotient of W(D,,)), while the order |W(B,)|/2 of kere; coincides with
|W(D,,)|. Hence the claim holds in this case.

Case 2. W = W(T) for T = Dy, (k> 2), E;, Es, H3, Hy: Since '°19 is
connected in this case, we have Hom(W, {£1}) = {1,sgn} by Lemma 2.11. Thus
the claim follows from Lemmas 2.1 and 2.15, by taking the following generator

sequence for S (where we abbreviate the set {s;,, Siy, .., 8.} t0 G142« iy):
S(Don—2) U s}, S(Dap_s), ..., S(Da), 124, 12, 1, § it T = Doy,
S(E-), 234567, 23457, 2345, 235, 23, 2, ) if T = Es,
934567, 23457, 2345, 235, 23, 2, { if T = By,
S(Hs), 13, 1, 0 if T = Hy,
13, 1, 0 it T = H,

(note that the first sequence consists of 2k terms).

Case 3. W = W (Fy): We have a generator sequence 234, 23, 2, ) for S and
the corresponding decomposition of wg(S) into four reflections, all of which are
conjugate to s; and so (cf. Remark 2.13). This (and Lemma 2.11) implies that
any f € Hom(W, {£1}) maps all the four reflections to the same element f(s1),
so that f(wo(S)) = 1. Hence the claim follows from Lemma 2.1.

Case 4. W = W(I2(2k)) (kK > 3): We have a reflection decomposi-
tion wg(S) = 7(I2(2k),1)s;. If k is even, then 7(I2(2k),1) is conjugate to
s1 (cf. Remark 2.13). Now by a similar argument to the previous case, any
f € Hom(W,{£1}) maps wo(S) to 1. Thus Z(W) is not a direct factor by
Lemma 2.1.

On the other hand, if k¥ is odd, then 7(I2(2k), 1) is conjugate to sz (cf. Re-
mark 2.13). Thus e; € Hom(W, {£1}) (e(s1) = —1, e(s2) = 1) sends wo(S) to
—1, so that W = Z(W) x kere; by the proof of Lemma 2.1. Moreover, kere; is
generated by two reflections s1sos1 and sz, and so kere; is a Coxeter system of
type Ia(k) (since s1s98152 has order k). Hence the claim holds in all cases. O

Since the groups W(E7)™ and W (H3)" are known to be (isomorphic to) the
well-examined simple groups Sg(2) and As respectively (cf. [5], Sections 2.12-13,
etc.), we omit the proof of the following properties of these groups. Note that
these properties can also be proved by using Theorems 2.16 and 3.3 below.

Lemma 2.17. Let G = W(T)*, T € {E7,Hs}. Then G has trivial center,
is directly indecomposable and is generated by involutions. Moreover, G is not
isomorphic to a Coxeter group.

2.6 Notes on normalizers in Coxeter groups

In this subsection, we summarize some properties of normalizers Ny, (W7) of
parabolic subgroups W; in Coxeter groups W. Note that the explicit structure
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of Nw (Wr) is well-described in [1] (or in [4], when |[W]| < oco) and also in [8];
however, such a strong result is not required for our purpose.

The following result is due to D. Krammer [6]. The first part appears in
Proposition 3.1.9 (a) of [6], while the second one is easily deduced by the argu-
ment of Section 3.1 of [6], particularly by Corollary 3.1.5.

Proposition 2.18 (cf. [6]). (i) If I C S, then Nw(W7i) is the semidirect
product Wi x Gy of Wi by the group Gy ={w e W | w-1I; =1I;}.

(i) If I € J C S and Wy is an infinite irreducible component of Wy, then
Nw (W) C Wigpe.

We also require the following result. This was originally given by Deodhar
[2], in the proof of Proposition 4.2, for the case |S| < co only. Here we give a
proof covering the case |S| = oo as well for the sake of completeness.

Proposition 2.19 (cf. [2], Proposition 4.2). If (W,S) is irreducible and
|[W| = oo, then |® \ @;| = oo for all proper subsets I C S.

Proof. We consider the case |S| < oo first. Put ¥; = {y € ® | supp(y) = J}
for J C S. Our aim is to show |¥Ug| = co. If this fails, and J C S is maximal
subject to |¥ ;| = oo (note that some of ¥g’s must be infinite since their finite
union @ is so), then J C S and s € S\ J maps ¥ injectively into W ; ¢, when
s is adjacent to J in I'. Since I is connected by the hypothesis, such an element
s indeed exists, contradicting the maximality of J. Hence the claim holds.
Secondly, suppose |S| = co. Since I' is connected, there are infinitely many
finite subsets J C S such that J ¢ I and I'; is connected. Now the claim holds,
since each ®; contains a root v such that supp(y) = J. O

By those properties, we can prove the following corollary.

Corollary 2.20. Let s € S and I = S ~\ {s}.

(i) If 1 # w € Gy, then ® [w] = ®* \ ®;. Hence by (2.8), such an element w
is unique if it exists.

(21,) If |W‘ < 00 and wo(S) S Nw(W[), then Nw(W]) =W x {l,wQ(S)}
(iit) If (W, S) is irreducible and |W| = oo, then Gy =1 and Nyw (Wy) = Wr.

Proof. (i) In this case, we have w - a, € @~ (otherwise, we have w - ®* C ¢+
but this is a contradiction). Now the claim follows from Lemma 2.9.

(ii) Note that wg(S) € Wr, while |G| < 2 by (i). Thus by Proposion 2.18 (i),
Ny (W7) is generated by W and wg(S). Now the claim holds, since wg(S5)? = 1.
(iii) In this case, we have |®T \ ®;| = oo by Proposition 2.19. Thus we have
G =1 by (i), since the set ® [w] is always finite. Hence the claim holds. O

Owing to this description, we have the following:

Corollary 2.21. (i) If W = W(B,), 2 < n < oo, then (1=} Nw(Ws(p,)) =
Gg, .
(i) If W = W(D,), 3 < n < oo, then (/=3 Nw(Ws(p,)) = Gp, % (s1).

Proof. Note that, by Lemma 2.12, Gp, is generated by all wo(S(By)) (1 <
k < m). On the other hand, by Lemma 2.12 again, the product Gp, (s1) is
a semidirect product with Gp, normal, and it is generated by all wq(S(Dy))
(1<k<n).
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We prove the two claims in parallel. Let 7 = B and L = 1 (for (i)),
T = D and L = 2 (for (ii)), respectively. By the above remark, it is enough
to show that the group in the left side is generated by all wo(S(Tx)) (1 < k <
n). We use induction on n. First, note that wo(S(7,)) € Nw(Ws(r;)) for all
L<i<n-—1. PutW = Ws(t,_,)- Then by Corollary 2.20 (ii), we have
Ny (W) = W' x (wo(S(Trn))). Thus the claim holds if n = L + 1; in fact, in
this case, W' = W7, is generated by all wo(S(7;)) (1 <i < L).

If n > L + 1, then the above equality implies that

) N (W) = (ﬁ NW<Ws<m>) A (W (wo(S(T))))

i=L =L

= (ﬁ NW/(WS(’E))> X <w0(5(7;1))>

i=L

since wo(S(Ty)) € ﬂ?:_f Nw (Wg(r;)). By the induction, the first factor of the
semidirect product is generated by all wo(S(7;)) (1 < i < n —1). Thus the
claim also holds in this case. Hence the proof is concluded. O

We summarize some more properties of the normalizers. First, we have:

If I,J C S, then Ny (Wr)N Nw (W) C Nw(Wing). (2.15)
For I C S,w € Ny (W7y) if and only if w - &7 = P;. (2.16)

((2.15) follows from the well-known fact Wy N W; = Wiy (2.16) follows
immediately from (2.11).) Moreover, we have the following:

Lemma 2.22. Let I € J C S such that J~ I C I*+. Then
Nw (Wy) N Nw(Wr) C Nw(Wyr).

Proof. Let w € Nyw(W;) N Ny (W) and s € J~I. Then w- ®; = &; and
w - ®; = P; by (2.16), so that we have w-a; € &5 and w - a; € P;. Now by
the hypothesis and (2.10), we have supp(w - a) C J~ I and so w - a5 € Dy .
Hence the claim follows from (2.16). O

3 Main results

3.1 Direct indecomposability

In this subsection, we give the main result of this paper; all infinite irre-
ducible Coxeter groups are in fact directly indecomposable, even if it has infinite
rank (Theorem 3.3). As is mentioned in Introduction, this result was already
shown in [9] for the case of finite rank, in which the finiteness of the ranks is
essential and so cannot be removed immediately.

Our proof is based on the following complete description (proved in later
sections) of the centralizers of normal subgroups, which are generated by invo-
lutions, in irreducible Coxeter groups (possibly of infinite rank):

Theorem 3.1. (See Definition 2.8 for notations.) Let (W, S) be an irreducible
Coxeter system of an arbitrary rank, and H <W a normal subgroup generated
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by involutions. Then:

(i) If H C Z(W), then Zw(H) =W.
(i) If (W,S) = (W(B,), S(Ba)), 2
and H C 7(Gp,), then Zw(H) = 7
Gg,.)

(zfz) If W,S) = (W(D,),S(Dn)), 3<n<oo, 7€ Aut(I'(Dy)), H ¢ Z(W)
and H C 7(Gp,), then Zw(H) = 7(Gp,,). (cf. Lemma 2.12 for definition of
Gp, )

(zz) Otherwise, Zw (H) = Z(W).

IN
S
IN

oo, T € Awt(I'(By)), H ¢ Z(W)
(Gg,). (cf. Lemma 2.12 for definition of

This theorem yields the following corollary. A group G is said to be a
central product of two subgroups Hy, Hy if G = HiHs and Hy C Zg(Hy) (or
equivalently Hy; C Zg(Hz)). Note that Hy N Hy C Z(G) in this case.

Corollary 3.2. Let (W,S) be an irreducible Cozeter system of an arbitrary
rank, and suppose that W is a central product of two subgroups G1, G2 generated
by involutions. Then either Gy C Z(W) or Gy C Z(W).

Proof. By definition, we have Gy C Zw (G1), W = G1Zw(G1) and G; < W.
Now if G; satisfies the condition of cases (ii) or (iii) of Theorem 3.1, then G; and
Zw (Gy) are contained in the same proper subgroup of W. This is impossible,
so that we have G; C Z(W) (case (i) or G2 C Zw (G1) = Z(W) (case (iv)). O

Now our main result follows immediately:

Theorem 3.3. The only nontrivial direct product decompositions of an irre-
ducible Coxeter group W (of an arbitrary rank) are the ones given in Theorem
2.16. In particular, W is directly indecomposable if and only if W % W(T) for
T: B2k+1, IQ(4]'€ + 2) (k Z 1), E7, H3.

Proof. Assume that W = G; x G2 for nontrivial subgroups G1,Go C W. Then
both G; and G5 are generated by involutions, since W is so. Thus by Corollary
3.2, we have either G; = Z(W) or Go = Z(W) (since G1,G2 # 1 and |Z(W)| <
2). Hence Z(W) # 1 and so the claim follows from Theorem 2.16. O

3.2 The Isomorphism Problem

By using these results, we give some results on the Isomorphism Problem of
general Coxeter groups. Let (W, .S) be a Coxeter system with canonical direct
product decomposition W =[] W,, into irreducible components W,,. Then
we put

weN

Qfin = {w € Q| W] < 00}, Qint = QQpin, Whin = H W, Wing = H W,,.

WEQin WEns

(Note that W = Wgy, x Wips.) Moreover, we write Qr = {w € Q | W, 2 W(T)}
for any type 7. Now our result (proved later) is stated as follows:

Theorem 3.4. (See above for notations.) Let (W,S), (W', S") be two Cozeter
systems with the decompositions W = [[,cq Ww, W' =[], cq WL, into irre-
ducible components. Let m, : W — W,,, @, : W' — W/, denote the projections.
(i) W =~ W' if and only if the following two conditions are satisfied:

(I) There is a bijection ¢ : Qing — Qf; such that W, ~ for all

!
o(w)
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w € Q.
(II) Each of the following subsets of Q0 has the same cardinality as the cor-
responding subset of Q' :

Qa, U (| Barsy) UQE, U, U (| Qansz), 2B, UQa,,
k>1 k>1
QBQk+1 ) QD2k+17 912(6) U QA2) QIQ(4]€+2) U QIQ(2/€+1) (k 2 2)7
Qr forT=A4, (4<n< o), B, (n<oo even), D, (4 <n < oo even),
Eg, E7, Es, Fi, Hs, Hy, I(4k) (2 <k <o0).

(i) Suppose that W ~ W', and let f € Isom(W,W’). Then:

(I) f(Wan) = Wi, (and so the map gan defined by gan = flwy, s an
isomorphism Wan — Wy ).

(II) There is a bijection ¢ : Qin — Q¢ such that for all w € Qiyg, the map
Jo = ﬂfp(w) o flw,, is an isomorphism W, — W(;(w).

(IIT) Moreover, there is a map gz € Hom(Wine, Z(W')) such that

f w) = gw(w)gZ(w) wa S Qinfa w e Wwv
grin(w) if w € Wap.

Note that this is an analogue of the Krull-Remak-Schmidt Theorem on di-
rect product decompositions of groups, and follows from that (together with
Theorem 3.3) if W has a composition series. (More precisely, the key property
in the proof of the K-R-S Theorem, which follows from the existence of compo-
sition series, is that any surjective normal endomorphism of an indecomposable
factor is either nilpotent or isomorphic. However, it is not clear whether or
not an irreducible Coxeter group has this property.) Our result here is also a
generalization of a result of [9)].

In order to prove this theorem, we introduce the following “modified version”
of irreducible components. Here a group G is said to be admissible if either G
is a nontrivial directly indecomposable irreducible Coxeter group (cf. Theorem
3.3) or G is isomorphic to one of W(E7)™, W (H3)™".

Remark 3.5. Let W = [[,cqW. be the usual decomposition of a Coxeter
group W into irreducible components. Then, by subdividing every directly de-
composable W,, into the direct factors (cf. Theorem 3.3), we can obtain another
decomposition W = [[ycp G into admissible subgroups Gx. Moreover, since
any infinite W, is directly indecomposable, we can take the index set A so that
Qint C A and G, =W, for all w € Qips.

From now, we consider the following two conditions on a family G of groups:

If {Ga}rea is a subfamily of G, G’ € Gand f: G=[[Gr = G isa
AEA

(3.1)

surjective homomorphism, then f maps a G onto G’ (so that it maps
all other G, into Z(G")).

If G € G, then either Z(G) =1 or Z(G) is cyclic of prime order. (3.2)

(Actually, the condition (3.2) can be slightly weakened to the form that Z(G) is
either trivial or a finite elementary abelian p-group with p prime. But we omit
the detail here, since we do not need such a generalization in this paper.)
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Remark 3.6. (i) If G satisfies (3.1), then all groups G € G are directly in-
decomposable. In fact, if G admits a nontrivial decomposition G = Gy x Gs
with projections m; : G — G; (i = 1,2), then the map G X G = G, (w,u) —
mi(w)ma(u) is surjective but does not satisfy the conclusion of (3.1).

(i) If G satisfies (3.1) and (3.2), then any G € G has the three properties
(I)-(III) in Lemma 2.1 whenever Z(G) # G. This follows immediately from
Lemma 3.7. Any family G of admissible groups satisfies (3.1) and (3.2).

Proof. The condition (3.2) follows from Lemma 2.17. For (3.1), we may assume
G' %2 W(A;) (so that Z(G') # G’), since otherwise the conclusion is obvious.
Then there is an index A € A such that f(G)) ¢ Z(G'). Put G; = G, and
G2 = [I,.ea{ry Gu- Then the hypothesis of (3.1) implies that G” is a central
product (cf. Section 3.1) of f(G1) and f(G2), so that f(G1) N f(G2) C Z(G').
Thus the conclusion follows from Lemma 2.17 if G’ ~ W (E7)* or W(Hs3)" (in
fact, the central product is a direct product since Z(G') = 1, while G’ is directly
indecomposable).

On the other hand, suppose that G’ is a directly indecomposable irreducible
Coxeter group. Since both G; and G2 are generated by involutions (cf. Lemma
2.17), f(G1) and f(G2) also have this property. Thus we have f(G2) C Z(G')
by Corollary 3.2 (since f(G1) ¢ Z(G")). Now if Z(G’") ¢ f(G1) (so that f(G1)N
Z(G") =1 since |Z(G")| < 2), then the central product becomes a (nontrivial)
direct product, but this is impossible. This implies that f(G2) C Z(G') C f(G1)
and so f(G1) = G’. Hence the claim holds. O

Remark 3.8. By a similar argument, it is deduced that any family G, consisting
of cyclic groups of prime order and directly indecomposable groups with trivial
center, also satisfies the conditions (3.1) and (3.2).

We prepare some more notations. For a decomposition G = [[,c5 G of G,
put

Gy = [] Ga (for N CA), Az ={\| Z(G)) =Ga}, Aoz =AN Ag,
AEN’
Ap = {)\ | |Z(G)\)| :p},AZJ, =AzN Ap,Aﬁzvp =A_zN Ap (p prime or 1)
(3.3)

Note that the proof of the following theorem is essentially the same as the proof
of Theorem 2.1 of [9], but slightly more delicate by the lack of the assumption
on finiteness of the index sets (not only by generality of the context). Note also
that this is also an analogue of the Krull-Remak-Schmidt Theorem.

Theorem 3.9. (See (3.3) for notations.) Let G = [[ycp Ga, G = [Tyen Gy
be decompositions of two groups G, G’ into nontrivial subgroups. Let my : G —
Gy and 7, : G' — G, be the projections. Suppose that G = {Gx | A € A} U
{G), | N € A’} satisfies the conditions (3.1) and (3.2). Let f € Isom(G,G").
Then:

(1) There is a bijection ¢ : A — A" such that Gy ~ G ) for all A € A.

Moreover, for any A € A_z, the map g\ = w;(/\) o flg, is an isomorphism
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GA — Gip(/\).

(ii) Moreover, there is a map gz € Hom(G, Z(G")) such that

_Ja(w)gz(w)  ifAE Az, we Gy,
J(w) = {gz(w) ifwe Ga,

and that 7, ) 0 gz(Gx) =1 for all A € A 7.
(4i) If U,y Np C AT C A, then U,y A, C p(A%) and f(Gye) = G-

Proof. Note that (J,,; Ap = {A € A | Z(G\) # 1}. Then the claim (iii) is
deduced from the other claims (since now Z(G) C Gz and Z(G') C G;(An))'
From now, we prove the claims (i) and (ii). First, we put (symmetrically)

f = o f € Hom(G,Gh) (N € N), fi =m0 f~! € Hom(@, Gy) (A € A),
and define (symmetrically)

/>\ = {)\/ e N | f)\/(G)\) §Z Z( /A’)} C A/—\Z for \ € Aﬂz,
Av={AeA| fLGY) & Z(Ga)} C Ay for X € A .

Note that A # 0 since f(Gy) ¢ Z(G’) (and Ay # () by symmetry). Moreover,
since fy : G — G, is surjective, the condition (3.1) implies that

if A € A, then fi (Gx) = G and fx (G,) C Z(G)) for all pe A~ {A}.

By symmetry, a similar property holds for A € Ay, (with respect to the map
7).

We prove the following claims:

Claim 1: If A\, € A~z and A # p, then A\ NA), = 0.

Claim 2: If X’ € A}, then A\ € Ay,. (Thus |A}| =1forall A € A_z, by Claim
1 and symmetry. Moreover, by symmetry, the map ¢ : Az — A’ , defined by

L = {p(\)} is a bijection with inverse map satisfying Ay = {p~*(\)}.)

Claim 3: The map gy (A € A_z) in (i) is an isomorphism G — G;(A).

Claim 4: f(Z(Gx_,,)) = Z( ;\Qz ,,) for all primes p.

Claim 5: For each prime p, Az, and A’Zm have the same cardinality.

Proof of Claim 1: Assume contrary that A" € A} N.Aj,. Then the relation
A€ A\ means that fy(Gy) ¢ Z(GY,), while the relation \" € A, implies
(by the above property) that fi(Gx) C Z(G),) (since A # p). This is a
contradiction.

Proof of Claim 2: Since G, # Z(G),), we can take an element w € G}, \
Z(GY,). Pat uy, = f)(w) € Gy, for € A, so that we have w = f(],cp up)- It
suffices to show uy = f{(w) & Z(G)). Now fx (u,) € Z(G),) for all p € AN{A\},
while w = 7}, (w) € Z(G,). Thus we have fx (ux) &€ Z(G),) and so uy & Z(G)
(since fa (Gyr) = G)/). Hence X € Ay,.

Proof of Claim 3: Note that gy : G\ — G;(A) is surjective (as above).
Now the following equivalence holds for all w € G:

Foon(w) € Z(Glyn) == f(w) € Z(G) = w € Z(G) <= w € Z(G»)

(we use the fact A = {@()\)} for the first equivalence). This implies that
ker gy is contained in the simple group Z(Gy) (cf. (3.2)), so that ker gy = 1 or
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Z(Gy). Thus gy is injective (and so an isomorphism) if Z(G,) = 1. Moreover,
if Z(Gfp()\)) =1, then f//\‘G;:(A) is an isomorphism G;(A) — () by symmetry, so
that we have Z(G,) = 1. Thus g, is injective (as above) also in this case.

On the other hand, suppose Z ( ) # 1. Then by the above equivalence,
there is an element w € Z(G)) such that gr(w) # 1 (since gy is surjective).
Thus we have ker g\ # Z(G,) and so ker g, = 1. Hence g, is an isomorphism.

Proof of Claim 4: Note that Z(G) = [],,, Z(Ga,) and each Z(Gy,) is
an elementary abelian p-group, by (3.2). Z(G’) also admits a similar decompo-
sition. Thus the isomorphism f|z(s) : Z(G) — Z(G’) maps each Z(Gx,) onto
Z(G!\,). Moreover, for any A € Az ,, the composite homomorphism G 4
G — G;\,Z)p (where the latter map is the projection) maps Z(G)) to 1, by Re-
mark 3.6 (ii) (note that Z( j\/Z ) =Gy, ) Thus we have f(Z(G))) C G\,

sP Z,p
for any A € Az, and so f(Z(Ga_,,)) < Z(Gj\, ) Now this claim holds by
symmetry.

Proof of Claim 5: Note that Z(Ga,) = Ga,, x Z(Ga and Z(Gy,)
admits a similar decomposition. Moreover, we have f(Z(Ga,)) = Z( j\,) and
J(Z(Gr,,)) = Z( j\, ) by Claim 4. Thus the complementary factors GAZ s

Gj\, E which are elementary abelian p-groups with basis having the same car-

ﬁZ,p

z)

dlnahty as Az, A 7. p respectively, are also isomorphic. Now this claim follows
from uniqueness of the dimension of a vector space.

Conclusion. Since Az, A, are disjoint unions of Az, A7 respectively
(cf. (3.2)), Claim 5 implies that this ¢ extends (not uniquely) to a bijection
¢+ A — A’ satisfying (i) (note that Azy = A%, = () by the hypothesis).
Moreover, define a map gz : G — Z(G') componentwise by

gz(w) _ H)\’EA'\{(Q()\)} f)\/(’lU) ?f}\GAﬁZ,weGA,
f(w) ifweGy,.

Note that Gx, C Z(G), while in the above definition, we have fi(w) € Z(GY,))
by the fact A}, = {p(N\)}. Since Z(G’) is abelian, these facts imply that gz is a
well-defined group homomorphism. Now the claim (ii) follows from definition.

O

Proof of Theorem 38.4. Let W =[] oy Gx, W' =[]y ca G be the decompo-
sitions into admissible groups given in Remark 3.5.

(i) Each of the sets in the condition (II), except Q. and Qp, in the last row,
has the same cardinality as the set {A € A | Gy ~ W(T")} where T' = A, As,
Doji1, Aa, I5(2k + 1) and T, respectively (note that no two admissible finite
groups of distinct types are isomorphic; cf. Lemma 2.17). Moreover, each of Q.
and Qp, has the same cardinality as {\ € A | Gy ~ W(T")"} for 7' = E; and
Hj, respectively. Similar relations also hold for W’. Thus the two conditions
(I), (II) are satisfied if and only if there is a bijection ¢» : A — A’ such that
Gy~ Gip(x) for all A € A. Hence the claim follows from Theorem 3.9 (i) (which
can be applied indeed to the case, by Lemma 3.7).

(ii) Take p : A = A, gy € Isom(G,\7 G\ (A € A-z) and g € Hom(W, Z(W'))
as in the conclusion of Theorem 3.9. By Remark 3.5, g, € Isom(W,,, W/ ) for

#(w)
all w € Qiut, so that the claim (IT) holds. The claim (I) follows from Theorem
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3.9 (iii) (by putting A* = A \ Qiu¢). Moreover, the claim (III) also follows from
Theorem 3.9, by putting gz = g%|w,,,. Hence the proof is concluded. O

3.3 Automorphism groups

In this subsection, the complete direct product of groups is denoted by a
symbol J]. Owing to Theorems 3.4 and 3.9, we can examine the automorphism
groups of W = [],cqo Ww and G = [], < G respectively (Theorem 3.10), under
the notations and hypotheses in Section 3.2. Note that each Aut(G)), Aut(W,,)
is embedded into Aut(G), Aut(W) respectively. The group Aut(Wsy,) is also
embedded into Aut(W).

On the other hand, the symmetric group on each isomorphism class of com-
ponents of G or W is also embedded into the automorphism group, as follows.
For the case of G, we partition the index set A—z into subsets A¢ (£ € E) so that
A, A € A_z are in the same subset if and only if G, ~ G,,. Moreover, for £ € =,
we choose an “identity map” id, » € Isom(Gx,G,,) for each A, 1 € A¢ so that
idyx =idg,, idy,, = id#)\_1 and id, , oid, x =id, x for all A, p,v € A¢. (This
can be done by taking a maximal tree in the category of groups G (A € A¢) and
group isomorphisms.) Then each element 7 of the symmetric group Sym(A¢)
on A¢ induces an automorphism of the factor G, of G; namely,

T(w) = id () a(w) € Gy for X € A¢ and w € G.

In this manner, Sym(A¢) is embedded into Aut(Gy, ), and so also into Aut(G).
Similarly, we write Q = [ |,  ,, choose “identity maps” id. ., € Isom(W,,, W)
and then embed every symmetric group Sym(€2,,) into Aut(W). Moreover, put

Tin={veT||W,| <ooforweQ,}and Tint =T \ Tgy.

Recall (Section 2.1) the structure of the monoid Hom(G’, Z(G')) (where
G’ is a group), the action of Aut(G’) on it and the embedding f — f° into
the monoid End(G’) compatible with the action of Aut(G’). For a subset
H C Hom(G’, Z(G")), the image of H by the embedding is denoted by H”. In
particular, the group Hom(G’, Z(G"))* of invertible elements of Hom(G’, Z(G"))
is embedded into Aut(G’) (as a subgroup Hom(G’, Z(G’))Xb).

Now for the group G, let

Hom(G, Z(G)), = {f € Hom(G, Z(G)) [f(Ga,) = 1,
F(Gy) C Z(Gy) for all A € Az}

(cf. (3.3) for notations). Since we assumed that each Gy (A € A_z) satisfies
the three conditions in Lemma 2.1 (cf. Remark 3.6 (ii)), we have f(Z(G)) =1
for all f € Hom(G, Z(G)),. Thus by Lemma 2.4 (i), Hom(G, Z(G)), is an
abelian subgroup of Hom(G, Z(G))* with multiplication (f x g)(w) = f(w)g(w)
(f,9 € Hom(G, Z(@)),, w € Q).

On the other hand, since Z(Wiys) = 1, Lemma 2.4 (ii) implies that the set
Hom(Wiye, Z(W)) forms an abelian normal subgroup of Hom (W, Z(W))* with
multiplication (f * ¢g)(w) = f(w)g(w) (f,9 € Hom(Wing, Z(W)), w € Wiyg).
Since now Z (W) is an elementary abelian 2-group, Hom(Wiye, Z(W)) is also an
elementary abelian 2-group.

Now our result is stated as follows. Here G} G% denotes (for two subgroups

1, G% of a group G’) the subgroup of G’ generated by G} U G}, as usual.
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Theorem 3.10. (See above for notations. See also Section 3.2.)
(i) Put Hy = Hom(G, Z(G))*", Hy = [[yes_, Aut(Gy), Hs = [[ee=Sym(A¢)
and Hy = Hom(G, Z(G))’. Then

o

Aut(G) = (Hng) X ]‘]37 Hy <« Aut(G)7 Hy <« H2H3, H,NHy, = Hy.

(i) Put H, = Hom(Wiyse, Z(W))?, Hy = Aut(Wsy), Hy = []

and Hy, =] Sym(§2y,). Then

wEmeAut(Ww)

VEYins
Auwt(W) = (H{ X (Hé X Hé)) X Hfl, HéHfl = Hé X Hfl, HéHi = Hé X Hfl.

(iit) The subgroup H = (HweQAut(Ww)) (HveTSym(Qv)> has finite index in
Aut(W) if and only if, either Z(W) = 1 or the odd Coxeter graph (cf. Definition
2.10) I of W consists of only finitely many connected components. (Hence
the index is finite whenever W has finite rank.)

From now, we prove this theorem. First, we prove (i) and (ii). Note that
H)H!, = H, x H; and H,H) = H) x H} by definition. Moreover, by definition,

Hy ={f € Aut(G) | f(w) =w (w € Ga,), f(Gr) =Gx (A € Az)},

HY = { € Aut(W) | f(w) = w (w € Wan), F(We) = Wy (w0 € Qur)}.
Claim 1. (i) Aut(G) = Hy HoHy. (ii) Aut(W) = H|H}HLH,.

Proof. (i) Let f € Aut(G), and take ¢, g, gz as in Theorem 3.9. Note that
©(A¢) = A¢ for all £ € E. Now define f; € Hom(G, Z(G)) by

fl(w): gZog;711(A)(w)71 fO]I')\E[\_‘Z7 wGG)\’
wf(w)™! for w € Gy,

(this is well defined since Gp, C Z(G)). Then by definition and Theorem 3.9,
we have f = flb o fa o f3, where

fo = (910 0idp-13)a)xea., € Ha, f3 = (¢[ac)eez € Hs.

Moreover, we have f;” = f o fitofy' € Aut(G) and so f; € Hom(G, Z(G))*
by Lemma 2.2 (ii). Hence flb € Hy and so f € H{HyHj.

(ii) Let f € Aut(W), and take ¢, gan, gx, gz as in Theorem 3.4 (ii). Note that
©(Q,) =, for all v € Y. Now define f; € Hom(Wipne, Z(W)) by

fi(w) =gz og;,ll(w)(wf1 for w € Qiue, w e W,,.

Then we have (by definition and Theorem 3.4 (ii))

/= flb © gfin © (g(p71(w) © idgofl(w),w)weﬂinf © (90 Qu)vETinf € H{HéH?/)HA/l

Hence the proof is concluded. O

Claim 2. (i) If f* € Hy, \,p € Az and f°(Gy) C G,, then A\ = p and
f(Gy) C Z(G)).
(ii) If f* € H}, w,w’ € Qs and f*(W,) C W, then w = o’ and f(W,,) = 1.
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Proof. (i) By the choice of A\, we can take w € Gx \ Z(G). Now we have
ma(f(w)) € Z(G)y) (where 7y is the projection G — Gy) and so 7y (f*(w)) =
wrmy(f(w))~! # 1. Since f’(w) € G, this implies that u = A. Now the latter
part follows from definition of the map f”.

(ii) By a similar argument to (i), we have w = w’ and f(W,,) C Z(W,,). Hence
the claim holds since Z(W,,) = 1. O

Claim 3. (i) (HyHa) N Hs = 1. (ii) (H|H,H}) N H} = 1.

Proof. (i) Let f1 € Hy, fo € Hy such that fiofy € Hs. By (3.4) and definition of
Hj3, both f{l and fj o fo map each component G (A € A_z) onto a component,
so that f1 also does so. By Claim 2 (i), f; maps each G (A € A_z) onto itself,
while f2 also does so (cf. (3.4)). Thus f; o fo € H3 also has this property. By
definition of Hjs, this occurs only if fi o fo =idg. Hence the claim holds.

(i) The proof is similar to (i); if f; € H! (i =1,2,3) and fy4 = f10 fo0 f3 € H},
then f1 = fy0 f3_1 o f2_1 must map each W, (w € Qinr) onto some component,
which is W, by Claim 2 (ii). This implies that f; maps each W, (w € Qinf)
onto itself, so that fy = idy by definition of Hj. Hence the claim holds. O

Claim 4. (i) Hy < HyHs. (ii) H} <t HyH).

Proof. For (i), it is enough to show that f3o fyo f;l € H, for all fo € Hy and
f3 € Hz. By definition, f3 is identity on G, and maps each G (A € A_z) onto
a component. Now by (3.4), fzo fao f5 ! also satisfies the condition in (3.4), so
that it belongs to Hs. Hence the claim holds. The proof of (ii) is similar. O

Claim 5. (i) Hy < Aut(G). (i) H| < Aut(W).

Proof. (i) Note that Aut(G) acts on the monoid Hom(G, Z(G)). Thus its sub-
group Hom(G, Z(G))* of the invertible elements is invariant under the action.
Now the claim follows from Lemma 2.2 (iii).

(ii) By Lemma 2.2 (iii), it is enough to show that the subgroup Hom(Wiy¢, Z(W))
of Hom(W, Z(W)) is invariant under the action of Aut(W). Moreover, by
Claim 1, it is enough to show that h o f o h=! € Hom(Wius, Z(W)) for all
f € Hom(Wius, Z(W)) and h € HyHLH). Now we have h(Wgy,) = Wsy, by
definition of Hj, H} and H}, so that ho foh™Y(Wsy,) = h(f(Wan)) = k(1) = 1.
Hence the claim holds. O

Claim 6. (i) Hy N Hy = Hy. (ii) H| N (HyH}) = 1.

Proof. (i) Let f* € HyNH,. Then by (3.4), we have f*(w) = w (or equivalently
f(w) = 1) for all w € Gy, and f°(G)) = G for all A € A_z. Thus we have
f € Hom(G, Z(G)), by Claim 2 (i), so that f* € Hy. Conversely, Hy C H; by
definition, while Hy C Hy by (3.4) and definition of Hy. Hence the claim holds.
(ii) Let f> € H| N (HLH}). Then for any w € Qipns, we have f°(W,,) = W, by
definition of H} and Hj. Thus we have f(W,,) = 1 by Claim 2 (ii). Hence f =1
and f° = idyy . O

Now the claims (i) and (ii) of Theorem 3.10 hold. Namely:
(i) We have H; N Hy = Hy (Claim 6) and Aut(G) = (HyH2)H3 (Claim 1). Now
since Hy < Aut(G) (Claim 5) and Hs <t HyHs (Claim 4), the conjugation by an
element of Hy, Hy or H3 maps H; and H, into the subgroup H; Hs generated
by Hy U Hsy. Thus HyHy < Aut(G) and Aut(G) = (H1Hz) x Hs (Claim 3).
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(ii) We have HyH; = H) x H}, HLH) = H) x Hj (as the above remark),
HIH) = H x Hy (Claims 3, 4) and H{ < Aut(W) (Claim 5), so H{H,HS =
H{ x (H) x H%) (Claim 6). Now by a similar argument to (i), the conjugation
by an element of H) leaves HyH,HY) invariant, so HjH)H4; < Aut(WW) since
Aut(W) = H{H}H,H) (Claim 1). Thus Aut(W) = (H{ x (Hy x Hj)) x H}
(Claim 3).

Proof of Theorem 3.10 (iii). If Z(W) = 1, then all irreducible components of
W are directly indecomposable (cf. Theorem 3.3), so that the decomposition
W = [, cq W itself satisfies the conditions (3.1) and (3.2) in Section 3.2. Thus
we can apply the result (i) to this decomposition. Now H; = 1 since Z(W) = 1.
Moreover, 2 = )z in this case, so that we have H = Hy H3 = Aut(W).

From now, we assume that Z(W) # 1. For f € Aut(W), let sep(f) be the
set of all w € Q such that f(W,,) ¢ W, for all ' € Q. Since any element of H
maps each component W, onto a component, the cardinality of the set sep(f)
is invariant in each coset of Aut(W)/H. Moreover, by definition, we have

"= (HwEQﬁnAUt(WW)> (HUETﬁnsym(QU)) - HéHi “ Hé . (HéHi)

Case 1. I'°9 consists of only finitely many connected components:
This implies that |Q] < co and [Hom(Wiye, {£1})| < 0o (cf. Lemma 2.11). Since
Z(W) is now a finite elementary abelian 2-group, (ii) implies that H)H;H)
has index |Hj| = |[Hom(Wiut, Z(W))| < oo in Aut(W). Moreover, since now
|[Whin| < 00, the index of H in HyH,H) is < |Hj| < co. Thus H has finite index
also in Aut(WW).

Case 2. [°9d consists of infinitely many connected components:
Now we have to show that H has infinite index in Aut(W).

Subcase 2-1. The odd Coxeter graph of some W, consists of in-
finitely many connected components: Note that w € ¢ in this case. Now
by Lemma 2.11, we have [Hom(W.,,, {£1})| = co and so [Hom(Win¢, Z(W))| =
oo (since we assumed that Z(W) # 1). Thus by (ii), the subgroup H,H}H)
(D H) has index |Hj| = o0, so that H also has infinite index in Aut(WW).

Subcase 2-2. The odd Coxeter graph of every W, consists of only
finitely many connected components: Then we have || = co by the hy-
pothesis of Case 2. Since we assumed that Z(W) # 1, we can take an infinite
sequence wg, wi,ws, ... of distinct elements of Q such that Z(W,,) # 1. Let
u denote the unique element of Z(W,,) \ {1}. Now for & > 1, we define
fx € Hom(W, Z(W)) componentwise by

Fu(w) u? ™ if w e {wi,...,wp} and w € W,
b 1 ifwe O~ {w,...,wr} and w € W,

Then we have fro fr, = 1 and so fy* fr = 1 since Z(W) is an elementary abelian
2-group. This implies that f; € Hom(W, Z(W))* and so fkb € Aut(W), while
sep(fi”) = {w1,...,w} by definition. Thus by the above remark, all f+” belong
to distinct cosets in Aut(W)/H and so H has infinite index in Aut(W). Hence
the proof is concluded. O

Example 3.11. Let m = (my,ma,...) be an infinite sequence of nonnegative
integers. Here we examine Aut(W,,) for the group Wy, = [],,~,(Sym,,)™" by
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using our result, where Sym,, = Sym({1,2,...,n}) is the symmetric group of
degree n. Note that Sym; = 1.

Since Sym,, (n > 2) is the Cozeter group W(A,_1), which is directly inde-
composable (cf. Theorem 3.3), we can apply Theorem 3.10 (i) to this decom-
position of Wp,. In this case, we have Z(Sym,) = 1 unless Z(Sym,,) = Sym,,
(namely n = 1,2), so that Hom(W,,, Z(Wp,))o = 1. Thus we have Aut(W,,) =
]{1N.HE>4fﬁ.

Note that Z(W,,) = (Sym,)™2 ~ {+1}™2 while |Hom(Sym,,, {£1})| = 2
for alln > 2 by Lemma 2.11. Thus Lemmas 2.3 and 2.4 (i) imply that

b
H, = Hom(H(Symn)m",Z(Wm)> x Hom(SymJ3'?, Z(Wm))><b

n>3
b

_ <n>3Hom((Symn)m",Z(Wm))) X Aut((Sym,)™)

~ (ang{ﬂ}mm") % GLyn, (Fa).

Secondly, recall the well-known fact that Aut(Sym,,) = Inn(Sym,,) (the group of
inner automorphisms) if n # 6 and |Aut(Symg)/Inn(Symg)| = 2. This implies
that Aut(Sym,) = 1, |Aut(Symg)| = 2|Symg| and Aut(Sym,,) ~ Sym,, if n #
2,6. Thus we have

Hy ~ Hn23Aut(Symn)m” ~ (HBSW&GSymnm”') x Aut(Symg)™e.

Moreover, by definition, we have Hz ~ ﬁn>38ymmn.
As a special case, if all but finitely many terms in m are 0, then (by putting
|m| =3, m, < o00) we have

mo—1 ma2

|Hy| = gmzmizmizmma) T (gme — o) — gma(Im|=m1—m2)+("?) [[e@ -,
=0 i=1
|Ha| =2 [] ()™, |Hs| = J] ma!.
n>3 n>3

Hence we have
|Aut(W,)| = |H1| - |Ha| - |Hs|

ma

= gremizmema = (5 [T — 1) TT ()™t
=1 n>3
ma
- <2m2<mlm1m21>+<";2>+m6 e -u1] mn!> [Wonl.
=1 n>3

4 Centralizers of normal subgroups generated
by involutions

4.1 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. From now, (W, S) always denotes a
Coxeter system. In the proof, we use the notion of core subgroups (cf. Section
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2.1). For a subgroup G < W, let X be the set of all elements in G of the
form wo(I) (I C S) such that 1 # wo(I) € Z(Wr). Then we have the following
relation (proved below):

Proposition 4.1. Let H <W be a normal subgroup generated by involutions.
Then H is the smallest normal subgroup of W containing Xpg, and

Zw(H)= () Corew (Nw(Wr)).
wo(I)eX

On the other hand, the subgroups Corew (Nw (Wy)) are determined com-
pletely (for irreducible (W, .S)) by the following theorem, which we prove in later
subsections. Here we use the notation (W (Ds), S(Ds3)) instead of (W (As), S(43)).

Theorem 4.2. (See Definitions 2.5 and 2.8 for notations.) Let (W, S) be an
irreducible Coxeter system of an arbitrary rank, and I nonempty proper subset
of S. Then:

(i) If W,S) = (W(B,),S(Bn)), 1 <k <n < oo, 7 € Awt(I'(By)) and
I =7(S(Bg)), then Corey (Nw (W7p)) =7(Gp,).
(i) If (W,S) = (W(D,),S(D,)), 2 <k <n < oo, 7€ Aut(I'(D,)) and
I =17(S(Dy)), then Corew (Nw (W) = 7(Gp,).

(iit) Otherwise, Corew (Nw (Wr)) = Z(W).
(cf. Lemma 2.12 for definition of Gp, and Gp, .)

Note that, Corew (Nw (W7)) = Nw(Wr) = W if I = () or S. Theorem 3.1
will be proved by combining Proposition 4.1 and Theorem 4.2.
In the proof of Proposition 4.1, we use the following two results:

Theorem 4.3 ([10], Theorem A). Let w be an involution in W. Then w is
conjugate in W to some element wo(I) (I C S) such that wo(I) € Z(W7).

Lemma 4.4. Let W be a finite parabolic subgroup of W such that wo(I) €

Proof. First, assume u € Zy (wo(I)). Then v wo(I)u = wo(I) € Z(W;) and
so wo(I) - (u-as) = uwe(l) - s = —u - a, for all s € I. This implies that
u-as € &y for all s € I, so that u € Ny (W) by (2.16).

Conversely, assume u € Ny (Wy). Put v/ = uwo(l)u=' € Wr. Then we
have u’ - oy = —a, for all s € I (since wo(I) maps u=!-a, € ®; (cf. (2.16)) to
—u~1 - ay). Hence we have ' = wo(I) and so u € Zw (wo(I)). O
Proof of Proposition 4.1. By Theorem 4.3, every involution in H is conjugate
to some element of Xy (since H <« W). This implies that any normal subgroup
of W containing X g also contains all the generators of H. Thus the first claim
follows. For the second one, apply Lemmas 2.7 and 4.4. O

Proof of Theorem 3.1. The claim (i) is obvious. From now, we assume H ¢
Z(W). Note that Z(W) C Zw (H). Note also that, by Proposition 4.1,

Zw (H) C Corew (Nw (Wy)) for all wo(I) € Xp. (4.1)

Case 1. (W, S) = (W (B,),S(B,)), n>2 or (W(D,),S(Dy,)), n > 3: Let
T = B =1 for the former case, 7 = D, L = 2 for the latter case.
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Subcase 1-1. T =B, n# 2 or 7 = D, n # 4: Note that in this case, any
automorphism of I'(7,) preserves the sets S(7), elements wo(S(7x)) (k> L)
and so the subgroup G, .

Subsubcase 1-1-1. H C G,: This is a case (ii) or (iii) (for 7 identity), and
so we have to show Zy (H) = G7,. The inclusion D holds since G, is abelian.
Conversely, since H ¢ Z(W'), Xg contains an element other than wg(S), so
that we have Zyw (H) C G7, by (4.1) and Theorem 4.2.

Subsubcase 1-1-2. H ¢ G, : By the above remark, this is actually not a
case (ii) or (iii), so that we have to show Zw (H) C Z(W). Now Xy contains an
element wq(I) such that I # S(T) for any L < k < n, since otherwise H C G,
by Lemma 2.12. For this I, we have Corew (Nw (W;)) = Z(W) by Theorem
4.2, so that the claim follows from (4.1).

Subcase 1-2. 7 = B, n = 2: Note that Xy C {s1, s2, wo(S)} in this case.
Moreover, Xy ¢ {wo(S)} since H ¢ Z(W).

Subsubcase 1-2-1. s; € Xy and sy ¢ Xpg: In this case, we have Xy C
{51, w(S)} and so H C Gp, by Lemma 2.12. This is a case (ii) (for 7 identity).
Now we have Gp, C Zw (H) since G, is abelian, while Zw (H) C Gp, by (4.1)
and Theorem 4.2 (applying to {s1} C S). Thus the claim holds.

Subsubcase 1-2-2. s; € Xy and sy € Xpgy: By symmetry, this is also a
case (ii) (for the unique 7 # idg) and the claim holds similarly.

Subsubcase 1-2-3. s; € Xy and sy € Xp: Note that H = W. This is
not a case (ii) or (iii), and actually Zw (H) = Z(W).

Subcase 1-3. 7 = D, n = 4: Note that (by definition)

Xu C {51, 52, 53, S4, 515254, 5152, 5254, 5451, wo(S)}.

Subsubcase 1-3-1. Xy contains one of the first five elements: Now
we have H ¢ 7(Gp,) for any 7, so that this is not a case (iii) and we have to
show Zw (H) C Z(W). This claim follows from (4.1) (applying to the element
of Xpg given in the hypothesis here) and Theorem 4.2.

Subsubcase 1-3-2. Xy contains at least two of the elements s;ss,
$284, S481: Now we have H ¢ 7(Gp,) for any 7, so that this is not a case (iii)
and we have to show Zy (H) C Z(W). Let Xy contain two such elements s;s;,
sjsk, and put I = {s;,s;}, J = {s;,sr}. Then we have

Coreyw (Nw (Wr)) N Corey (Nw (W) C Corew (Nw (Wys,3))

by (2.4), (2.15) and (2.2). Thus we have Zw (H) C Corew (Nw(Wys,3)) =
Z(W) by (4.1) and Theorem 4.2.

Subsubcase 1-3-3. Xy contains none of the first five elements and
at most one of s152, $254, S451: Note that X g & {wo(S)} since H ¢ Z(W).
Thus we have s;5; € Xy C {s;5;,wo(S)} for one of (3,5) = (1,2), (2,4), (4,1).
Lemma 2.12 implies that this is a case (iii) (namely H C 7(Gp,)), by taking
7 € Aut(I") mapping s1, sz to s;, s; respectively. Now 7(Gp,) C Zw(H) since
7(Gp,) is abelian. Conversely, we have Corew (Nw (Wi, s,1)) = 7(Gp,) by
Theorem 4.2, so that Zw (H) C 7(Gp,) by (4.1). Thus the claim holds.

Case 2. (W,S) #£ (W(B,,),S(Bn)) (n>2), (W(D,),S(D,)) (n > 3): This
is not a case (ii) or (iii), so that we have to show Zy (H) C Z(W). Since H ¢
Z(W), Xy contains an element other than wg(S), so that we have Zy (H) C
Z(W) by (4.1) and Theorem 4.2. Hence the proof is concluded. O
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4.2 Some lemmas

In the rest of this paper, we prove Theorem 4.2. In this subsection, we
prepare some lemmas used in our proof. From now, we abbreviate the notation
Corew (Nw (W7)) to Cj.

First, by combining Lemma 2.22; (2.4) and (2.2), we have:

IfIcJcSand J~ICI*, thenC;NCrc Cyoy. (4.2)

Lemma 4.5 (Expanding Lemma). If I C S and s € S~ (I UItY), then
Cr C C[U{S}.

Proof. Tt is enough (by (2.3)) to show that C; C Nw (Wyygsy). Let w € Cf.
By the hypothesis, we have ¢ = {as, ;) < 0 for some t € I. Now since sws €
Cr C Nw(Wr), we have sws - a; € ®7 (by (2.16)) and so ws - a; € ®rygsy. On
the other hand, we have ws-ay = w - oy — 2cw - ag. Thus w - ay € <I>1U{s} since
w-ap € @7 (by (2.16)). Hence we have w € Nyw (Wyy(s)) by (2.16). O

For s € Sand I C S, let dp(s,I) = min{dr(s,t) | t € I} denote the distance
from s to the set I in the Coxeter graph I" of (W, .5).

Lemma 4.6 (Cutting Lemma). Let (W,S) be irreducible, I C S and s €
S~ I. Then for dr(s,I) < k < oo, we have C; C Cy, where J = {t € I |
dp(S,t) > k‘}

Proof. Tt is enough (by (2.3) and (2.16)) to show that w - ®; C ®; (or equiva-
lently, w-II; C @) for all w € Cj. Assume contrary that ¢t € J and w-«a; & © .
Note that w-ay € &5 (by (2.16)) and so s & supp(w - ;). Then by definition of
J, we have

(d=) dr(s,supp(w - ay)) < k <dp(s,t).

Take a shortest path sy = s,81,...,84-1,84 € supp(w - o) in I' from s to
the set supp(w - o). Then by the above inequality, we have s; € {t}* for all
0<i<d—1. Put u=ss;---s4_1 € W. Then we have vwu~" - oy = vw - oy
and so (by (2.13))

supp(uwu ™t - ay) = supp(w - ay) U {s,51,...,84_1} ¢ I
(note that s ¢ I). On the other hand, we have vwu~! € C; and so vwu™t- oy €
®; (by (2.16)). This is a contradiction. Hence the claim holds. O

Lemma 4.7 (Shifting Lemma). Suppose that s,t € S are in the same con-
nected component of the odd Cozeter graph I'° of (W, S). Then Cisy = Cpy-

Proof. By definition of I'°d9, and by symmetry, it is enough to show that Cisy C
Cyyy for any s, such that m(s,t) = 2k + 1 is odd. Now by putting u = (st)* €
W, we have t = usu~". Thus for w € Cysy, we have

-1 1 1

= wusu w 1 !

wtw = w(u twu)s(u™ wu) et =usuT! =t

since v 'wu € Cy. Thus w € Ny (Wyy). Hence the claim follows from
(2.3). O

Moreover, we have:
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Lemma 4.8. Let (W,S) be irreducible and I a nontrivial proper subset of S.
Then Corew (W) = 1.

Proof. Assume contrary that 1 # w € Corew (W7) (so that w - ®; = ®; by
(2.16)). Fix s € S\ I and take v € ®} such that w -y € ®; .

Case 1. (d =) dr(s,supp(v)) < dr(s,supp(w - v)): Take a shortest path
S0 = 8,81,..-,84—1,84 € supp(y) in I' from s to the set supp(y). Then by
the above inequality, we have s; & supp(w -~) for all 0 < ¢ < d — 1. Put
u = 881+ -84—1 € W. Then we have u -~y € &t (by (2.12)), supp(u - y) =
supp(y) U {s,s1,...,8a-1} & I (by (2.13)) and so u -~y € ®F \ ®;. On the
other hand, we have uwu™! - (u-v) = u-(w-7) € & (by (2.12)). This is a
contradiction, since uwu~! € Corey (W) C Wr.

Case 2. dr(s,supp(7)) > dr(s,supp(w-7)): Now by applying Case 1 to the
elements w=! € Corey (W;) and —w -y € ®;[w™!], we have a contradiction
again. Hence the claim holds in any case. O

Owing to Lemma 4.8, we have the following results:
If (W, 8) is irreducible, |W| = oo and s € S, then Cg. (5} = 1. (4.3)

If (W, S) is irreducible, J C S and I is an irreducible component of .J

(4.4)
such that |W;| = oo, then C; = 1.

Indeed, for (4.3), Corollary 2.20 (iii) implies Ny (Ws s3) = Ws (s} and so
Lemma 4.8 proves the claim. For (4.4), we have Ny (W) C W1 by Proposi-
tion 2.18 (ii), while Corey (W;;1) = 1 by Lemma 4.8 since I U I+ C S, hence
the claim follows from (2.2).

4.3 Proof for finite case

In this subsection, we prove Theorem 4.2 for the case |[W| < oo. From
now, we abbreviate often the terms “Expanding Lemma”, “Cutting Lemma”,
“Shifting Lemma” to ‘EL’, ‘CL’, ‘SL’, respectively.

Lemma 4.9. Let (W, S) be irreducible, |W| < oo and s € S. Suppose that no
condition below is satisfied: (I) W =W (B,,), n>2, s = s1, (II) W = W(B3),
s =82, (III) W = W (Iz(m)), m even. Then Cryy = Z(W).

Proof. Since Z(W) C Cyqy and [,c g Nw (Wyy) = Z(W), it is enough to show
that C{S} - C’{t} forall t € S.

Case 1. The odd Coxeter graph I of (W, S) is connected: Then
the claim follows from the Shifting Lemma.

Case 2. W = W(B,), n >3 and s # s1: We have Cyy L Cs,y for all

EL CL
2 <i < n, while C,,y C Cfs, 5,3 C Cfs,y (since n > 3). Thus the claim holds.
Case 3. W = W (Fy): By symmetry, we may assume s = s1 or so. Now we

SL EL CL SL .
have Cg3 = Cfsyy C Clay,s5y C Cpsyy = Cfs,y- Hence the claim holds. O

Corollary 4.10. Let (W,S) be irreducible, |W| < oo, s € S and suppose that
there is a unique vertex t of I' farthest from s. Suppose further that W and t do
not satisfy any of the three conditions (1)~(III) in Lemma 4.9. Then Cg. {5} =
Z(W).
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CL
Proof. Now we have Cg. (53 C Cyy by the choice of {. Then apply Lemma
4.9. O

Lemma 4.11. Suppose that one of the following conditions is satisfied: (I)
W =W(Bs), s = sz, (I) W =W(Dy), s = s3, (III) W = W(Hs), s = sa,
(IV) W = W(Iz(m)) (m > 6 even), s € S. Then C; = Z(W), where I =
S~ {s}.

Proof. By the hypothesis and Corollary 2.20 (ii), we have Ny (W;) = Wy x
Z(W). Now a direct computation shows that sWrs N Ny (W;) = 1, so that
Wi N Cr=1by (2.5). Since Z(W) C Cy, we have C; = Z(W). O

Lemma 4.12. (i) If W =W(B,,), 1 <n < oo, then Corey (Gp,) = Gp
(i) If W =W (D,,), 3 <n < oo, then Corey (Gp, % (s1)) =Gp, .

n’

Proof. The claim (i) is obvious, since Gg, <W (cf. Lemma 2.12). For (ii), we
have Gp, C Corew (Gp, x(s1)) since Gp, <W, while s; € Corew (Gp,, % (s1))
since (s183)s1(s183) 7! = 83 € Gp, x (s1). Thus the claim holds. O

Proof of Theorem 4.2 (for finite W ). Note that Z(W) C Cy by definition.
Case 1. (W,S) = (W(T,),S(T,)) for T=B,n>3o0or T =D, 3<n#4:
Put L = 1 in the former case, L = 2 in the latter case. Note that in this
case, any automorphism of I'(7,) preserves the sets S(7x), elements wo(S(7x))
(k > L) and so the subgroup G, .
Subcase 1-1. I = S(7;) for some L < k < n: This is a case (i) or (ii) of
Theorem 4.2 (for 7 identity), so that we have to show C; = Gr,. Note that

EL CL
CS(Ti) C CS(Tj) C 05(7;.) and so 05(7—1.) = CS’(Tj) forall L<i<j<n.

Thus we may assume I = S(71), and we have C; C ﬂf:_Ll Nw (Ws(r;)). By
Corollary 2.21, (2.3) and Lemma 4.12, we have C; C G7,. Conversely, since
G, is abelian and contains wg(I), we have G, C Zw(wo(I)) = Nw (W;) by
Lemma 4.4. Thus G1;, C Ct since G7, <W. Hence C; = Gr,.

Subcase 1-2. T # S(T;) for all L < k < n: By the above remark, this is
not a case (i) or (ii), and so we have to show C; C Z(W). Note that I # S.
Let M be the first index > 1 such that sp; & I, so that S(Tp—1) C I (where

EL
we put S(75) = 0). If T = D and M = 2, then we have C; C Cg.ys,,} since
I # (. Otherwise, there is some M < i < n such that s; € I (since otherwise

EL
we have I = S(Tpr-1); a contradiction), and so M < n and Cr C Cg ys,,3- In
any case, we may assume that I = S~ {spr}. Now there are the following three
cases:

Subsubcase 1-2-1. M < L 4+ 1: Note that M < n, and so (T,, M) #
(Ds3,3). If T, = B3 and M = 2, then C; = Z(W) by Lemma 4.11. Otherwise,
we have a unique vertex of I' farthest from s; that is s3_p; if 7, = D3 and
M <2, and s, otherwise (note that 7, # D4). Thus C; = Z(W) by Corollary
4.10.

Subsubcase 1-2-2. L + 2 < M < n — 2: This hypothesis implies that

CL EL
Cr C CI\{SI\/I—17SJ\4+1} C CS\{SM—l}’
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so that the claim follows inductively from the case of smaller M.
Subsubcase 1-2-3. L +2 < M =n — 1: Note that n > L 4+ 3 and I =

S(’Tn_g) @] {Sn} Now we have Cy CCL CS(T,Hg) ECL 05(7*”72) and so Cy C C{S”}
by (4.2). Thus Cr C Cy,,y = Z(W) by Lemma 4.9.

Case 2. (W, S) = (W(B3), S(B2)): Since I is proper and nonempty, we have
I ={s;} (i=1or2). Thisis a case (i), by taking 7 = idg (if ¢ = 1), 7 # idg
(if i = 2). Now we have to show C; = 7(Gp,). We have C1 C Nw (Wr((s,})) =
7(Gp,) by Corollary 2.21 (i). Conversely, we have 7(Gp,) C C by a similar
argument to Subcase 1-1. Thus C; = 7(Gp,).

Case 3. (W, S) = (W(D4),S(D4)): Note that I is proper and nonempty.

Subcase 3-1. |I| = 1: This is not a case (i) or (ii), so that we have to show
Cy C Z(W). This follows from Lemma 4.9.

Subcase 3-2. |I| =2 and s3 € I: This is also not a case (i) or (ii), so that

we have to show C;y C Z(W). Let I = {s3,s;}. Then we have C; % Clsiys
while Cy,,; = Z(W) by the previous case. Thus C; C Z(W).

Subcase 3-3. |I| = 2 and s3 ¢ I: Note that there is 7 € Aut(I') such
that 7(S(D2)) = I. This is a case (ii), so that we have to show C; = 7(Gp,).

By symmetry, we may assume 7 = idg. First, we have Cy ECL Cs(p,) and so
Cr C ﬂfﬂ Nw (Ws(p,)) = Gp, » (s1) by Corollary 2.21 (ii). Thus we have
Cr C Gp, by (2.3) and Lemma 4.12. Conversely, we have Gp, C Cr by a
similar argument to Subcase 1-1. Hence we have C; = Gp,.

Subcase 3-4. |I| = 3 and s3 € I: Note that there is 7 € Aut(I") such that
7(S(D3)) = I. This is a case (ii), so that we have to show C; = 7(Gp,). By

symmetry, we may assume 7 = idg. Now we have Cf % Cs(py) ECL C7, while
CS(D2) = Gp, by the previous subcase. Thus C; = Gp,.

Subcase 3-5. I = S ~\ {s3}: This is not a case (i) or (ii), so that we have
to show Cr C Z(W). This follows from Lemma 4.11.

Case 4. (W, 5) # (W(By),S(Bn)) (n = 2), (W(Dn),5(Dn)) (n > 3):
This is not a case (i) or (ii), so that we have to show C; C Z(W). Note that
|S| > 2 since I is proper and nonempty.

Subcase 4-1. |S| = 2: Namely, (W, S) = (W(T),S(T)), T = Az or I2(m)
(5 <m < o0), and |I| = 1. Then we have C; = Z(W) by Lemma 4.11 (for the
latter case, with m even) or Lemma 4.9 (the other cases).

Subcase 4-2. |S| = 3: Namely, (W,S) = (W(H;3),S(Hs)) (note that

W(A3) ~ W(D3)). Now we have Cy ECL Cs {s;} for some 4, while Cg._ (5,3 =
Z (W) by Lemma 4.11 (if ¢ = 2) or Corollary 4.10 (if ¢ # 2). Thus C; C Z(W).
Subcase 4-3. |S| > 4: Namely, (W,S) = (W(T),S(T)) for T = A,

(n>4), E, (n=26,7,8), Fy or Hy. Now we have C7 ECL Cg 15,y for some i.
Thus we may assume I = 5 \ {s;}.

Subsubcase 4-3-1. There is a unique vertex of I' farthest from s;:
Now we have C; = Z(W') by Corollary 4.10.

Subsubcase 4-3-2. There are at least two vertices of I' farthest
from s;: Namely, we have (7,7) = (Aag+1,k + 1) (K > 2), (Es,2), (Es,4)
or (Fg,5). Now there are exactly two vertices s,¢ of I" farthest from s;, and

there is a vertex # s,t adjacent to s and not adjacent to t. This implies that

cL CL
Cr C Cysyy C Cpy, while Cpyy = Z(W) by Lemma 4.9. Thus C; C Z(W).

Hence the proof is concluded. O
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4.4 Proof for infinite case

In this subsection, we prove Theorem 4.2 in the case |W| = oo. The key
facts are (4.3) and (4.4).

In the proof, we use a characterization (Proposition 4.14) of certain infi-
nite Coxeter systems, which is based on the characterization of connected Cox-
eter graphs of finite type. Before stating this, we prepare the following graph-
theoretic lemma.

Lemma 4.13. Let G be a connected acyclic graph (i.e. a tree) on nonempty
vertex set V(G) of an arbitrary cardinality (with no edge labels here).

(i) If all vertices of G have degree < 2 and G has a terminal vertex (i.e. vertex
of degree 1) so, then G ~ I'(A,,) (as unlabelled graphs) for some 1 <n < oo.
(ii) If so € V(G) and all vertices of G except sy have degree < 2, then each
connected component G of G\ {so} contains exactly one vertex s adjacent to
S0, G' ~ I'(A,) (as unlabelled graphs) for some 1 < n < oo and s is a terminal
vertex of G'.

(i4¢) If all vertices of G have degree 2, then G =~ I'(Ass o) (as unlabelled graphs).

Proof. (i) By the hypothesis, for any s € V(G), G contains a unique simple
path P, = (tff’) = so,tgl), . ,tge_l),tg) = s) from sg to s. Let £(s) = £, the
length of P;. Then for all s1,s9 € V(G), we have either P, C Ps, or Ps, C Ps,:
Otherwise, for the first index k such that tglf) # té’j), the vertex tglf_l) = té’j‘” is
adjacent to distinct vertices tg’f), tg];) (and tglfd) if & > 2) but this is impossible
by the hypothesis on the degree of tglf_l).

This observation shows that the map ¢ : V(G) — {0,1,2,...} is injective
and satisfies that i € £(V(G)) whenever 0 < i < j and j € £(V(G)). Thus the
set V(G) is finite or countable. Moreover, it also implies that two vertices sy, 5o
are adjacent if £(s1) = £(s2) 1, while by definition of ¢, these are not adjacent
if (s1) # £(s2) £ 1. Thus the claim holds.

(ii) First, take a vertex ¢t of G’ and a simple path P in G from sg to t. Then
the vertex s of P next to sg is adjacent to sy and contained in G’. On the other
hand, if G’ contains two vertices adjacent to sg, then sg and a path in G’ between
these two vertices form a closed path in G. This is a contradiction, so that the
first claim follows. Since s has degree < 2 in G and adjacent to so & V(G'), s is
a terminal vertex of G’. Now the second claim is deduced by applying (i) to G’
and s.

(iii) This follows from (ii), since G is nonempty and has no terminal vertices. [

Proposition 4.14. Let (W,S) be an irreducible Cozeter system of an arbitrary
rank, with Cozeter graph I". Suppose that |W| = oo and |Wr| < oo for all finite
subsets I C S. Then I' ~ I'(Aw), I'(Bo), I'(Doo) 01 I'(Aco,c0)-

Proof. In this proof, a full subgraph Iy of I' is said to be forbidden if |I| < oo
and |[W;| = oco. The hypothesis means that |[W| = oo and I' is connected and
contains no forbidden subgraphs. This implies |S| = co immediately.

Step 1. I is acyclic: This follows immediately from the fact that any
nontrivial cycle in I' forms a forbidden subgraph.

Step 2. No s € S has degree > 4 in I': Otherwise, this s and the four
adjacent vertices form a forbidden subgraph of I'. This is a contradiction.

Step 3. At most one s € S has degree 3 in [': Assume contrary that
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two distinct vertices s,t € S have degree 3. Since I' is connected, there is a
path P in I" between s and t. Then s, ¢, P and all the vertices adjacent to s or
t form a forbidden subgraph. This is a contradiction.

Step 4. If some s € S has degree 3 in I', then I' ~ I'(Dy): By
Steps 1-3, we can apply Lemma 4.13 (ii) to this case. This lemma shows that
I's. {5y consists of three connected components ~ I'(Ay, ), I'(An,), I'(An,) (as
unlabelled graphs) respectively, of which a terminal vertex is adjacent to s in
I'. By symmetry, we may assume nj > ng > ng > 1.

Now we have ny = oo since |S| = co. If ny > 2, then I’ must contain a
forbidden subgraph (~ I" (Eg) as unlabelled graphs), but this is a contradiction.
Thus we have no = n3z = 1 and so I' ~ I'(D+,) as unlabelled graphs. Moreover,
every edge of I must have no label (or label ‘3’), since otherwise I" must contain
a forbidden subgraph again. Hence I' ~ I'(Ds,) (as Coxeter graphs) in this
case.

Step 5. If all vertices of I' have degree < 2, then I' ~ ['(A),
I'(By) or I'(Aco,00): First, we consider the case that I" has a terminal vertex.
Then Lemma 4.13 (i) implies that I" ~ I'(A.) as unlabelled graphs (note
that |S| = o0). Moreover, by a similar argument to Step 4, the hypothesis
(I’ contains no forbidden subgraphs) detects the edge-labels of I', so that we
have I' >~ I'(As) or I'(Boo) (as Coxeter graphs). The other case is similar; we
have I' ~ I'(Ax,) as Coxeter graphs by Lemma 4.13 (iii) and the hypothesis.
Hence the proof is concluded. O

Proof of Theorem 4.2 (for infinite W ). Note that Z(W) =1 in this case.
Case 1. (W,S) = (W(Tn),S(T)) for T, = Asy Booy, Doo Or Ao oot Put
L=1if7, =By, L=2if T, = Dy. Moreover, for k > 1, put

Jk = {31782a . 'ask} 1f7;l # AOO,OO7 Jk = {S—k78—k+17' . '78k} lf 7;7, = A(X),(X)'

Subcase 1-1. 7, = By, or Dy, and I = S(7;) for some L < k < oco:
This is a case (i) or (ii) (for 7 identity), so that we have to show C; = Gr_.
Put G; =Wy, and H; = Ng,(Wy) for i > 1. Then we have Ui, Gi = W and
Uis, Hi = Nw (W), so that Cr C |Js, Coreg, (H;) by Lemma 2.6. Moreover,
by the result of finite case (Section 4.3), we have Coreg, (H;) = G7,_, for all
i > 1. Since ;2 Gr,.,, = G, (cf. Lemma 2.12), we have C; C Gr._.

On the other hand, we have Cg(r,) & Cy, while G1, C Zw (wo(S(TL)))
since wo(S(T.)) € G7,, and G is abelian. Thus G7,, C Nw(Wg(r,)) by
Lemma 4.4, G7., C Cg¢1,) by (2.3) and so G7,, C Cr. Hence Cr = G, .

Subcase 1-2. The hypothesis of Subcase 1-1 is not satisfied: This is
not a case (i) or (ii), so that we have to show Cjy = 1.

Subsubcase 1-2-1. |I| < co: Let w € C;. Now take a sufficiently large
4 <k <oosothat I C Jy and w € Wy. Put G; = Wy, and H; =
Ng,(Wy) for i > 1, so that |J;2, G; = W and {J;2, H; = Nw(W;). Now by
the hypothesis of Subcase 1-2, and by the result for finite case (Section 4.3),
we have Coreg,(H;) C Z(G;) C {1, wo(Jg4:)} for all i. Moreover, by Lemma
2.6, we have C7 C |J;2, Coreg, (H;). Since wo(Jy4i) & W, for any i > 1, this
implies that w = 1 by the choice of k. Hence we have Cj = 1.

Subsubcase 1-2-2. || = oo: If I has an irreducible component .J of infinite
cardinality, then C; = 1 by (4.4). Thus we may assume that I is a union of
infinitely many irreducible components of finite cardinality. Now we can choose



PART I 36

indices 4 < i < j < oo so that s, & [ forall s <k < j, 5,1 € I and sj4;1 € I.
Let K1, K> be the (distinct) irreducible components of I containing s;_1, $;41

respectively. Then we have C7 % Cr(k,UK>) and so C; C Ck,uk, by (4.2).
Moreover, we have Cx,uk, = 1 by Subsubcase 1-2-1. Thus Cr = 1.

Case 2. (W,S) & (W(T),S(T)) for T = Awy Booy Doy Aco,0t This is
not a case (i) or (ii), so that we have to show C; = 1. By Proposition 4.14, there
is a finite subset Jy C S such that |W;,| = co. This Jy consists of only finitely
many irreducible components, and so we have |W;| = oo for some irreducible
component of Jy. Since I' is connected and |J| < oo, there is a (finite) sequence
$1,82,...,58. of elements of S such that s; & I;_1 U It forall1 <i<rand
J C I, where we put In =1 and I; = I,_1 U {s;} (1 <i <r) inductively. Now

we have Oy, , & Cy. for all 1 <i < r, so that C; € Cy._, and Cy C C..
Subcase 2-1. I, # S: Now an irreducible component of I, (namely, the

one containing J) generates an infinite group. Thus C; C Cj. =1 by (4.4).
Subcase 2-2. I, = S: Note that » > 1 since I is proper. Since (W,S) is

irreducible, we have C; C C,_, = 1 by (4.3). Hence the proof is concluded. O
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ALMOST CENTRAL INVOLUTIONS IN SPLIT EXTENSIONS
OF COXETER GROUPS BY GRAPH AUTOMORPHISMS

KOJI NUIDA

In this paper, given a split extension of an arbitrary Coxeter group by
automorphisms of the Coxeter graph, we determine the involutions
in that extension whose centralizer has finite index. Our result has
applications to many problems such as the isomorphism problem
of general Coxeter groups. In the argument, some properties of
certain special elements and of the fixed-point subgroups by graph
automorphisms in Coxeter groups, which are of independent interest,
are also given.

1 Introduction

Let (W,S) be an arbitrary Coxeter system, possibly of infinite rank, and G
a group acting on W. We assume that the action of GG preserves the set S;
namely, each element of G gives rise to an automorphism of the Coxeter graph
of (W,S). The subject of this paper is the almost central involutions in the
semidirect product W x G corresponding the action of G; that is, involutions
which is central in some subgroup of W x G of finite index. We determine those
involutions in W x G, hence the subgroup generated by those involutions, in
terms of the structure of the Coxeter system (W, S) and the action of G on W
(Theorem 3.1). Actually, this subgroup is the product of some finite irreducible
components of W, specified in terms of the action of G, and a subgroup of G.
Note that this subgroup is determined by the group structure of W x G only, so
our result can extract some information on the Coxeter group W from the group
structure of W x G. Moreover, if W x G admits another expression W’ x G’ of
this type, our result exhibits some relation between the Coxeter groups W and
W' through the subgroup in problem (Theorem 3.2).

The main motive of this research is an application to the isomorphism prob-
lem of general Coxeter groups; that is, the problem of deciding which Coxeter
groups are isomorphic as abstract groups. An important phase of the prob-
lem is to determine whether a given group isomorphism f between two Coxeter
groups W and W’ maps the reflections in W onto those of W’. As summarized
in Section 3.3, it is shown by a result of the author’s preceding paper [14] that
both the centralizer of a reflection ¢ in W and that of f(¢) in W’ are semidirect
products satisfying the hypothesis of our main theorem. Since those centralizers
are isomorphic via f, our main theorem can derive some properties of f(¢) from
those of W and of ¢. In particular, f(t) is a reflection in W’ whenever W and
t satisfy a certain condition which is independent on the choice of W’ and f
(Theorem 3.7). When the condition is actually satisfied will be investigated in
a forthcoming paper [13] of the author. Note that this argument works without
any assumption on finiteness of ranks of W or of W’, in contrast with most of
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the preceding results on the isomorphism problem which covers the case of finite
ranks only.

For other applications, our result implies that the product of all finite irre-
ducible components of a Coxeter group W is independent on the choice of the
generating set S of W (Example 3.3). On the other hand, regarding certain
semidirect product decompositions of W into two Coxeter groups which arise
from the partition of S into conjugacy classes, our result shows that, under a
certain condition, the normal factor possesses no finite irreducible component
(Example 3.6). See Section 3.2 for further examples.

This paper is organized as follows. Section 2 is a preliminary for basics and
further remarks on abstract groups and Coxeter groups. Section 3 summarizes
the main result and its applications mentioned above. In Section 4, we recall
the notion of essential elements in Coxeter groups introduced by Daan Krammer
[10], and summarize some properties studied by Krammer and by Luis Paris [16].
In Section 5, we give some results on the fixed-point subgroup of a Coxeter group
by an automorphism of the Coxeter graph, together with preceding results given
by Robert Steinberg [18], by Bernhard Miihlherr [11] and by Masayuki Nanba
[12]. Finally, Section 6 is devoted to the proof of the main theorem.
Acknowledgement. The author would like to express his deep gratitude to
everyone who helped him, especially to his supervisor Itaru Terada and also to
Kazuhiko Koike for their precious advice and encouragement. The author had
been supported by JSPS Research Fellowship throughout this research.

2 Preliminaries

2.1 On abstract groups

In this subsection, we fix notations for abstract groups, and give some definitions
and facts. Let G be an arbitrary group. We denote H < G if H is a subgroup
of G, and H < G if H is a normal subgroup of G. For a subset X C G, let (X)
and (X) ¢ denote the subgroup and the normal subgroup, respectively, of G
generated by X. Put

Zy(X)={g9€ H|gx==zgforallxz € X} for H <G,
so Z¢(X) is the centralizer of X in G. Write
29 =g 'ezgand X9 = {29 |x € X} for g,z € G and X C G.

For H < G, put
CoregH = ﬂ HY,
geG

the core of H in G. It is easily verified that Coreg H is the unique largest normal
subgroup of GG contained in H.

Lemma 2.1. Let G be a group.
1. If HQG, then Zg(H) < G.
2. If X CG, then Zg({X)qe) = Coreg Za(X).
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Proof. The proof of (1) is straightforward. For (2), the inclusion C follows
from (1) since (X) C (X)4qg, so it suffices to show that H C Zg((X)qq)
whenever H <G and H C Zg(X). Now we have X C Zg(H) <G by (1), so
(XYae C Zg(H), proving the claim. O

Let [G : H] denote the index of a subgroup H < G in G. Recall the following
well-known properties:

if G Z H1 Z }127 then [G : HQ] = [G : Hﬂ [H]_ : HQ], (21)
if Hl,HQ é G, then [GHl] Z H2 : H1 DHQ]

From these properties it is easy to deduce that

if Hy,Hs < G and [G : Hs] < oo, then the followings are equivalent:
[G:Hi]<oo; [G:HiNHy <oo; [He:HiNHs <oo. (2.3)

Lemma 2.2. Let H < G. Then |G : H] < oo if and only if [G : CoregH] < 0.

Proof. The only nontrivial part is the “only if” part. Let G = | |!_; Hg; (where
n =[G : H] < o) be a decomposition into cosets. Then CoreqH = (), HY.
Now for 1 < k < n, two subgroups H9% and H have the same (finite) index in G,
so the subgroup (f_, H% has finite index in N}, H% by (2.2). Now iterative
use of (2.1) yields the desired conclusion. O

We say that an element g € G is almost central in G if [G : Zg(g)] < 0.
Corollary 2.3. Let G be a group and g € G.

1. We have |G : Zg({9)«c)] < 00 if and only if g is almost central in G.

2. If g is almost central in G, then all h € (g)«c are almost central in G.

Proof. The claim (1) follows immediately from Lemmas 2.1 (2) and 2.2, and (2)
is a consequence of (1) and the observation Zg(h) > Za({(9)«a)- O

Lemma 2.4. Let G; x G2 be a semidirect product of two groups, and suppose
that H; < G; has finite index in G; for i =1,2. Then [G1 X G2 : H1 H3] < 0.

Proof. Decompose G; as |_|;:1 gi,;H;, where r; < co. Then
Gi x Gy = U g1,;H192,.Ho = Ug1,j92,ka2’kH2-

1<j<r1,1<k<rs J.k

Since [G; : Hy] < oo, we have [H{*" : H/** N H;| < oo by (2.2). Let H{** =
LIy~ hio(HY** N Hy) (where ny < oo) be the corresponding coset decomposi-
tion. Then we have

N
G %Gy = U U 91,592 ki o (HY* N Hy)Hy C U 91,592,k Pk e H1Ha,
J,k =1 7.k,

where the last union is taken over the finite set of the (j, k, ¢), as desired. [
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2.2 Coxeter groups

This subsection summarizes some basic definitions and facts for Coxeter groups,
which are found in the book [9] unless otherwise noticed, and give further results
and remarks. Some more preliminaries focusing into the two topics, essential
elements and fixed-point subgroups by Coxeter graph automorphisms, will be
given in Sections 4 and 5.

Definitions

A pair (W, S) of a group W and its generating set S is called a Coxeter system
if W admits the following presentation

W = (S| (st)™t =1for all s,t €S such that m,,; < 00),

where the ms; € {1,2,...} U {oco} are symmetric in s,¢t € S, and m,, = 1 if
and only if s = ¢t. A group W is called a Coxeter group if some S C W makes
(W, S) a Coxeter system. The cardinality |S| of S is called the rank of (W, S)
or of W, which is not assumed to be finite unless otherwise noticed. Now m ;
coincides with the order of st € W, so the system (W,.S) determines uniquely
(up to isomorphism) the Cozeter graph denoted by T, that is a simple unoriented
graph with vertex set S in which every two vertices s,t € S is joined by an edge
with label my ; if and only if m,; > 3. (By convention, the label ‘3’ is usually
omitted when drawing a picture.)

An automorphism of the Coxeter graph I' is briefly called a graph automor-
phism of (W, S) or of W. Let AutT" denote the set of the graph automorphisms
of W. Then mrs) r4) = msy for 7 € Autl' and s, € S, so this 7 extends
uniquely to an automorphism of the group W denoted also by 7.

For I C S, let W; denote the standard parabolic subgroup (I) of W generated
by I. A subgroup conjugate to some Wi is called a parabolic subgroup. (In some
context, the term “parabolic subgroups” signifies the subgroups W; themselves
only.) Now (Wp,I) is also a Coxeter system, of which the Coxeter graph I'y is
the full subgraph of I" with vertex set I. If I is (the vertex set of) a connected
component of I', then Wy is called an drreducible component of (W,S) (or of
W, if the set S is obvious from the context). If T" is connected, then (W,.S)
and W are called irreducible. Now W is the (restricted) direct product of the
irreducible components; however, each irreducible component is not necessarily
directly indecomposable as an abstract group.

Regarding the standard parabolic subgroups, it is well known that

if I, J - S, then W[ n WJ = WIQJ. (24)

Then, since each w € W is a product of a finite number of elements of S, it
follows that W possesses a unique minimal standard parabolic subgroup con-
taining w, called the standard parabolic closure of w and denoted here by SP(w).
Now the support supp(w) C S of w € W is defined by

Wsupp(w) = SP(U])

On the other hand, we have the following fact for parabolic subgroups:

Proposition 2.5 (See e.g. [7, Corollary 7]). Let I,J C S and w € W.
Then Wy N (W;)¥ = (Wgk)¥ for some K C I and u € W;. Moreover, we have
K # I whenever Wy # (Wj)*.
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This proposition denies the existence of an infinite, properly descending se-
quence (Wr,)¥t D (Wp,)*? D --- of parabolic subgroups with I; finite, since it
enables us to choose the I; inductively as descending properly. Thus W also pos-
sesses a unique minimal parabolic subgroup containing a given w € W, called
the parabolic closure of w and denoted here by P(w).

Let ¢ denote the length function of (W, S), namely ¢(w) (where w € W) is
the minimal length n of an expression w = s;---s, with s; € S (so f(w™!) =
£(w)). Such an expression of w with n = ¢(w) is called a reduced expression.
The following three well-known properties will be used in the arguments below,
without references:

ifwe W and s € S, then £(ws) = £(w) £ 1;
for I C S, the length function ¢; of (W7, I) agrees with ¢ on Wy;
supp(w) = {s1,...,s,} for any reduced expression w = s1 - - - $y,.

Theorem 2.6 (Exchange Condition). Letw =s1---s, € W, s; € S andt €
S with L(wt) < £(w). Then there exists an index i such that wt = $1---5;--- Sp
(s; omitted).

Geometric representation and root systems

Let V' denote the geometric representation space of W, that is an R-vector space
equipped with the basis IT = {a; | s € S} and the symmetric bilinear form (, )
determined by

{as, ) = — cos if msy < 0o and (o, ) = —1if m, = oo.

mst

W acts faithfully on V by s-v = v — 2(as, v)ag for s € S and v € V| making
(,) W-invariant. Let ® = W - II, &+ = ® N R>oll and &~ = —P* denote,
respectively, the root system, the set of positive roots and the set of negative
roots. We have ® = &+ U ®~, and ® consists of unit vectors with respect to
(,). For any subset ¥ C ® and w € W, write

Ut =0Nodt, U =0Nd and V[w]={y eV |w-yed}.

Then ¢(w) coincides with the cardinality |® [w]| of ® [w], so w = 1 if and only
if ® [w] = 0. This implies a further property that

for w,u € W, we have w = v if and only if ® [w] = @ [u]. (2.5)
csas € V, the support supp(v) C S of v is defined by

supp(v) = {s € S | ¢s # 0}.

Forany v =) g
For I C S, put
Iy ={as|sel} CcI, V; =spangll; CV and &y =dNV;.
Then it is well known (see e.g. [8, Lemma 4]) that
&7 =Wy -1y, (2.6)

the root system of a Coxeter system (Wp,I). Note that ® [w] C ®gypp(w) for
w € W. Moreover, it is well known that for I C S, any w € W admits a
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unique decomposition w = wlw; with w; € W; and ®;[w!] = ). Note that
® [wr] = @7 [w]. This implies that

if we W and s € supp(w), then s € supp(y) for some v € @ [w] (2.7)

(if this fails, then @ [w] = @ [w] = ® [wy] where I = supp(w) \ {s}, so w =
wy € Wy by (2.5), contradicting the definition of supp(w)). Now we prepare a
technical lemma which will be used in later sections.

Lemma 2.7. Let 1 #w € W and I = supp(w) C S.

1. Let v € ®*, J = supp(y) and suppose that INJ = and J is adjacent to
I in the Coxeter graph I'. Then w -~ € <I>I+UJ NDy.

2. Suppose that s € S\ I is adjacent to I in T'. Then supp(w®) = I U {s}.

3. Fori=1,2, let 1 #u; € W, J; = supp(u;) and suppose that J; NI =
and Jy is adjacent to I in T'. Then uywug # w.

Proof. (1) Since the action of w € W leaves the coefficient in vy of any a; € I1;
unchanged, it suffices to show that w -~y # ~. Take s € I adjacent to J, and
B € ®] such that s € supp(8) and w - B € ®; (see (2.7)). This choice yields
that (8,v) < 0 and {(w - 8,v) > 0 since I N J = ), showing that w -y # v since
(, ) is W-invariant.

(2) Put J = supp(w?®). Then we have w = (w*)® € W) and so I C J U {s},
therefore I C J since s € I. On the other hand, ws-as = —w-as € &~ ~{—as}
by (1), so we have w® - as; € @~ and s € J. Thus we have I U {s} C J, while
w® € Wiygsy, proving the claim.

(3) Take s € Jo adjacent to I, and v € ® [uy™1] C @'}2 with s € supp(y) (see
(2.7)), 80 B = up™"' -y lies in ® . Then w- B € ®~ since I N.Jo = {), while
wug - f=w-v€ P Py by (1) and so uywus - B € &t since J; NI = 0.
Thus we have ujwus # w as desired. O

For v = w-as € @, let s, = wsw™! denote the reflection along the root v
acting on V by sy -v =v—2(y,v)y for v € V. Let

SV = U wSw !
weWw
denote the set of the reflections in W, which depends on the set S in general.

Lemma 2.8. Let W be an infinite irreducible Cozeter group. Then the orbit
W v C ® of any root v € ® is an infinite set.

The proof of this lemma requires the following two results:

Proposition 2.9 ([4, proof of Proposition 4.2]). Let W be an infinite
irreducible Coxeter group of finite rank, and I C S a proper subset. Then
|q) AN @]| = Q.

Proposition 2.10 ([15, Lemma 2.9]). Let w € W and suppose that I, J C S
are disjoint subsets such that w - Iy = Il and w -1y C ®~. Then we have
CI)[UJ [’LU} = (I)}‘FUJ AN ‘I)[.
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Proof of Lemma 2.8. First we show that, for any 8 € ®*, we have (8, as) < 0
for some s € S. This is obvious if |S| = oo (choose s € S \ supp(8) adjacent
in the infinite connected graph T' to the finite set supp(/3)), so suppose that
|S| < oo. Assume contrary that (8,as) > 0 for all s € S. Put I = {s €
S | (B,as) = 0} # S (note that (5,8) = 1), so sg fixes ®; pointwise. Then
for any s € S\ I, we have (8,a5) > 0 and sg - a5 = as, — 2(8,a:)5 € &~
Thus Proposition 2.10 implies that ®[sg] = ® ~ ®, which has cardinality
l(sg) < o0, contradicting Proposition 2.9. Hence the claim of this paragraph
holds.

For the lemma, we may assume that v € ®*. Then by taking s € S with
(7, as) < 0 and putting 1 = s-7, we have y1 # v and 71 —7v € Rxoll. Iterating,
we obtain an infinite sequence vy = 7, 71, ¥2,-.. of distinct positive roots in
W -~ inductively, proving the claim. O

We also prepare a technical lemma.

Lemma 2.11. Let 8,y € ®*, I C S and suppose that supp(y) € supp(8) and
supp(y) € I. Then sy & sgWr.

Proof. Assume contrary that s, = sgw for some w € W;. Then we have
Wy =88y =—5g-7, while w-v € ®" and sg -y € & by the hypothesis.
This is a contradiction. O

Finite, affine and hyperbolic Coxeter groups

The finite irreducible Coxeter groups are completely classified, as summarized
in [9, Chapter 2]. If I C S and Wy is finite, let wo() denote the unique
longest element of Wi, which is an involution and maps II; onto —II;. If W7 is
irreducible (but not necessarily finite) and 1 # w € W, then we have I* = [
if and only if Wy is finite and w = wo(I). This implies the well-known fact
that the center Z(W7y) of an arbitrary Wi is an elementary abelian 2-group.
Moreover, if W; is finite but not irreducible, then wo(I) = wo(l7)---wo(lx)
where Wy, ,..., Wy, are the irreducible components of W;. It is well known
that, if w € W; and ¢(ws) < £(w) for all s € I, then W7 is finite and w = wq(I).

Theorem 2.12 ([17, Theorem A]). For any involution w € W, there is a
finite Wi (where I C S) such that w is conjugate to wo(I) and wo(I) € Z(Wr).

The cases where |W;| < co and wo(I) € Z(W;) are determined as well.

Let W be an irreducible Coxeter group of finite rank. Then W is called affine
or compact hyperbolic, respectively, if the bilinear form (, ) satisfies that (1) it
is positive semidefinite or nondegenerate, respectively; (2) it is not positive
definite; and (3) its restriction to any proper subspace V; C V (where I C
S) is positive definite. (See [9, Section 6.8] for another definition of compact
hyperbolicness and its equivalence to ours.) The next proposition says that
these are the minimal non-finite irreducible Coxeter groups.

Proposition 2.13. Let W be a Coxeter group of finite rank.
1. ([9, Theorem 6.4]) We have |W| < oo if and only if {, ) is positive definite.

2. If [W| = oo and every proper standard parabolic subgroup Wiy C W is
finite, then W 1is irreducible, and is either affine or compact hyperbolic.
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Proof. For (2), it is easy to show that this W is irreducible. Thus by (1) and
the definition of compact hyperbolicness, it now suffices to show that this (, ) is
positive semidefinite if it is degenerate. This follows from the observation that
now V' is the sum of a positive definite subspace Vg. (5} (where s € S; see (1)) of
codimension 1 and the nonzero radical V+ of V (note that V+ ¢ Vsqsy): O

The affine and the compact hyperbolic Coxeter groups are completely deter-
mined in [9, Chapter 2 and Section 6.9]. See the lists in Figures 1 and 2, where
we abbreviate s; to i. Note that the names of the compact hyperbolic Coxeter
groups given here are not standard and are very temporary.

On the other hand, it is shown in [15, Proposition 4.14] that the infinite
irreducible Coxeter groups of infinite ranks, in which every proper standard
parabolic subgroup of finite rank is finite, are exhausted by Figure 3.

On centralizers and normalizers in Coxeter groups

The centralizers and the normalizers in Coxeter groups play important roles in
our arguments. Here we summarize some properties which we require.

Lemma 2.14 (e.g. [15, Lemma 4.4]). Let W be a finite standard parabolic
subgroup of W such that wo(I) € Z(Wy). Then the centralizer Zy (wo(I))
coincides with the normalizer Ny (W) of Wi in W.

Proposition 2.15. Let W be an infinite irreducible Cozeter group. Then no
involution in W is almost central in W (see Section 2.1 for terminology).

Proof. First, if s € S, then W acts transitively on the conjugacy class of s in
W, which is an infinite set (Lemma 2.8), so the kernel of this action is Zy(s)
and has infinite index in W. Thus s is not almost central.

By Theorem 2.12, it suffices to prove that the longest element wqy(I) of any
finite Wy # 1 with wo(I) € Z(W7) is not almost central. Note that Zy (wo(I)) =
Nw (Wr) (Lemma 2.14), while [Ny (W) : Zw (W7)] < oo since |W;| < co. By
the first paragraph, Zy (s) has infinite index in W for any s € I, so do Zw (W7)
(see (2.1)) and Zy (wo(I)), as desired. O

Finally, in [15, Theorem 3.1], the centralizer of a normal subgroup generated
by involutions in an irreducible W is completely determined. The following
observation is an easy consequence of the result.

Proposition 2.16 (See [15, Theorem 3.1]). Suppose that W is an arbitrary
Coxeter group, and H < W is a subgroup generated by involutions which is
normal in W. Then Zyw (H) is also generated by involutions.

3 The main theorem and its applications

The first subsection of this section summarizes the main theorem of this paper
(Theorem 3.1) and its corollary (Theorem 3.2) together with some notational
remarks. The second subsection consists of some examples, and explains what
our theorem yields in these cases. Finally, the third subsection is devoted to
an application of our theorem to the analysis of the isomorphism problem of
Coxeter groups (the problem of deciding which Coxeter groups are isomorphic
as abstract groups), which is the original motive of this research.
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Figure 1: List of the affine Coxeter groups
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Figure 2: List of the compact hyperbolic Coxeter groups

Figure 3: Some Coxeter groups of infinite ranks
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3.1 Main theorem

First we prepare some notations. Let W be an arbitrary Coxeter group, and G
a group acting on W via a map p: G — Autl', g — pg, yielding the semidirect
product W x G with respect to p. Let Ci* and Cif be the set of the finite and
the infinite irreducible components of W, respectively, and Cy = C{:}}l U C%,?,f.
Then the G-action permutes the elements of each of Cyy, C‘f/i‘}‘ and C%}[}f. Let
pl: G — Sym(Cl), g — p};, denote the induced permutation representation of
G on C‘f}‘}‘. For C C Cw, let W(C) be the product of the irreducible components
in C, and put Wy, = W(C%}l) and Wiye = W(wa). Moreover, for an arbitrary
group H, let Hpcr be the set of the almost central involutions in H (see Section
2.1 for the terminology).
Now our main theorem is as follows:

Theorem 3.1. Here we adopt the above notations.

1. Let wg be an involution in W x G with w € W and g € G. Then wg is
almost central in W x G if and only if w € W(O,) and g € G, U {1},
where G, is the set of all h € Gaci satisfying the following condition:

pr s identity on all irreducible components of W

except a finite number of finite irreducible components, (3.1)

and O, C Cl1 is the union of the p'(G)-orbits with finite cardinalities.

2. We have
(W x G)act) = W(O,) x (G)).

Note that, assuming Theorem 5.1 below, the condition (3.1) is equivalent to
the finiteness of the index [W : Ws] of the fixed-point subgroup Wrs by p,.
The proof of Theorem 3.1 is postponed until Section 6.

Since the subgroup (Hacr) of a group H is determined by the isomorphism
type of H only, we obtain the following consequence.

Theorem 3.2. Fori=1,2, let W; x G; be a semidirect product (via p; : G; —
AutT;) as in Theorem 3.1, and f : W1 x G1 = Wa x Gy a group isomorphism.
Then f maps W1(O,,) % (G1),, onto Wa(O,,) x (G2),,.

3.2 Examples

First we observe that, if |G| < oo, then every p'(G)-orbit in Ci? is finite, so
0, = Cin in Theorem 3.1, therefore (W x G)act) = Win % G, and G, is
generated by all involutions h € G satisfying (3.1).

Example 3.3. Let W be an arbitrary Coxeter group. Then, by putting G =1,
Theorem 3.1 shows that (Wact) = Wan. Thus if f : W = W' is a group iso-
morphism between two Coxeter groups, then f(Wgn) = Wan; hence, by taking
W' =W and f = idw, it follows that the factor Wsy is independent on the
choice of the generating set S C W.

Example 3.3 is slightly generalized as follows:
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Example 3.4. Let Wwr S, = W" xS, denote the wreath product of W with
the symmetric group S, on n letters, so o € S, acts on (w1,...,w,) € W™ by
P (Wi, .. W) = (We-1(1), ..., We-1()). Then Theorem 3.1 implies that

Wwr S, if [W| < oo;

(W wr Sp)act) = {Wﬁnn if |[W] = oo.

Indeed, if |W| = oo, then W possesses either an infinite irreducible component
or infinitely many finite irreducible components, so no non-identity o € Sy,
satisfies the condition (3.1) in any case.

We say that an irreducible component Wy of W has finite multiplicity in W
if W possesses only finitely many irreducible components with Coxeter graph
isomorphic to I';. Note that, even if |G| = oo, the factor W(O,) in the theorem
contains all Wy € Ci¥ with finite multiplicities.

Example 3.5. Let G = AutD' x AutI' be the free product of two copies of
Autl, and p : G — AutD the map obtained by forgetting the distinction of
the two factors Autl' of G. Then O, is the set of all Wy € Ca? with finite
multiplicities, and G, = 1 since we have Gact = 0 by properties of free products.
Roughly speaking, Theorem 3.1 extracts the finite irreducible components of W
with finite multiplicities in this manner.

For the final example, we prepare some further facts and notations. Let I'°9d

denote the odd Cozxeter graph of a Coxeter group W, which is the subgraph of
T’ obtained by removing all the edges with non-odd labels. It is well known (see
[9, Exercise 5.3]) that two orbits W - a, and W - a; (where s,t € S) intersects
nontrivially if and only if s and ¢ lie in the same connected component of I'°49,
Let S = S; U S; be a partition where both factors are unions of connected
components of ['°44 and &g, = Uses, W+ as € ®. Now a general theorem of
Vinay V. Deodhar [5] or of Matthew Dyer [6] shows that the subgroup W(®.g, )
generated by the reflections s, along v € ® ., , which is normal in W since ®..g,
is W-invariant, is a Coxeter group. Moreover, the set ®.g5, plays the role of
a root system of W(®,.g,); for example, any non-identity w € W(®.g,) sends
some y € (I)tsl to a negative root.

Now we show that W decomposes as W(®.g,) X Ws,. First, if 1 # w €
W(®~s,) N Ws,, then w -y € &~ for some v € ®T ¢ as mentioned above, and
v € ®g, since w € Wg,. Now by (2.6), we have v € W - a; N W - ay for some
s € §1 and t € S5, contradicting the choice of the partition S = Sy U .Ss. Thus
we have W(®.g,) N Wg, = 1, while S C W(®.s,)Wg, generates W, yielding
the desired decomposition.

Moreover, this argument also shows that each s € Sy preserves the set ®° s
of positive roots of W(®.gs,) (since as & P.g,), so also the set of simple roots
of W(®.g,), therefore Wg, acts on W(®.g,) as graph automorphisms. Thus
Theorem 3.1 yields the following observation:

Example 3.6. In the situation, suppose further that W is infinite and irre-
ducible. Then (Wact) =1 (Example 3.3), while W(®.g,)(O,) contains all the
finite irreducible components of W (®.g,) with finite multiplicities as mentioned
above. Since 1 = W(®ug,)(0,) x (Ws,), (Theorem 3.2), it follows that no
finite irreducible component of W(®~s,) has finite multiplicity in W(®.s, ).

In addition, if Wg, is finite, then we have W (®~s,)(0,) = W(®Pos, )fin-
Now it follows that W (®.gs,) possesses no finite irreducible component.
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3.3 Application to the isomorphism problem of Coxeter
groups

An important phase of the isomorphism problem of Coxeter groups is of deciding
whether a given group isomorphism f : W = W’ between two Coxeter groups
W and W' (with generating sets S and S, respectively) maps the set SV of
reflections in W onto that §"" in W’; or, whether the subset S" of W is
independent on the choice of S. Note that, as is shown in [2, Lemma 3.7], we
have f(S") = SV if and only if £(S) C $'"". Roughly speaking, our result
below measures how f(s) differs from reflections for each s € S, within a certain
compass. In most successful cases, the result is able to show that all f(s) are
reflections in W’ (see Theorem 3.7).

Note that our results cover the case |S| = co as well, in contrast with almost
all of the preceding results on the isomorphism problem which cover the case of
finite ranks only.

Preliminaries on centralizers and normalizers

The central tools of our argument are the centralizers Zy (W) and the nor-
malizers Ny (W;) of standard parabolic subgroups Wr, which are described by
the author [14] in a general setting (note that the normalizers had already been
described by Brigitte Brink and Robert B. Howlett [3]). Here we summarize
some of the author’s results which we use.

Here we require the result only for the case that |[W;| < oo and wo(I) €
Z(Wr). Now Zw (W) and Ny (W;) admit the following decompositions:

Zw(Wi) = (Z(Wr) x WH) % Y7 and Ny (Wp) = (W x WH) x V7. (3.2)

Here W! denotes the subgroup of W generated by the reflections in the set
Zw (Wrp) ~ Wr, which is a Coxeter group by a theorem of Deodhar [5] or of
Dyer [6]. Since Z (W) is an elementary abelian 2-group, both Z(W;) x W+{
and W; x W are also Coxeter groups. The factor }7} of Nw (Wj) acts on
Wi x W as graph automorphisms, preserving the factor Wj. The factor Y7
of Zw (Wr) is torsion-free and is the kernel of the induced action of Y7 on Wi,
so Y7 is normal and has finite index in ¥; since |W;| < oc.

The results

Let f: W 5 W' be a group isomorphism between two Coxeter groups W and
W' as above, and I C S a subset with |W;| < oo and wo(I) € Z(Wy). Our
temporal subject is the element f(wo(I)) € W’. Since f(wo(I)) is an involution
in W’ as well as wo(I), Theorem 2.12 allows us to assume for simplicity that
flwo(I)) = wo(J) for some J C S with |[W/| < oo and wo(J) € Z(W)). Let Y]
and Y7 denote the last factors of Zy (W) and of Ny (W), respectively (see
(3.2)).

We start with a very simple observation: since the isomorphism f maps
wo(I) to wo(J), it also maps Zy (wo(I)) onto Zy+ (wo(J)), so the combination
of Lemma 2.14 and (3.2) yields the following isomorphism

FeWr x WHY ¥y =5 (Wh x W)y Y5, (3.3)
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Let p and p’ denote the maps representing the actions of }N/} and }7} in (3.3),
respectively. Then by (3.3) and the results in Section 3.3, Theorem 3.2 yields
the following isomorphism

FoWrx WHD(0,) % (Y1), =5 (Wh x W) (0L) % (Y)),.  (3.4)

Now the left and the right sides of (3.4) contain, as normal subgroups, W; and
W/ which are p(Y;)-invariant and p/ (?J’)—invariant, respectively. Thus if we
know much enough of the structure of the left side of (3.4), then we would be
able to say something about the variation of the set J, so about the property
of f(wo(I)). This is hopeful at least for individual cases, since [14] also gives a
method for computing the explicit structure of the decompositions (3.2).

From now, we assume further that }71 = Y7 (this is satisfied if W; admits
no nontrivial graph automorphism). For an arbitrary group G, let Gixv be the
set of the involutions in G, so (Ginv) < G and (Ginvy) is determined by the
isomorphism type of G only as well as (Gacr). Then, since both Wi x W and
Wi x W’ 7 are generated by involutions and the torsion-free group Y; possesses
no involution, we can derive from (3.3) the following isomorphism

FowWrx WH 2 (W x W)« G, where G = (Y))iny),  (3.5)

by taking the ((*)nv) of both sides. Now consider the centralizers of the normal
subgroups f~!(W}) and W/ in the left and the right sides of (3.5), respectively,
which are also isomorphic via f. Since f~!(W/) is generated by involutions,
Proposition 2.16 implies that the centralizer in the left side is also generated by
involutions, so is the centralizer in the right side. The latter is the intersection
of the right side of (3.5) and Zy (W) = (Z(W}) x WY % Y7, that is

(ZWhH) x W) % (YN @),

and all of its involutions are contained in the former factor since Y; N G is
torsion-free as well as Y. Thus it follows that ¥Y; NG = 1, so the G-action on
the finite group W7 is faithful, therefore G is also finite. Hence, as mentioned
in the first paragraph of Section 3.2, (3.5) and Theorem 3.2 yield the following
isomorphism

FeWrx WH g 25 (W x WH60) x G (3.6)
This reduces our problem to the study of semidirect product decompositions of

Coxeter groups whose irreducible components are finite.
Finally, specializing to the case I = {s}, we obtain the following result.

Theorem 3.7. Let (W, S) be an arbitrary Coxeter system.

1. Suppose that s € S, and W%g, is either trivial or generated by a sin-

gle reflection conjugate to s. Then f(s) € s for any Coxeter system
(W', S") and any group isomorphism f: W = W',

2. Suppose that every s € S satisfies the hypothesis of (1). Then f(S) C s
for any Cozeter system (W', S") and any group isomorphism f : W = W',
so f preserves the set of reflections. Hence the set SV is determined by
W only and independent on the choice of S C W.
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Proof. We only prove (1), since (2) follows immediately from (1) and the first
remark of Section 3.3. Now the above argument works for I = {s}, so it suffices
to deduce that |J| = 1, implying that f(s) = w(J) € S’ as desired. This is
immediately done if W45, = 1, since J # () and now both sides of (3.6) have
cardinality 2.

Suppose that W5, = (t) with t € W conjugate to s. Then both sides of
(3.6) have cardinality 4. Thus if |J| # 1, then it follows that J = {s',¢'} for
two commuting generators s',t' € S’ and the right side of (3.6) is W itself,
so we have an isomorphism f : (s) x (t) = (s} x (#'). Since we assumed that
f(s) = wo(J) = §'t/, it follows that f(t) is either s or ¢, which cannot be
conjugate to f(s) = 't’ in W', contradicting the choice of ¢. Hence |J| =1. O

Moreover, a forcecoming paper [13] of the author will describe for which
s € S the hypothesis is indeed satisfied, and show that this case occurs very
frequently.

4 Essential elements and Coxeter elements

Krammer introduced in his Ph.D. thesis [10] the notion of essential elements of
Coxeter groups. An element w of a Coxeter group W is called essential in W
if the parabolic closure P(w) of w is W itself (see Section 2.2 for terminology).
Note that any W of infinite rank cannot possess an essential element, while a
Coxeter element sqss---s, of an infinite irreducible W of finite rank (where
S = {s1,82,...,8,}) is always essential in W (see Theorem 4.1). Here we
summarize some properties of essential elements required in later sections, as
follows:

Theorem 4.1. Let W be an infinite irreducible Coxeter group of finite rank.
1. Any essential element of W has infinite order.

2. Let0# k € Z. Thenw € W is essential in W if and only if w* is essential
mn W.

3. If n=|S| and y1,...,7n € © are linearly independent, then s, --- ., is
essential in W. Hence any Coxeter element of W is essential in W.

The claim (1) is an immediate consequence of a well-known theorem of
Jacques Tits, which says that any finite subgroup of a Coxeter group is contained
in a finite parabolic subgroup (see e.g. [1, Lemma 1.2] for a proof). On the other
hand, (2) and (3) are shown by Paris in his recent preprint [16]; however, he
proved (3) only for Coxeter elements though his idea is adaptable applicable to
the generalized version. Here we include proofs of (2) and (3) along Paris’ idea
for the sake of completeness.

For (2), we fix W and w as in the statement. For v € @, let 0 = ((03)n)nez
be the infinite sequence of + and — such that (¢),, = ¢ if and only if w" -y € ®*.
We define (o) (or (03) -, respectively) to be € € {+,—} if (¢), = ¢ (or

(0%)—n = €, respectively) for all sufficiently large n. Following [10], we say that

v is w-periodic if w™ - v =~ for some n # 0. Now we include the proofs of the
following two lemmas for the sake of completeness.
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Lemma 4.2 (See [10, Proposition 5.2.2]). If v € ® is not w-periodic, then
only finitely many sign-changes occur in the sequence o

Proof. By the hypothesis, all roots w™ v such that (¢),, # (07 )n+1 are distinct
and contained in the finite set @ [w] U —® [w]. O

A root v € @ is called w-odd (see [10]) if it is not w-periodic (so both (o) +0
are defined; see Lemma 4.2) and (03 )oc # (05)-co- A reflection s, is called
w-odd if 7y is w-odd.

Lemma 4.3 (See [10, Lemma 5.2.7]). For k € Z~ {0}, a root of W is w-odd
if and only if it is w*-odd.

Proof. Note that v € ® is w-periodic if and only if it is w*-periodic. Thus for
a non-w-periodic 7, all of (03)+o and (alfk)ioo are defined (Lemma 4.2) and
we have

k (U}yy)ioo if k> 0;
3’):@0 if k<0,

respectively. Thus the claim follows. O

Let P>°(w) denote the subgroup of W generated by the w-odd reflections.
The following result of [10] is crucial in our argument.

Proposition 4.4 (See [10, Corollary 5.8.7]). The parabolic closure P(w) is
a direct product of P°(w) and a finite number of finite groups.

Moreover, the following result of the author [15] is also required. See also
[16, Theorem 4.1] for the case of finite ranks.

Proposition 4.5 ([15, Theorem 3.3]). If W is an infinite irreducible Cozeter
group, then W is directly indecomposable as an abstract group.

Corollary 4.6. Suppose that W is infinite and irreducible. Then w € W is
essential in W if and only if P> (w) = W.

Proof. The ‘if’ part is a consequence of Proposition 4.4. For the “only if” part,
assume that P(w) = W. Then Proposition 4.4 implies that W is the direct
product of P> (w) and certain finite groups, while W is directly indecomposable
(Proposition 4.5). Thus W must coincide with one of the direct factors, which
cannot be finite since [W| = oo, so W = P*°(w) as desired. O

Now the claim (2) of Theorem 4.1 follows easily from Lemma 4.3 and Corol-
lary 4.6, since the w*-odd reflections are precisely the w-odd reflections.

For the proof of (3), we prepare two lemmas. Here we say that (W, S) is
(non)degenerate to signify the (non)degenerateness of the bilinear form (, ),
respectively.

Lemma 4.7 (See [16, Lemma 3.2]). Let W be a Cozeter group of finite rank.
Then there is a nondegenerate Cozxeter system (W,S) of finite rank such that
SQSandWS:WS.

Proof. We put n = |S| and S = {s1,53,...,82,-1}, and apply the following
algorithm inductively for 1 < k < n, beginning with S = §:
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if the Coxeter system ((Iy),I;) (where I, = {s; € S | i < 2k})
is degenerate, add a new generator s, to S so that sop_189; has
infinite order and sof, commutes with the other elements of S.

By computing the determinant of the matrix of the bilinear form with respect
to the basis {as, }4, it is checked inductively that the Coxeter system ((Ij), It)
will be nondegenerate when the k-th step is done. Hence the Coxeter system
(W,S) = ({(In), I,) obtained finally is the desired one. O

Lemma 4.8. Any element of a proper standard parabolic subgroup Wi of W
has a nonzero 1-eigenvector in V.

Proof. Tt suffices to consider the case that S = {s1, $2,..., S, } is finite and I =
S~{sn}. Then, by definition of the W-action, the n-th row of the representation
matrix A, of w € Wy relative to the basis IT of V is (00 --- 0 1). Thus the
matrix I, — A,, is singular as desired. O

The following property is the essence of the claim (3) of Theorem 4.1.

Proposition 4.9. Let W be a Cozeter group with |S| = n < oo, and suppose
that y1, .- ., Vn € ® are linearly independent. Then the standard parabolic closure
of 5y, -+ 8y, €W is W itself.

Proof. Assume contrary that w = s, --- 55, € Wy for a proper Wy C W. We
may assume without loss of generality that (W, S) is nondegenerate, since we
can extend S to S = S {t1,...,tm} as in Lemma 4.7 and consider ¢ - - - t,,w €
W, instead of w, where J = S~ (S ~ I). Choose a nonzero v € V such
that w - v = v (Lemma 4.8). Then, since (W, S) is nondegenerate, there is an
index ¢ such that (v,v;) # 0 and (v,7;) = 0 for all j > 4. This implies that
WU = Sy, -8y, - v, which is the sum of s, - v = v — 2(v,v;)y; and a linear

combination of yy,...,v;—1. Now the property w - v = v yields an expression
of 2(v,v;)v; as a linear combination of the other -;, contradicting the linear
independence of 7y, ...,7,. Hence the claim follows. O

Now the claim (3) of Theorem 4.1 is easily proved, since the hypothesis of
Proposition 4.9 is invariant under the action of W. Hence the proof of Theorem
4.1 is concluded.

5 On the fixed-point subgroups by Coxeter graph
automorphisms

The subject of this section is the fixed-point subgroup
W ={weW|r(w)=w}

of a Coxeter group W by a graph automorphism 7 € AutT' (as mentioned in
Section 2.2, the automorphism of W induced by 7 is also denoted by 7). Let
7\S denote the set of the (7)-orbits in S. Then it was shown by Steinberg
[18, Theorem 1.32] that W7 is a Coxeter group with respect to the following
generating set

S(WT™) ={we(I) e W | I €7\S and |[W;| < oo}
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(see also [11] and [12]). Here we show the following properties of the subgroup
W7, which will be used in the proof of the main theorem.

Theorem 5.1. Let W be an arbitrary Coxeter group and 7 € Autl'. Then W™
has finite index in W if and only if T is identity on all irreducible components
of W except a finite number of finite irreducible components.

Theorem 5.2. Let W be an infinite irreducible Coxeter group and T € AutT.

1. If [Wr| < oo for all I € T\S, then the Coxeter group W7 is also infinite
and irreducible with respect to the generating set S(WT).

2. Suppose that the hypothesis of (1) fails and every orbit I € T\S is finite.
Then for any 1 # w € W7, there is an element w € W of infinite order
such that u*wr(u)~% # w for all 0 # k € Z.

Note that the result on infiniteness of W7 in Theorem 5.2 (1) is mentioned
in [11, Section 5] without proof in a generalized setting,.

5.1 Proof of Theorem 5.1

Our first step is to prove the following lemma:

Lemma 5.3. Let W be an (irreducible) affine or compact hyperbolic Coxeter
group with type W # E (see Section 2.2 for terminology). Suppose further that
Aw D # {idg}. Then for any idg # 7 € AutT', there is an element w € W of
infinite order such that (w) N (T(w)) = 1.

From now until the end of the proof of Lemma 5.3, we assume that S is
finite and the base field of the (finite-dimensional) geometric representation
space V is extended from R to C. Then the bilinear form (, ) and the faithful
W-action also extend naturally so that W is embedded injectively in the group
of orthogonal linear transformations of V' relative to (, ). For A € C, let V) (w)
denote the A-eigenspace of w € W, and let V, (w), V;ﬁﬁ(w) be the sum of
Va(w) where X runs over the roots of unity, over C \ {0} except the roots of
unity, respectively. Then some elementary linear algebra shows that, if w € W,
0# X € Cand0#k € Z, then Vy(w”) is the sum of V,,(w) where p € C varies
subject to ¥ = \. Hence we have Vﬁ(wk) =V 7(w) and V;éﬁ(wk) =V, 1(w)
whenever k # 0.

Now we have the following:

Lemma 5.4. Let wy, wy € W and suppose that either V ;(w1) # V g(wa) or

Proof. Assume contrary that k,¢ € Z ~ {0} and w;* = wy®. Then, in the first
case V g(w1) # V, q(ws), the above observation implies that

V. a(wi®) =V q(wr) # Vq(wse) =V q(ws"),

k

contradicting the assumption wq* = wyf. The other case is similar. O

Define actions of 7 € AutI’ on V and the dual space V* with dual basis
{a¥ | s € S} (as linear transformations) by

*

7(as) = ar(s) and 7(ag) = aj,) for s € S.
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Then 7 preserves the bilinear form (, ), and we have 7(w) - 7(v) = 7(w - v)
for w € W and v € V. Thus for 0 # A € C and w € W, it follows that
VA(r(w) = (V@) Vor(r(w)) = 7(Vz(w)) and V., r(r(w)) = 7(V, yz(w).
Moreover, we have 7(n)(7(v)) = n(v) for n € V* and v € V. Note also that
Ann(7(V")) = 7(Ann(V")) for any subspace V' C V, where Ann(V’) = {n €
V* | n(V') = 0} denotes the annihilator of V.

By these observations, we have the following lemmas. In these lemmas, write
vh={ eV |(vv)=0}forveV.

Lemma 5.5. Let idg # 7 € AutT, 3,7 € ®T and V' C V a subspace of
codimension 1. Suppose that (3,~) = —1, V' C B+ N+t and Ann(V') is not
T-invariant. Then w = sgs, € W has infinite order and (w) N (T(w)) = 1.

Proof. Since (8,7) = —1, we have w* - 8 = (2k + 1) + 2kvy # B for all k > 1,
showing that w has infinite order. Thus V g(w) # V, since otherwise we have
Vi (w*) = V and w* = 1 for a sufficiently large k, a contradiction. Now we have

V' C BNyt CVi(w) CVs(w) CV and dimV — dim V' =1,
implying that V' = V_;(w). Since Ann(V’) is not 7-invariant, we have

Ann(Vﬁ(w)) # T(Ann(Vﬁ(w))) = Ann(Vﬁ(T(w))),
so V g(w) # V z(7(w)). Hence Lemma 5.4 completes the proof. O

Lemma 5.6. Fori = 1,2, let B;,7; € ®T and VY C V a subspace of codi-
mension 3, and suppose that (B;,v;) < —1, V) C Bt Nyt and CBy + Cyq #
CB2 + Cry,. Then each w; = sg; s, € W has infinite order and (w1) N (wa) = 1.

Proof. Put v, = (—¢; £ +/c? —1)B; + i and N o= 2¢2 — 1 F 2¢;\/c? — 1,
respectively, where ¢; = (8;,7;). Then a direct computation shows that w; -
vt = \Fo, T and \/\ii| # 1, respectively, and \;T\;” = 1, so w; has infinite
order. Moreover, since Bil N7+ C Vi(w;), the hypothesis implies that dim V —
dim V4 (w;) < 3, so the characteristic polynomial X, (z) = det(x - idy — w;) of
w; decomposes as

Xu; (2) = (. = )I5173 (@ = X\, ) (2 — N\ ™) (@ — i) where p; € C.

Now we have £1 = detw; = £xu,(0) = +X\; "X\ " since w; is a product of
involutions, so p; = +1. Thus Viﬁ(wi) = Cv;7 + Cv;m = CB; + Cv;, so
V#\/If(wl) # V;éﬁ(wg) by the hypothesis. Hence Lemma 5.4 completes tlg
proof.

Corollary 5.7. Letidg # 7 € AutT, B,v € ®F and V' C V a subspace of
codimension 3. Suppose that (8,7) < —1, V' C Bt N~* and CB + Cry is not
T-invariant. Then w = sgs, € W has infinite order and (w) N (7(w)) = 1.

Proof. Note that 7(C3+Cy) = C1(8) +Cr(v) and 7(s55y) = 5-(8)Sr(v)- Then
the claim follows from Lemma 5.6, where 81 = 3, v1 =7, f2 = 7(8), 72 = 7(7),
VO =V and V) = 7(V). O
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Table 1: List for the proof of Lemma 5.3, affine case

W T B ~ Ann(V")
A, (n>2) | (1) #1 || ay 011---11 20 — oy —ak
B, (n>3) arp | 0122---22V2 207 — aj
Cpn (n>2) a1 | 0vV2v2- V2421 V2ai — a3
D, (n>4) | 7(1) #1 | o 0122---2211 20} — o

Eg (1) #1 || oy 0232121 20F —

E; o 02343212 20} — o

Table 2: List for the proof of Lemma 5.3, compact hyperbolic case

w T B ~y \%

X1 aq 01111 a3, 0y
Xa(mi,mg) Qg | 5182 Q3 Qo
Xg(ml,mg,mg) T(3) 753 Qa3 S9 - (1 @
Y Oy ay e%:}

Y, a5 as ap, Qg

Y3(5) (67 625 1,02
Y4(5) Qg &4 (651
Y5 Qg 0y aq
Ys(m,m) (m > 5) ag | s2-a 0

Proof of Lemma 5.3. This lemma is deduced from Lemma 5.5 for affine case
and Corollary 5.7 for compact hyperbolic case, by constructing the 3,~ and V'
as in Tables 1 and 2 (see also Figures 1 and 2). Note that 8+ v is the null root
of W in an affine case. If |[Aut'| > 3, we assume by symmetry that 7 satisfies
the condition in the second column of the lists, where we abbreviate s; to 7. In
the next two columns, a word ¢ics - - - ¢, (where r = |S|) signifies Y., ;o € V
and «; denotes the unique highest root of the finite Coxeter group Wy s,1-
Finally, the last column gives a basis of V' or of Ann(V”). O

Now we cancel the assumption |S| < oo placed above. To prove Theorem
5.1, note that if 7 € Aut I leaves W C W invariant, then W} possesses its own
fixed-point subgroup W;” which coincides with W™ N W7.

Proof of Theorem 5.1. The only nontrivial part is the “only if” part, so we
prove it. Note that, by (2.2), the hypothesis implies that

[G: W™ NG] < oo for any subgroup G < W, (5.1)

so W™ NG # 1 for every infinite subgroup G of W.

Step 1: if I C S is finite, and W; is infinite and irreducible, then
T(Wr) = Wr.

Assume contrary that 7(I) # I, or equivalently I ¢ 7(I). Then we have
Int(I)# 1, while W N W; C Wr N We )y = Win- ) (see (2.4)), therefore no
essential element in Wy lies in W7. Hence by Theorem 4.1, any power w® (with
k # 0) of a Coxeter element w of W has infinite order and is not in W7, so we
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have W™ N (w) = 1, contradicting (5.1).
Step 2: the claim holds if W has finite rank.

Now it suffices to show that 7 is identity on every infinite irreducible compo-
nent Wy. Moreover, since (by Step 1) 7(W) = Wy and (by (5.1)) [W; : W] <
00, it actually suffices to consider the case W; = W, namely W itself is infinite
and irreducible. In this case, our aim is to show that 7 is identity.

First, we consider the case that W is not of type A; and every proper
W, C W is infinite. Then by combining Proposition 2.13 (2) and Lemma 5.3,
we have (w) N (7(w)) =1 for some w € W of infinite order whenever 7 # idg.
This implies that W™ N (w) = 1, contradicting (5.1). Thus 7 must be identity
now, as desired. On the other hand, the claim also holds if type W = Avl , since
now we have W7 = 1 whenever 7 # idg.

Finally, we consider the remaining case that a proper W; C W is infinite.
We may assume that J = S \ {s} for some s € S, so it suffices to show that
7|y = idy. Since |S| < oo, we may assume further that Wy is irreducible:
indeed, if W is not irreducible and Wy is an infinite irreducible component of
W (which exists since |J| < 00), then the set S\ {s'}, where s’ is an element
of J ~ K farthest from s in I', possesses the desired properties. Now Step 1
implies that 7(J) = J, so [W;: W;7] < oo (by (5.1)), therefore the induction
on |S| shows that 7|; =id;, as desired.

Step 3: if I € 7\5, then |I| < co.

Assume contrary that |I| = co. Then for any w € W; with J = supp(w)
(finite and) nonempty, we have J # I and so J # 7(J) (since I is a (7)-orbit),
therefore J Z 7(J) and w & W, ;). This means that 7(w) # w. Thus we have
W™ NW; =1, contradicting (5.1).

Step 4: 7 is identity on every infinite irreducible component Wj.

First, we consider the case that a (not necessarily proper) W; C W7 of finite
rank is infinite. We can take an irreducible W;. Now assume contrary that 7
is not identity on Wi, so 7(s) # s for some s € I. Then, since Wy is irreducible
and |J| < oo, an irreducible Wx C Wi of finite rank contains both W and s.
This Wi is also infinite, so 7(K) = K (Step 1), therefore [Wx : W] < 0o by
(5.1). Now Step 2 implies that 7 is identity on W, contradicting the choice of
s. Hence the claim holds in this case.

In the remaining case, Wr is of type Any, Atco, Boo Or Do (see Figure 3)
as mentioned in Section 2.2. Note that 7(W;) = Wy, since otherwise we have
W™ N W =1, contradicting (5.1). Now the claim is trivial in the first and the
third cases where AutI" = {ids}.

In the case type W = A4, if 7 is not identity on Wy, then Step 3 implies
that 7 is a turning of the infinite path 'y, so there is an infinite J C I with
JN7(J)=0. Now we have W™ NW; = 1, contradicting (5.1). This verifies the
claim.

Finally, in the case type W; = D, if 7 is not identity on W, then 7(s1) =
S2, T(s2) = s1 and 7 fixes J = I \ {s1, s2} pointwise. Put K = J U {s2}. Since
any w € Wk satisfies that 7(w) € Wjygs,), we have W™ N Wi = W (see
(2.4)), so Wk : W;] < oo by (5.1). However, putting v = Zf:2 as, € ®f for
k > 3, Lemma 2.11 implies that all of the infinitely many reflections s,, belong
to distinct cosets in Wiy /W ;. This contradiction yields the claim.
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Step 5: conclusion.

Assume that the “only if” part fails. Then by Step 4, W possesses infinitely
many finite irreducible components Wy, ,Wr,,... on which 7 is not identity.
Since every (7)-orbit is finite (Step 3), there is an infinite sequence s1, s2, ... of
distinct elements of S such that J = {s; | i > 1} satisfies that 7(J)NJ = 0; take
s1 as any element of I with 7(s1) # s1, and if s1,. .., si, are already chosen, then
take siy1 € I; where I; does not intersect with the (7)-orbits of the preceding s;
and 7(Sk+1) # Sk+1. Now we have W™ N W; =1 and |W;| = oo, contradicting
(5.1). Hence the proof is concluded. O

5.2 Proof of Theorem 5.2

We start with some preliminaries. Let 7 € AutT' and w € W7, and denote the
support of w as an element of (W7, S(W7)) by supp” (w). The following (part
of a) result of [12] shows a relation between supp(w) and supp” (w).

Proposition 5.8 (See [12, Proposition 3.3]). Let w = wo(l1) - wo(I,)
(where wo(I;) € S(WT)) be a reduced expression of w € W™ with respect to
S(WT). Then any expression of w obtained by replacing each wo(I;) with its
reduced expression, with respect to S, is also reduced with respect to S. Hence
supp(w) = Uirzl I;.

Secondly, we give a remark on the Coxeter graph of the Coxeter system
(W7,S(WT)), denoted here by I'". Let 7\I" be the graph with vertex set 7\,
in which two orbits I, J € 7\S are joined if and only if these sets are adjacent
in I". Then the vertex set S(W7) of I'" is regarded as a subset of the vertex set
7\S of 7\I' via an embedding wy(I) — I. Now we have the following result on
a relation between I'” and 7\TI.

Lemma 5.9. Under the embedding S(W7™) — 7\S of the vertex set, the under-
lying graph of T is a full subgraph of T\T.

Proof. Let I,J € 7\S be two distinct orbits with both W; and W finite. It is
obvious that I and J are not adjacent in I'" (i.e. wo(I) and wg(J) commute) if
these are not adjacent in 7\S. Thus our remaining task is to show that wq(I)
and wo(J) do not commute if I and J are adjacent in 7\.S, namely some s € I is
adjacent to J in I'. Now Lemma 2.7 (1) implies that wq(J)-as € @}FU{S} NPy,

so wo(I)wo(J) - ag € ®*. On the other hand, we have wo(I) - a5 € @, so
wo(J)wo(I) - as € @~. Thus we have wo(I)wo(J) # wo(J)wo(I) as desired. [

Moreover, note that 7\I' is connected whenever T is. Indeed, for any I,J €
7\S, a path in the connected graph I' between any s € I and any t € J gives
rise to a path in 7\I' between I and J.

Proof of Theorem 5.2 (1). As is remarked above, the irreducibility of W
yields the connectedness of 7\I', while the hypothesis implies that the embedding
I'" — 7\I' in Lemma 5.9 is now an isomorphism. Thus I'" is connected as
desired.

For the infiniteness of W7, assume the contrary. Then W7 possesses the
longest element w] with respect to S(W7). Now for any s € S, belonging
by the hypothesis to an I € 7\S with |[W;| < oo, the wj and wo(I) admit
a reduced expression with respect to S(W7) and S ending with wy(I) and s,
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respectively, by Exchange Condition. Thus Proposition 5.8 implies that w{
admits a reduced expression with respect to S ending with s. Since s € S is
arbitrary, this means that W is finite and w{ is the longest element of W (see
Section 2.2), contradicting the hypothesis that W is infinite. Hence the claim
follows. O

Proof of Theorem 5.2 (2). Note that the graph 7\I' is connected. Since
the hypothesis of (1) now fails, there is a path Iply --- I, in 7\I', where I; €
7\S, such that wy(Ip) € supp” (w) and |Wj,.| = co. By choosing the shortest
possible path, we may assume that |Wy,| < co and wo(l;) ¢ supp” (w) for
1 <7< r—1. Now Lemma 5.9 says that Iol;---I._1 is also a path in I'", so
by applying Lemma 2.7 (2) to the Coxeter system (W7, S(WT)), it is deduced
that wo(I,_1) € supp” (w'ww'™") where w' = wo(I,_1) - wo(l2)wo(I1) € WT.
Thus Proposition 5.8 implies that supp(w’ww’_l) C S contains I,._1, does not
intersect I, and is adjacent to I. in T.

Take s € I adjacent to supp(w’ww'il) in ' Now we show that, if W,
possesses an element v’ of infinite order such that s € supp(u’ k) forall0 # k € Z,
then v = w'~'771(v)w’ is the desired element. Indeed, for k # 0, we have
7w Yew' ww' " ' T £ w'ww’ ™" by the choice of v/ and Lemma 2.7 (3) (note
that 7—1(u’) € Wy,), so, since 7(w’) = w’, we have

wFwr(u)F = w' ! (T_l(u’)kw’ww’_lu’_k)w' # w.

Finally, we show the existence of such an element v/, concluding the proof.
Since |Wy.| = oo and I, € 7\S is a finite orbit, an irreducible component of
Wr,., therefore that containing s, is infinite. Now Theorem 4.1 implies that a
Coxeter element of this component possesses the desired property. O

6 Proof of the main theorem

This section is devoted to the proof of Theorem 3.1. First, note that the factor
W(0O,) in the statement is p(G)-invariant, so the product W(0,)(G,) of two
subgroups of W x G is indeed the semidirect product W(O,) x (G,). This
implies that, since W (0,) is generated by involutions, the claim (2) follows
immediately from (1). So we prove (1) below.

For the “only if” part, we assume that wg € (W x G)ac1 and prove that
w e W(0,) and g € G, U{1}. Now by (2.2) and Corollary 2.3 (2), we have

[H: Zy(w'g')] < oo for any H< W x G and w'g’ € (wg) qw ua- (6.1)

Note that py(w) = w™! and g = 1 since 1 = (wg)? = wpy(w) - g*. We divide
the proof into the following five steps.

Step 1: p, maps each W; € C%}I}f onto itself.

Assume contrary that p, maps W; onto an irreducible component other than
Wr. Let m: W — W be the projection. Take s € I and put a = swgs(wg)~! €
(wg) awxg. Then we have a = swp,(s)w™ € W, so Zw,(a) = Zw,(r(a)).
Thus (6.1) implies that 7w(a) € W is almost central in W;. However, the first
assumption yields that m(py(s)) = 1, so w(a) = sm(w)1lm(w)~! = s, which is not
almost central in W; by Proposition 2.15. This is a contradiction.
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inf

Step 2: p, is identity on every W € Cyj; .

Assume that the claim fails for W;. Note that py(W;) = W; by Step 1. Let
w: W — W; be the projection. Then we may assume without loss of generality
that £(m(w)) < €(m(uwpy(u)~1)) for all u € Wi if this inequality fails, replace
wg with another involution u(wg)u™" = uwpy(u)~' - g in (Wg)qwxa, which is
also almost central in W x G by (6.1), and use the induction on (7 (w)).

Put 7 = p,y|r € AutT';, which is assumed to be non-identity. Now if m(w) =
1, then we have Zw, (wg) = Zw,(g) = W;™ and so [W;: W] < oo by (6.1),
contradicting Theorem 5.1. Thus 7(w) # 1.

We show that m(w) is an involution in W;7. Let s1---s, (where n > 1
and s; € I) be an arbitrary reduced expression of m(w) € W;. Then, since
pg(w) =w™t and py (W) = Wy, we have

m(w) = m(pg(w) ™) = pg(m(w) ™) = 7(m(w) ™) = 7(s0) - 7(s1),

so U(m(w)T(s1)) < €(mw(w)), therefore Exchange Condition shows that mw(w) =
§1+++8; - 8,7(s1) for an index i. Now if i > 2, then 7(sywr(s1)™!) = sg-+-5; - -
is shorter than 7(w), contradicting the minimality of ¢(w(w)). Thus we have
it =1and m(w) = s9---$,7(s1). Since the original reduced expression s; - - - s, is
arbitrary, we can apply this argument to the new expression of 7(w). Iterating,
we have

m(w) =83+ 8,7(81)7(82) = -+ - = 8p7(81) - T(Sp—1) = 7(81) - - - 7(8n)-

Since m(w) = 81+ $p = 7(8n) - - - 7(s1), the claim of this paragraph follows.
Now if m, ;(s) = oo for some s € I, then since 72 = id;, Theorem 5.2 (2)
(applied to m(w)) gives us an element u € Wy of infinite order such that

m(uFwgu=F (wg) ™) = uFr(w)T(u) Fr(w) Tt # 1 for all k #£ 0.

This means that Z,(wg) = 1, so [(u) : Zy,y(wg)] = oo, contradicting (6.1).
On the other hand, if m ;(5) < oo for all s € I, then the Coxeter group Wy is
infinite and irreducible by Theorem 5.2 (1). Now we have

ZWIT(W(U})) = ZWIT(w) = ZWIT(wg)v

which has finite index in W;™ by (6.1). Thus the non-identity involution m(w) €
W™ is almost central in W7 ", contradicting Proposition 2.15. Hence Step 2 is
concluded.

Step 3: w € Why.

We show that 7m(w) = 1 for any W; € Ciff with projection 7 : W — Wr.
Since pg is identity on Wi (Step 2), we have Zw, (wg) = Zw, (w) = Zw, (r(w))
and so (by (6.1)) m(w) is almost central in W;. Now since 1 = m(wp,(w)) =
m(w)pg(m(w)) = 7(w)?, the claim follows from Proposition 2.15.

Step 4: w e W(O,).

Assume the contrary. Then there exist a pf(G)-orbit O C Ci? with infinite
cardinality and W; € O (with projection 7y : W — Wy) such that 7j(w) # 1.
Fix the O, and let Og be the set of all such W; € O, so |Op| < 0.

We show that pL(OO) = O, or equivalently pL(OO) C pIL(OO), for any
h € Zg(wg). Note that pp(w) = w since wgh = hwg = pp(w)hg. Now if
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Wi € Oy and p}(Wr) = Wy & Oy, then ms(pn(w)) = pn(mr(w)) # 1 and
my(w) = 1, contradicting pp(w) = w. Thus pIL(OO) C Oy as desired.

Since O is an infinite pf(G)-orbit, we can choose infinitely many finite sub-
sets 01,03, ... of O, irreducible components Wy, Wi, Wr,,--- € O and ele-
ments ¢o, g1, g2, -+ € G inductively, where we start with arbitrary Wy, € Op
and go = 1, subject to the conditions Wy, & Ui:ol O;, Pj;k(WIo) = Wy, and
Ok = p}, (Og) > Wy, for all k > 1. Now if i < j and h € Zg(wg), then the
previous paragraph implies that p; W(Wr,) = pb ph (Wr,) € pl (Og) = O;, while
pgj (Wr1,) = Wi, € O;, so we have g; # g;h. Thus all the g; belong to distinct
cosets in G/Za(wg), while [G : Zg(wg)] < oo by (6.1). This contradiction yields
the claim.

Step 5: g € G, U{1}.

Note that g2 = 1. Since hwg = pp(w) - hg for h € G, we have Zg(wg) C
Zc(g) and so g is almost central in G by (6.1). From now, we check (3.1).

By Step 4, the union O of a finite number of some pf(G)-orbits with finite
cardinalities satisfies that w € W(0O). Since |O] < oo, it suffices to show
that p, is identity on all W; € O’ = Cw \ O except a finite number of finite
irreducible components. Now O’ is p};—invariant as well as its complement O,
while W(0O') C Zw (w), so Zy (o (wg) = Zw o) (g) is the fixed-point subgroup
W(O')™ (where T = pylw (o). Since Zy (o) (wg) has finite index in W (O’) by
(6.1), the claim follows from Theorem 5.1.

Hence the “only if” part has been proved. From now, we prove the other
part; so we assume that w € W(0,), g € G, U {1} and wg is an involution,
and prove that wg is almost central in W x GG. By the choice of w, there are a
finite number of finite p' (G)-orbits in Ci? such that their union O satisfies that
w € W(0O). Now note that

Zwxa(wg) 2 Zwua(w) N Zwxalg) 2 (Zw(w)Za(w)) N (Zw(9)Za(g)),

so it suffices to show that both Zy (w)Zg(w) and Zw (9)Zc(g) have finite index
in W x G (see (2.3)). Moreover, Lemma 2.4 reduces the claim to the following
four claims:

Step 6: Zy (w) has finite index in W.
This follows since w lies in the finite direct factor W(O) of W.
Step 7: Zg(w) has finite index in G.

Since W(O) is finite and p(G)-invariant, the action gives rise to a homo-
morphism p’ from G to the finite group Aut W(0O). Now ker p’ is contained in
Zg(w) (since w € W(0O)) and has finite index in G, proving the claim.

Step 8: Zw (g) has finite index in W.

This is trivial if g = 1. If g € G, then the property (3.1) and Theorem 5.1
imply that the fixed-point subgroup W*s = Zy,(g) by p,y has finite index in W,
as desired.

Step 9: Z;(g) has finite index in G.
This is obvious from the choice of g.

Hence the proof of Theorem 3.1 is concluded.
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