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Introduction

A Coxeter group is a group which admits a group presentation of a certain
typical type. One of the most active fields in the recent researches on Cox-
eter groups is the isomorphism problem of Coxeter groups; that is the problem
of deciding which Coxeter groups are isomorphic as abstract groups, and of
studying further properties of isomorphisms between Coxeter groups. Several
results and observations for this problem have been given in this decade, par-
ticularly in the case of finitely-generated Coxeter groups. However, only a few
observations have been given for non-finitely-generated cases. The aim of this
dissertation is to give a breakthrough for the isomorphism problem of Coxeter
groups without the assumption of the finiteness of generators. Moreover, we
also give some more results on abstract groups and on Coxeter groups, which
are of independent importance and interest.

This dissertation consists of two parts, each containing an independent pa-
per discussing topics related to the isomorphism problem of Coxeter groups. In
Part I, entitled “On the direct indecomposability of infinite irreducible Coxeter
groups and the Isomorphism Problem of Coxeter groups”, we study a relation-
ship between the isomorphism problem and irreducible components of Coxeter
groups; our result reduces the problem to the case of infinite irreducible Cox-
eter groups. Moreover, an analogue of the Krull-Remak-Schmidt Theorem on
indecomposable decompositions of abstract groups is provided, and the auto-
morphism groups of Coxeter groups and the centralizers of normal subgroups
in Coxeter groups generated by involutions are also described.

In Part II, entitled “Almost central involutions in split extensions of Cox-
eter groups by graph automorphisms”, we give a sufficient condition for an
isomorphism between two Coxeter groups to be reflection-preserving. This is
an important step of the study of the isomorphism problem of Coxeter groups.
More detailed examination of this condition will be done in a forthcoming paper
of the author which is now in preparation. We also study a split extension of any
Coxeter group by Coxeter graph automorphisms, determining the involutions in
such an extension whose centralizer has finite index. Moreover, certain special
elements of Coxeter groups and the fixed-point subgroups in Coxeter groups by
Coxeter graph automorphisms are also studied.
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PART I 3

ON THE DIRECT INDECOMPOSABILITY OF INFINITE
IRREDUCIBLE COXETER GROUPS AND THE ISOMORPHISM

PROBLEM OF COXETER GROUPS

KOJI NUIDA

In this paper we prove that any irreducible Coxeter group of infinite
order, which is possibly of infinite rank, is directly indecomposable
as an abstract group. The key ingredient of the proof is that we can
determine, for an irreducible Coxeter groupW , the centralizers inW
of the normal subgroups of W that are generated by involutions. As
a consequence, the problem of deciding whether two general Coxeter
groups are isomorphic is reduced to the case of irreducible ones. We
also describes the automorphism group of a general Coxeter group
in terms of those of its irreducible components.

key words: Coxeter groups; indecomposability; Isomorphism Prob-
lem; automorphism groups; centralizers.
AMS Subject Classification (2000): 20F55; 20E34; 20F28.

1 Introduction

In this paper, we prove that all infinite irreducible Coxeter groups are di-
rectly indecomposable as abstract groups (Theorem 3.3).

Regarding direct indecomposability of Coxeter groups, it is well known that
there exist finite irreducible Coxeter groups which are directly decomposable
(such as the Weyl group G2). On the other hand, for infinite irreducible Coxeter
groups, no general result has been known until recently. In a recent paper [9],
L. Paris proved the direct indecomposability of all infinite irreducible Coxeter
groups of finite rank, by using certain special elements called essential elements
which are used also in [6]. However, by definition, a Coxeter group of infinite
rank never possesses an essential element, so that the proof cannot be applied
directly to the case of infinite ranks.

Our result here is obtained by a different approach. Let W be an irreducible
Coxeter group whose order is infinite, possibly of infinite rank. We give a com-
plete description of the centralizer C of any normal subgroup N of W which is
generated by involutions (Theorem 3.1). From the description it follows that,
unless N = {1} or C = {1}, there is a subgroup H ⊊ W which contains both
N and C. Once this is proved, the direct indecomposability of W is clear, since
any direct factor of W is a normal subgroup and is generated by involutions
(since it is a quotient of W ), and its centralizer contains the complementary
factor.

As a consequence of the direct indecomposability of infinite irreducible Cox-
eter groups, we give results on the isomorphisms between two Coxeter groups
(Theorem 3.4). Since we also know how each finite irreducible Coxeter group
decomposes into directly indecomposable factors, our results imply that we can
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determine whether or not two given Coxeter groups are isomorphic if we can
determine which infinite irreducible Coxeter groups are isomorphic. In addi-
tion, our results also give certain decompositions of an automorphism of a gen-
eral Coxeter group W (Theorem 3.10). One decomposition describes its form
from the viewpoint of the directly indecomposable decomposition of W ; an-
other decomposition describes its form from the viewpoint of the decomposition
W = Wfin ×Winf , where Wfin (resp. Winf) is the product of the finite (resp.
infinite) irreducible components of W in the given Coxeter system. Note that
these results can also be deduced from the Krull-Remak-Schmidt Theorem in
group theory, if the Coxeter group has a composition series. Theorem 3.4 is also
a generalization of Theorem 2.1 of [9]; our proof here is similar to, but slightly
more delicate than that in [9], by the lack of finiteness of the ranks. Note also
that, in another recent paper [7], M. Mihalik, J. Ratcliffe and S. Tschantz also
examined the “Isomorphism Problem” (namely, the problem of deciding which
Coxeter groups are isomorphic) for the case of finite ranks, by a highly different
approach.

Contents. Section 2 collects the preliminary facts and results. In Section
2.1, we give some remarks on general groups, especially on the definition and
properties of the core subgroups. Sections 2.2 and 2.3 summarize definitions,
notations and properties of Coxeter systems, Coxeter graphs and root systems
of Coxeter groups. In Section 2.4, we recall a method, given by V. V. Deodhar
[2], for decomposing the longest element of any finite parabolic subgroup into
pairwise commuting reflections. Owing to this decomposition, we can compute
easily the action of the longest element on a root, even if it is not contained in
the root system of the parabolic subgroup. As an application, in Section 2.5,
we determine all irreducible Coxeter groups of which the center is a nontrivial
direct factor. (This is not a new result, but is included there since the result
is used in the following sections.) Some properties of normalizers of parabolic
subgroups are summarized as Section 2.6.

Our main results are stated and proved in Section 3. The direct indecom-
posability of infinite irreducible Coxeter groups is shown in Section 3.1 (Theo-
rem 3.3). Note that the theorem also includes the description, which has been
known, of all nontrivial direct product decompositions of finite irreducible Cox-
eter groups. In Section 3.2, we reduce the Isomorphism Problem of general
Coxeter groups to the case of infinite irreducible ones (Theorem 3.4). In the
proof, we give a result on such a problem in a slightly wider context (Theorem
3.9), by which our result is deduced. Moreover, another result in Section 3.3
describes the automorphism group of a general Coxeter group in terms of those
of the irreducible components (Theorem 3.10 (ii)). Note that a Coxeter group
possesses some ‘natural’ automorphisms, which arise from automorphisms of
the irreducible components together with a permutation of isomorphic compo-
nents. We also give a characterization of Coxeter groups for which the group of
the ‘natural’ automorphisms has finite index in the whole automorphism group
(Theorem 3.10 (iii)).

Our proof of Theorem 3.3 is based on our description of the centralizers of
the normal subgroups, which are generated by involutions, in irreducible Cox-
eter groups (Theorem 3.1). This theorem is proved in Section 4.1 by using a
description, given in Sections 4.2–4.4, of the core subgroups of normalizers of
parabolic subgroups.

Acknowledgement. I would like to express my deep gratitude to every-
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one who helped me, especially to Professors Itaru Terada and Kazuhiko Koike
for their precious advice and encouragement, and also to the referee for the
careful examination and several important suggestions for improvement.

2 Preliminaries

2.1 Notes on general groups

In this paper, we treat two kinds of direct products of groups Gλ with (pos-
sibly infinite) index set Λ; the complete direct product (whose elements (gλ)λ
are all the maps Λ →

⊔
µ∈ΛGµ, λ 7→ gλ such that gλ ∈ Gλ) and the restricted

direct product (consisting of all the elements (gλ)λ such that gλ is the unit el-
ement of Gλ for all but finitely many λ ∈ Λ). Note that these two products
coincide if |Λ| <∞. Since here we treat mainly the latter type rather than the
former one, we let the term “direct product” alone and the symbol

∏
mean the

restricted direct product throughout this paper. (The complete one also appears
in this paper, always together with notification.)

For two groups G, G′, let Hom(G,G′), Isom(G,G′) denote the sets of all ho-
momorphisms, isomorphisms G → G′ respectively. Put End(G) = Hom(G,G)
and Aut(G) = Isom(G,G). The following lemma is easy, but will be referred
later.

Lemma 2.1. Assume that the center Z(G) of a group G is either trivial or a
cyclic group of prime order. Then the following three conditions are equivalent:
(I) Z(G) = 1 or Z(G) is not a direct factor of G.
(II) If f ∈ Hom(G,Z(G)), then f(Z(G)) = 1.
(III) If G′ is a direct product of (arbitrarily many) cyclic groups of prime order
and f ∈ Hom(G,G′), then f(Z(G)) = 1.

Proof. This is trivial if Z(G) = 1, so that we assume that Z(G) is a cyclic group
of prime order. Note that the implication (III) ⇒ (II) is obvious.
(I) ⇔ (II): If (I) is not satisfied, and G = Z(G)×H, then the projection G→
Z(G) does not satisfy the conclusion of (II). Conversely, if f ∈ Hom(G,Z(G))
and f(Z(G)) ̸= 1, then f(Z(G)) = Z(G), ker f ∩ Z(G) = 1 (since Z(G) is
simple) and so we have G = Z(G)× ker f .
(II) ⇒ (III): This is clear if G′ itself is a cyclic group of prime order (by
noting that Hom(Z/pZ,Z/ℓZ) = 1 for distinct primes p, ℓ). For a general case,
apply it to the composite map π ◦ f for every projection π from G′ to one of its
factors.

Here we define the following multiplication for the set Hom(G,Z(G)) by
which it forms a monoid. First, we define a map Hom(G,Z(G)) → End(G),
f 7→ f ♭ by

f ♭(w) = wf(w)−1 for all w ∈ G.

This is well defined since Z(G) is central in G. The image ofH ⊂ Hom(G,Z(G))
by the map is denoted by H♭. Now define the product f ∗ g of two elements
f, g ∈ Hom(G,Z(G)) by

(f ∗ g)(w) = f(w)g(w)(f ◦ g)(w)−1 for all w ∈ G.
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This is also well defined, and then Hom(G,Z(G)) forms a monoid with the trivial
map (denoted by 1) as the unit element (for example, we have the associativity(

(f ∗ g) ∗ h
)
(w) =

(
f ∗ (g ∗ h)

)
(w)

= f(w)g(w)h(w)(f ◦ g)(w)−1(f ◦ h)(w)−1(g ◦ h)(w)−1(f ◦ g ◦ h)(w)
= (f ∗ h)(w)(f ♭ ◦ g ◦ h♭)(w)

(2.1)

for f, g, h ∈ Hom(G,Z(G))). Let Hom(G,Z(G))× denote the group of invertible
elements of Hom(G,Z(G)) with respect to the multiplication ∗. On the other
hand, End(G) also forms a monoid with composition of maps as multiplication;
then the group of invertible elements in the monoid End(G) is precisely the
group Aut(G).

Moreover, Aut(G) acts on the monoids Hom(G,Z(G)) and End(G) by

h · f = h ◦ f ◦ h−1 for h ∈ Aut(G), f ∈ Hom(G,Z(G)) or End(G).

Lemma 2.2. (i) The map f 7→ f ♭ is an injective homomorphism Hom(G,Z(G)) →
End(G) of monoids compatible with the action of Aut(G).
(ii) For f ∈ Hom(G,Z(G)), the following three conditions are equivalent:

(I) f ∈ Hom(G,Z(G))×. (II) f ♭ ∈ Aut(G).
(III) The restriction f ♭|Z(G) is an automorphism of Z(G).

(iii) If H ⊂ Hom(G,Z(G))× is a subgroup invariant under the action of Aut(G),
then its image H♭ is a normal subgroup of Aut(G).

Proof. The claim (i) is straightforward, while (iii) follows from (i), (ii) and
definition of the action of Aut(G). From now, we prove (ii). The implication (I)
⇒ (II) is obvious. On the other hand, (II) implies (III) since any automorphism
preserves the center. Moreover, if (III) is satisfied, then we can construct the

inverse element f ′ of f ∈ Hom(G,Z(G)) by f ′(w) = (f ♭|Z(G))
−1
(
f(w)

)−1
(w ∈

G); we have

(f ′ ∗ f)(w) = f ′(w)f(w)f ′(f(w))−1 = f ′(wf(w)−1)f(w)

= (f ♭|Z(G))
−1
(
f(wf(w)−1)

)−1
f(w)

= (f ♭|Z(G))
−1
(
f ♭(f(w))

)−1
f(w)

= f(w)−1f(w) = 1,

so that f ′ ∗ f = 1. Similarly, we have f ∗ f ′ = 1. Hence the claim holds.

Lemma 2.3. If a group G is abelian, then the embedding Hom(G,Z(G)) →
End(G), f 7→ f ♭, is an isomorphism with inverse map f 7→ f ♭. Moreover, its
restriction is an isomorphism Hom(G,Z(G))× → Aut(G).

Proof. Note that Z(G) = G, so that Hom(G,Z(G)) = End(G) as sets. Thus
the map End(G) → Hom(G,Z(G)), f 7→ f ♭ is well defined. Now we have
(f ♭)♭(w) = wf ♭(w)−1 = f(w) for all f ∈ End(G) and w ∈ G, so that (f ♭)♭ = f .
Thus the first claim holds. Now the second one follows from Lemma 2.2 (ii).

Note that, if G = G1 ×G2, then the sets Hom(Gi, Z(G)) (i = 1, 2) are em-
bedded into Hom(G,Z(G)) via the map f 7→ f ◦ πi (where πi is the projection
G → Gi). It is easily checked that, if f, g ∈ Hom(Gi, Z(G)), then f ∗ g ∈
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Hom(Gi, Z(G)), thus Hom(Gi, Z(G)) forms a submonoid of Hom(G,Z(G)).
Moreover, the above formula of the inverse element f ′ of f ∈ Hom(G,Z(G))
implies that, if f ∈ Hom(Gi, Z(G)) is invertible as an element of Hom(G,Z(G)),
then its inverse belongs to Hom(Gi, Z(G)). Thus the notation Hom(Gi, Z(G))

×

is unambiguous.

Lemma 2.4. (i) Let f, g ∈ Hom(G,Z(G)) such that f(Z(G)) = g(Z(G)) = 1.
Then f, g ∈ Hom(G,Z(G))× and (f ∗ g)(w) = f(w)g(w) for all w ∈ G (so that
f ∗ g = g ∗ f by symmetry). Moreover, the map w 7→ f(w)−1 is the inverse
element of f in Hom(G,Z(G))×.
(ii) Suppose that G = G1 × G2 and Z(G2) = 1. Then Hom(G,Z(G))× =
H1 ⋊H2 where H1 = Hom(G2, Z(G)), H2 = Hom(G1, Z(G1))

×. Moreover, H1

is abelian, (f ∗ g)(w) = f(w)g(w) for f, g ∈ H1 and f ∗ g ∗ f ′ = f ♭ ◦ g ◦ (f ♭)−1

for f ∈ H2 and g ∈ H1, where f
′ is the inverse element of f ∈ H2.

Proof. (i) By the hypothesis, f ♭ is identity on Z(G), so that f is invertible by
Lemma 2.2 (ii) (and g is so). The other claims follow from definition (note that
now f ◦ g = 1).
(ii) Note that Z(G) = Z(G1) by the hypothesis. Then by (i), H1 is an abelian
subgroup of Hom(G,Z(G))× in which the multiplication is as in the statement.

For f ∈ H2 and g ∈ H1, the formula (2.1) implies that f ∗ g ∗ f ′ is as in

the statement (note that f ∗ f ′ = 1 and f ′
♭
= (f ♭)−1). In particular, we have

f ∗ g ∗ f ′(G1) ⊂ f ♭ ◦ g(G1) = 1, since f ′ ∈ H2 and so f ′
♭
(G1) ⊂ G1. This means

that f ∗ g ∗ f ′ ∈ H1. Since obviously H1 ∩H2 = 1, we have H1H2 = H1 ⋊H2.
Finally, let f ∈ Hom(G,Z(G))×. Take g ∈ H1 such that g(w) = f ◦π2(w)−1

where π2 is the projection G→ G2 (this is the inverse element of f ◦ π2 ∈ H1).
Then for w ∈ G2, we have

(g ∗ f)(w) = g(w)f(w)g
(
f(w)

)−1
= f(w)−1f(w) = 1

since g(Z(G)) = 1. This means that g ∗ f ∈ Hom(G1, Z(G1)), while it is
invertible since both f and g are so. Thus we have g ∗ f ∈ H2 and f =
(f ◦ π2) ∗ g ∗ f ∈ H1H2. Hence Hom(G,Z(G))× = H1 ⋊H2.

In the proof of our results, we use the following notion. For a group G, we
write H ≤ G, H ◁G if H is a subgroup, normal subgroup of G, respectively.

Definition 2.5. For H ≤ G, define the core CoreG(H) of H in G to be the
unique maximal normal subgroup of G contained in H (namely,

∩
w∈G wHw

−1).

The following properties are deduced immediately from definition:

If H1 ≤ H2 ≤ G, then CoreG(H1) ⊂ CoreG(H2). (2.2)

If CoreG(H) ≤ H1 ≤ G, then CoreG(H) ⊂ CoreG(H1). (2.3)

If Hλ ≤ G (λ ∈ Λ), then CoreG(
∩
λ∈Λ

Hλ) =
∩
λ∈Λ

CoreG(Hλ). (2.4)

If H1 ≤ H2 ≤ G, w ∈ G and wH1w
−1 ∩H2 = 1, then H1 ∩ CoreG(H2) = 1.

(2.5)

Lemma 2.6. Let G1 ≤ G2 ≤ · · · , H1 ≤ H2 ≤ · · · be two infinite chains
of subgroups of the same group such that Gi ∩ Hj = Hi for all i ≤ j. Put
G =

∪∞
i=1Gi and H =

∪∞
i=1Hi. Then CoreG(H) ⊂

∪∞
i=1 CoreGi

(Hi).
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Proof. It is enough to show that CoreG(H)∩Hi ⊂ CoreGi
(Hi) (or more strongly,

CoreG(H) ∩Hi ◁Gi) for all i. Note that the hypothesis implies Gi ∩H = Hi.
Then for g ∈ Gi and h ∈ CoreG(H) ∩ Hi, we have ghg−1 ∈ CoreG(H) and
ghg−1 ∈ Gi, so that ghg−1 ∈ Gi ∩H = Hi. Thus the claim holds.

The next lemma describes the centralizers of normal subgroups in terms of
the cores of certain subgroups. Before stating this, note the following easy facts:

If H ◁G, then the centralizer ZG(H) of H is also normal in G. (2.6)

If X1, X2 ⊂ G are subsets and X1 ⊂ ZG(X2), then X2 ⊂ ZG(X1). (2.7)

Lemma 2.7. Let H be the smallest normal subgroup of G containing a subset
X ⊂ G. Then ZG(H) = CoreG(ZG(X)) =

∩
x∈X CoreG(ZG(x)).

Proof. The second equality follows from (2.4). For the first one, the inclusion
⊂ is deduced from (2.6) (since ZG(H) ⊂ ZG(X)). For the other inclusion, the
centralizer of CoreG(ZG(X)) in G is normal in G (by (2.6)) and contains X, so
that it also contains H. Thus the claim follows from (2.7).

2.2 Coxeter groups and Coxeter graphs

Here we refer to [5] for basic definitions and properties. A pair (W,S) of a
groupW and its generating set S is a Coxeter system (andW itself is a Coxeter
group) if W has the presentation

W = ⟨S | (st)m(s,t) = 1 if s, t ∈ S and m(s, t) <∞⟩

where m : S × S → {1, 2, . . . } ∪ {∞} is a symmetric map such that m(s, t) = 1
if and only if s = t. (W,S) is said to be finite (infinite) if the group W is
finite (infinite, respectively). The cardinality of S is called the rank of (W,S)
(or even of W ). Throughout this paper, we do not assume, unless otherwise
noticed, that the rank of (W,S) is finite (or even countable). Note that, owing
to the well-known fact that the element st ∈W above has precisely orderm(s, t)
in W , this map m can be recovered uniquely from the Coxeter system (W,S).

Two Coxeter systems (W,S) and (W ′, S′) are said to be isomorphic if there
is some f ∈ Isom(W,W ′) such that f(S) = S′. Then there is a one-to-one
correspondence (up to isomorphism) between Coxeter systems and the Coxeter
graphs; which are simple (loopless), undirected, edge-labelled graphs with labels
in {3, 4, . . . }∪{∞}. The Coxeter graph Γ corresponding to (W,S) has the vertex
set S, and two vertices s, t ∈ S are joined in Γ by an edge with label m(s, t) if
and only if m(s, t) ≥ 3 (by convention, the labels ‘3’ are usually omitted). Γ (or
(W,S)) is said to be of finite type if W is finite. It is also well known that, when
WI denotes the parabolic subgroup of W generated by a subset I ⊂ S, (WI , I)
is also a Coxeter system with Coxeter graph ΓI which is the full subgraph of Γ
on the vertex set I.

A Coxeter system (W,S) is called irreducible if the corresponding Coxeter
graph Γ is connected. In this case, W is also said to be irreducible. As is well
known, W is decomposed as the direct product of its irreducible components,
which are the parabolic subgroups WI of W corresponding to the connected
components ΓI of Γ (in this case, each subset I is also said to be an irreducible
component of S). A parabolic subgroup WI ⊂ W is said to be irreducible if
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the Coxeter system (WI , I) is irreducible. As we mentioned in Introduction,
an irreducible Coxeter group may be directly decomposable (as an abstract
group) in general. Our main result determines which irreducible Coxeter group
is indeed directly indecomposable.

In this paper, we use the following notations for some Coxeter graphs.

Definition 2.8. We use the notations in Fig. 1. For each of the Coxeter graphs,
let si denote the vertex having label i. Moreover, for each Coxeter graph Γ (Tn)
in Fig. 1 (T = A, B, D, E, F , H), let Γ (Tk) (k < n) be the full subgraph
of Γ (Tn) on vertex set {si | 1 ≤ i ≤ k}. For any T , let (W (T ), S(T )) be the
Coxeter system corresponding to the Coxeter graph Γ (T ).

Γ (A∞) = ◦ ◦ ◦ ◦ · · ·
1 2 3 4

Γ (B∞) = ◦ ◦ ◦ ◦ · · ·
1 2 3 4

4

Γ (D∞) =
◦

◦
◦ ◦ ◦

��
HH · · ·

1

2 3 4 5
Γ (E8) = ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

1 3 4 5 6 7 8

2

Γ (F4) = ◦ ◦ ◦ ◦
1 2 3 4

4
Γ (H4) = ◦ ◦ ◦ ◦

1 2 3 4

5
Γ (I2(m)) = ◦ ◦

1 2

m

Γ (A∞,∞) = ◦ ◦ ◦ ◦ ◦ ◦ ◦· · · · · ·
−3 −2 −1 0 1 2 3

⊃ Γ (A∞)

Figure 1: Some connected Coxeter graphs

By definition, Γ (T∞) (T = A,B,D) and Γ (A∞,∞) are Coxeter graphs with
countable (infinite) vertex sets. On the other hand, it is well known that the
Coxeter graphs Γ (An) (1 ≤ n <∞), Γ (Bn) (2 ≤ n <∞), Γ (Dn) (4 ≤ n <∞),
Γ (E6), Γ (E7), Γ (E8), Γ (F4), Γ (H3), Γ (H4) and Γ (I2(m)) (5 ≤ m < ∞) are
all the connected Coxeter graphs of finite type (up to isomorphism). Note that
Γ (B1) = Γ (D1) = Γ (A1), while Γ (D2) ≃ Γ (A1×A1) and Γ (D3) ≃ Γ (A3) (but
the vertex labels are different).

2.3 Root systems of Coxeter groups

For a Coxeter system (W,S), let Π be the set of symbols αs (s ∈ S) and V
the vector space over R containing the set Π as a basis. We define the symmetric
bilinear form ⟨ , ⟩ on V for the basis by

⟨αs, αt⟩ = − cos(π/m(s, t)) if m(s, t) <∞, ⟨αs, αt⟩ = −1 if m(s, t) = ∞.

Then W acts faithfully on the space V by s · v = v− 2⟨αs, v⟩αs (s ∈ S, v ∈ V ).
Let Φ = W · Π, the root system of (W,S). The above rule implies that the
action of W preserves the bilinear form; as a consequence, any element (root)
of Φ is a unit vector. It is a crucial fact that Φ is a disjoint union of the set Φ+



PART I 10

of positive roots (i.e. roots in which the coefficient of every αs ∈ Π is ≥ 0) and
the set Φ− = −Φ+ of negative roots. It is well known that the cardinality of
the set Φ [w] = {γ ∈ Φ+ | w · γ ∈ Φ−} is (finite and) equal to the length ℓ(w)
of w ∈ W with respect to the generating set S. From the fact it follows easily
that the set Φ [w] characterizes the element w ∈W ; namely,

if w, u ∈W and Φ [w] = Φ [u] , then w = u (2.8)

(observe Φ
[
wu−1

]
= ∅ and so wu−1 = 1).

The reflection along a root γ = w · αs ∈ Φ is defined by sγ = wsw−1 ∈ W .
This definition does not depend on the choice of w and s, and sγ indeed acts as
a reflection on the space V ; sγ · v = v − 2⟨γ, v⟩γ for v ∈ V . Note that sαs

= s
for s ∈ S. The following fact is easy to show (by the fact that Φ = Φ+ ⊔ Φ−):

if s ∈ S, γ ∈ Φ+ and ⟨αs, γ⟩ > 0, then sγ · αs ∈ Φ−. (2.9)

For v ∈ V , put

v =
∑
s∈S

([αs] v)αs and supp(v) = {s ∈ S | [αs] v ̸= 0}.

For I ⊂ S, let VI be the subspace of V spanned by the set ΠI = {αs | s ∈ I}
and ΦI = Φ ∩ VI (namely, the set of all γ ∈ Φ such that supp(γ) ⊂ I). Then
it is well known that ΦI coincides with the root system WI ·ΠI of the Coxeter
system (WI , I) (cf. Lemma 4 of [3], etc. for the proof). This fact yields the
following:

If γ ∈ Φ, then (γ ∈ Φsupp(γ) and so) the set supp(γ) is connected in Γ.
(2.10)

Moreover, it is well known (cf. [5], Section 5.8, Exercise 4, etc.) that:

If I ⊂ S and γ ∈ Φ, then sγ ∈WI if and only if γ ∈ ΦI . (2.11)

For I ⊂ S, let

I⊥ = {s ∈ S ∖ I | st = ts for all t ∈ I}
= {s ∈ S ∖ I | s is adjacent in Γ to no element of I}
= {s ∈ S | αs is orthogonal to every αt ∈ ΠI}.

Then we have the following properties:

If γ ∈ Φ+ and supp(γ) ̸⊂ I ⊂ S, then w · γ ∈ Φ+ for all w ∈WI . (2.12)

If γ ∈ Φ, I = supp(γ) and s ∈ S ∖ (I ∪ I⊥), then supp(s · γ) = I ∪ {s}.
(2.13)

(For (2.12), take some t ∈ supp(γ) ∖ I, then w · γ has the same (positive)
coefficient of αt as γ. For (2.13), note that ⟨αs, γ⟩ < 0 by the hypothesis.)

For I ⊂ S and w ∈ W , let Φ+
I = ΦI ∩ Φ+, Φ−

I = ΦI ∩ Φ− and ΦI [w] =
ΦI ∩ Φ [w].

Lemma 2.9. Let w ∈ W , I, J ⊂ S and suppose that I ∩ J = ∅, w · ΠI = ΠI
and w ·ΠJ ⊂ Φ−. Then ΦI∪J [w] = Φ+

I∪J ∖ ΦI .
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Proof. Let γ ∈ Φ+
I∪J such that [αs] γ > 0 for at least one s ∈ J (note that

w · αs ∈ Φ−). Now if w · αs ∈ Φ−
I , then αs = w−1 · (w · αs) must be a linear

combination of ΠI (since w · ΠI = ΠI), but this is impossible. Thus we have
[αt] (w · αs) < 0 for some t ∈ S ∖ I. Moreover, the hypothesis implies that
[αt] (w ·αs′) = 0 for all s′ ∈ I and [αt] (w ·αs′) ≤ 0 for all s′ ∈ J . Thus we have

[αt] (w · γ) = [αt]

(
w ·

∑
s′∈I∪J

([αs′ ] γ)αs′

)
=

∑
s′∈I∪J

([αs′ ] γ) [αt] (w · αs′) ≤ [αs] γ [αt] (w · αs) < 0.

Hence the claim holds, since w · Φ+
I ⊂ Φ+ by the hypothesis.

Definition 2.10. For a Coxeter system (W,S), we define the odd Coxeter graph
Γ odd of (W,S) to be the subgraph of Γ obtained by removing all edges labelled
by an even number or ∞.

It is well known (cf. [5], Section 5.3, Exercise, etc.) that, for s, t ∈ S,

αt ∈W · αs if and only if s, t are in the same connected component of Γ odd.
(2.14)

Moreover, the following lemma is deduced immediately from the definition that
all fundamental relations of W are of the form (st)m(s,t) = 1 (s, t ∈ S).

Lemma 2.11. Any f ∈ Hom(W, {±1}) assigns the same value to every vertex
s ∈ S of a connected component of Γ odd. Conversely, any mapping S → {±1}
having this property extends uniquely to a homomorphism W → {±1}.

2.4 Reflection decompositions of longest elements

If WI is a finite parabolic subgroup of a Coxeter group W , then let w0(I)
denote the longest element of WI . This element is an involution and maps the
set ΠI onto −ΠI , so that there is an involutive graph automorphism σI of the
Coxeter graph ΓI such that

w0(I) · αs = −ασI(s) for all s ∈ I.

It is well known that, for an irreducible Coxeter system (W,S), we have Z(W ) ̸=
1 if and only if W ≃ W (T ) for one of T = A1, Bn (n < ∞), Dk (k ≥ 4 even),
E7, E8, F4, H3, H4 and I2(m) (m ≥ 6 even). This condition is also equivalent to
that |W | <∞ and σS = idS . Moreover, Z(W ) = {1, w0(S)} if Z(W ) ̸= 1, while
σS is determined as the unique non-identical automorphism of Γ whenever W
is finite, irreducible and Z(W ) = 1. Note that any automorphism τ ∈ Aut(Γ )
induces naturally an automorphism of W , which maps each element w0(I) to
w0(τ(I)).

The next lemma introduces certain normal subgroups GBn , GDn of W (Bn),
W (Dn), respectively, which play an important role in later sections.

Lemma 2.12. (See Definition 2.8 for notations.)
(i) Let 1 ≤ n ≤ ∞. Then the subgroup GBn

of W (Bn) generated by all
w0(S(Bi)) (1 ≤ i ≤ n, i <∞) is normal in W (Bn).
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(ii) Let 1 ≤ n ≤ ∞. Then the smallest normal subgroup GDn
of W (Dn) con-

taining all w0(S(D2k)) (1 ≤ k < ∞, 2k ≤ n) is the subgroup generated by all
w0(S(Di)) (2 ≤ i ≤ n, i <∞).
(iii) Moreover, each of the above normal subgroups is an elementary abelian
2-group with the generating set given there as the basis.

Proof. For the case n <∞, we refer to Section 2.10 of [5] the following realiza-
tions of W (Bn) and W (Dn). Namely, W (Bn) is isomorphic to the semidirect
product Kn ⋊ Symn of an elementary abelian 2-group Kn ≃ {±1}n, where the
i-th element of the basis is denoted by κi, by the group Symn of permutations of
the κi’s. The isomorphism sends s1 to κ1 and si (i ≥ 2) to (i−1 i) ∈ Symn. Now
it is easily checked that w0(S(Bi)) = κ1κ2 · · ·κi, so that we have GBn = Kn.
Moreover, W (Dn) is isomorphic to K+

n ⋊ Symn where K+
n is the subgroup of

Kn generated by κiκi+1 (1 ≤ i ≤ n − 1), and the isomorphism sends s1 to
κ1κ2 · (1 2) and si (i ≥ 2) to (i− 1 i). Now w0(S(Di)) = κ1κ2 · · ·κi if i ≥ 2 is
even and w0(S(Di)) = κ2κ3 · · ·κi if i ≥ 2 is odd, so that we have GDn

= K+
n .

By those observations, the claims (i)–(iii) are deduced immediately.
For the remaining case n = ∞, note that W (B∞) is the direct limit of the

sequence W (B1) ⊂ W (B2) ⊂ · · · , and similarly for W (D∞). Thus the claims
are also deduced in this case by the argument in the previous paragraph.

In the paper [2], Deodhar established a method (in the proof of Theorem 5.4)
for decomposing any involution w ∈ W as a product of commuting reflections.
From now, we apply this method and then obtain a decomposition of any longest
element w0(I), which we call here a reflection decomposition. Among the various
expressions of the elements w0(I), this decomposition possesses an advantage
in a computation of the action on the space V . First, to each finite irreducible
Coxeter system (W,S) = (W (T ), S(T )) of type T , we associate a (or two)

positive root(s) α̃T = α̃
(1)
T (and α̃

(2)
T ), as follows (where we abbreviate c1α1 +

c2α2 + · · ·+ cnαn ∈ V to (c1, c2, . . . , cn) in some cases):

α̃An
=

n∑
i=1

αi (1 ≤ n <∞), α̃Dn
= α1 + α2 +

n−1∑
i=3

2αi + αn (4 ≤ n <∞),

α̃
(1)
Bn

= α1 +

n∑
i=2

√
2αi, α̃

(2)
Bn

=
√

2α1 +

n−1∑
i=2

2αi + αn (2 ≤ n <∞),

α̃E6
= (1, 2, 2, 3, 2, 1), α̃E7

= (2, 2, 3, 4, 3, 2, 1), α̃E8
= (2, 3, 4, 6, 5, 4, 3, 2),

α̃
(1)
F4

= (2, 3, 2
√
2 ,

√
2 ), α̃

(2)
F4

= (
√

2 , 2
√
2 , 3, 2),

α̃H3
= (c+ 1, 2c, c), α̃H4

= (3c+ 2, 4c+ 2, 3c+ 1, 2c) (where c = 2 cos
π

5
),

α̃I2(m) =
1

2 sin(π/2m)
α1 +

1

2 sin(π/2m)
α2 (m ≥ 5 odd),

α̃
(i)
I2(m) =

cos(π/m)

sin(π/m)
αi +

1

sin(π/m)
α3−i (m ≥ 5 even, i = 1, 2).

To check that each of these is actually a root of (W (T ), S(T )), note the equality
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c2 = c+ 1 and the following formula for the root system of type I2(m):

If w = (· · · s2s1s2) ∈W (I2(m)) (k elements), then

w · α1 =


sin(kπ/m)
sin(π/m) α1 +

sin((k+1)π/m)
sin(π/m) α2 if k is odd,

sin((k+1)π/m)
sin(π/m) α1 +

sin(kπ/m)
sin(π/m) α2 if k is even.

For example, we have

α̃
(1)
F4

= s1s2s3s4s2s3s2 · α1, α̃
(2)
F4

= s4s3s2s1s3s2s3 · α4,

α̃H3
= s2s1s2s1s3s2 · α1, α̃H4

= s4s3s2s1s2s1s3s2s1s4s3s2s1s2s3s4 · α̃H3
,

α̃I2(2k+1) = (· · · s2s1s2) · α1 (k elements), α̃
(i)
I2(4k)

= (s3−isi)
k−1s3−i · αi.

By (2.14), if T ̸= Bn, F4, I2(m) (m even), then Φ consists of a single orbit
W (T ) ·α1 (and so it contains α̃T ). On the other hand, if T = Bn, F4 or I2(4k),
then (2.14) implies that Φ consists of two orbits (namely, W · α1 and W · α2 if

T = Bn, I2(4k), and W · α1 and W · α4 if T = F4). In these case, α̃
(1)
T lies in

the orbit W · α1 and α̃
(2)
T lies in the other one.

In contrast with the above cases, if T = I2(4k + 2), then Φ consists of two

orbits W (T ) · α1 and W (T ) · α2, and now we have α̃
(1)
T ∈ W (T ) · α2 (and α̃

(2)
T

lies in the other orbit). In fact, we have α̃
(i)
I2(4k+2) = (s3−isi)

k ·α3−i for i = 1, 2.

To simplify the description, we denote the reflection along the root α̃
(i)
T by

r̃(T , i). If we have only one root α̃
(i)
T , namely T ̸= Bn, F4, I2(m) (m even),

then we also write r̃(T ) = r̃(T , 1).

Remark 2.13. By the above observation, if T = Bn, F4 or I2(4k), then r̃(T , 1)
is conjugate to s1, and r̃(T , 2) is conjugate to s2 (if T = Bn or I2(4k)) or to
s4 (if T = F4). On the other hand, if T = I2(4k + 2), then r̃(T , 1), r̃(T , 2) are
conjugate to s2, s1, respectively.

Lemma 2.14. (i) If T ̸= An (n ≥ 2), I2(m) (m odd), then for the root α̃
(i)
T ,

there is an index N(T , i) such that ⟨α̃(i)
T , αj⟩ = 0 for all j ̸= N(T , i). Moreover,

we have ⟨α̃(i)
T , αN(T ,i)⟩ > 0 and Φ [ r̃(T , i) ] = Φ+ ∖ΦS(T )∖{sN(T ,i)}. (If we have

only one root α̃
(i)
T , then we also write N(T ) = N(T , 1).)

(ii) If T = An (n ≥ 2) or I2(m) (m odd), then there are two indices N1(T ), N2(T )
such that ⟨α̃T , αNj(T )⟩ > 0 for j = 1, 2 and ⟨α̃T , αj⟩ = 0 for all j ̸= N1(T ), N2(T ).
Moreover, we have Φ [ r̃(T ) ] = Φ+ ∖ ΦS(T )∖{sN1(T ),sN2(T )}.

Proof. (i) The first claim follows from a direct computation, by putting

N(A1) = 1, N(Bn, 1) = n, N(Bn, 2) = n− 1, N(Dn) = n− 1,

N(E6) = 2, N(E7) = 1, N(E8) = 8, N(F4, 1) = 1, N(F4, 2) = 4,

N(H3) = 2, N(H4) = 4, N(I2(2k), 1) = 2, N(I2(2k), 2) = 1.

For the second one, expand the equality ⟨α̃(i)
T , α̃

(i)
T ⟩ = 1 and use the first claim.

Now the third one follows from (2.9) and Lemma 2.9.
(ii) The former claim also follows from a direct computation, by putting

N1(An) = 1, N2(An) = n, N1(I2(2k + 1)) = 1, N2(I2(2k + 1)) = 2.

The remaining proof is similar to (i).
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Now our method for obtaining a reflection decomposition of w0(I), which is
the same as a decomposition given by Deodhar’s method ([2], proof of Theorem
5.4), is summarized as follows:

(I) If I = ∅, then this algorithm finishes with the (trivial) decomposition
w0(I) = 1. If I ̸= ∅, choose an irreducible component J of I. Let J = S(T ).

(II) If T ̸= An (n ≥ 2), I2(m) (m odd), take the (or one of the two)

root(s) α̃
(i)
T . By Lemma 2.14 (i), r̃(T , i) commutes with all elements of K = I∖

{sN(T ,i)}, and we have w0(I) = r̃(T , i)w0(K) (since Φ [w0(I)] = Φ [r̃(T , i)w0(K)] =

Φ+
I ; cf. (2.8)). Then apply this algorithm inductively to the (smaller) set K.
(III) If T = An (n ≥ 2) or I2(m) (m odd), then similarly, r̃(T ) commutes

with all elements of K = I ∖ {sN1(T ), sN2(T )} and w0(I) = r̃(T )w0(K) by
Lemma 2.14 (ii). Then apply this algorithm inductively to the (smaller) set K.

By collecting the subset K ⊂ I appearing in the step (II) or (III) of every
turn, we obtain a decreasing sequence (K0 = I,) K1, . . . ,Kr−1,Kr = ∅. We call
this a generator sequence (of length r) for the set I.

2.5 Direct product decompositions of finite Coxeter groups

As an application of the reflection decomposition introduced in Section 2.4,
we determine easily which finite irreducible Coxeter groups have the center as a
nontrivial direct factor. Although this result itself is not a new one, we restate
it here since the result is used in later sections.

For a Coxeter system (W,S), let W+ denote the normal subgroup of W
(of index two) consisting of elements of even length. This coincides with the
kernel of the map sgn ∈ Hom(W, {±1}) such that sgn(w) = (−1)ℓ(w). Since any
reflection in W has odd length, the following lemma follows from (the proof of)
Lemma 2.1:

Lemma 2.15. If (W,S) is a finite irreducible Coxeter system and Z(W ) ̸= 1,
then we have W = Z(W ) × W+ if and only if some (or equivalently, any)
generator sequence for S (cf. Section 2.4) has odd length.

Theorem 2.16. Let (W,S) be an irreducible Coxeter system such that Z(W ) ̸=
1 (so that |W | <∞). Then Z(W ) (≃W (A1)) is a proper direct factor of W if
and only if W ≃ W (T ) for T = B2k+1, I2(4k + 2) (k ≥ 1), E7 or H3. In the
first two cases, W is isomorphic to W (A1)×W (D2k+1), W (A1)×W (I2(2k+1))
respectively. In the last two cases, we have W = Z(W )×W+.

Proof. Note that Z(W ) ≃ {±1} by the hypothesis. Since Z(W (A1)) =W (A1),
we may assume W ̸=W (A1).

Case 1. W =W (Bn) (n ≥ 2): First, we have Hom(W, {±1}) = {1, sgn, ε1, ε2}
by Lemma 2.11, where 1 denotes the trivial map, ε1(s1) = −1, ε1(si) = 1,
ε2(s1) = 1 and ε2(si) = −1 (i ̸= 1). Now we consider the following reflection
decomposition:

w0(S) = r̃(Bn, 1)r̃(Bn−1, 1) · · · r̃(B2, 1)s1.

By Remark 2.13, each reflection r̃(Bk, 1) is conjugate to s1. This implies that
any expression of r̃(Bk, 1) as a product of generators contains an odd number
of s1 and an even number of si (i ̸= 1). Thus we have

sgn(r̃(Bk, 1)) = ε1(r̃(Bk, 1)) = −1 and ε2(r̃(Bk, 1)) = 1.
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If n is even, then all f ∈ Hom(W, {±1}) maps w0(S) to 1 by the above property.
Thus by Lemma 2.1, Z(W ) is not a direct factor.

On the other hand, if n is odd, then we have ε1(w0(S)) = −1 and so W =
Z(W )× ker ε1 by the proof of Lemma 2.1. Note that ker ε1 consists of elements
in which s1 appears an even number of times. Since s1 commutes with all si
(3 ≤ i ≤ n), it can be deduced directly that ker ε1 is generated by s′1 = s1s2s1
and all s′i = si (2 ≤ i ≤ n). Moreover, ker ε1 forms a Coxeter group of type Dn;
in fact, s′1, . . . , s

′
n satisfy the fundamental relations of type Dn (so that ker ε1

is a quotient of W (Dn)), while the order |W (Bn)|/2 of ker ε1 coincides with
|W (Dn)|. Hence the claim holds in this case.

Case 2. W =W (T ) for T = D2k (k ≥ 2), E7, E8, H3, H4: Since Γ
odd is

connected in this case, we have Hom(W, {±1}) = {1, sgn} by Lemma 2.11. Thus
the claim follows from Lemmas 2.1 and 2.15, by taking the following generator
sequence for S (where we abbreviate the set {si1 , si2 , . . . , sir} to i1i2 · · · ir):

S(D2k−2) ∪ {s2k}, S(D2k−2), . . . , S(D4), 124, 12, 1, ∅ if T = D2k,

S(E7), 234567, 23457, 2345, 235, 23, 2, ∅ if T = E8,

234567, 23457, 2345, 235, 23, 2, ∅ if T = E7,

S(H3), 13, 1, ∅ if T = H4,

13, 1, ∅ if T = H3

(note that the first sequence consists of 2k terms).
Case 3. W =W (F4): We have a generator sequence 234, 23, 2, ∅ for S and

the corresponding decomposition of w0(S) into four reflections, all of which are
conjugate to s1 and s2 (cf. Remark 2.13). This (and Lemma 2.11) implies that
any f ∈ Hom(W, {±1}) maps all the four reflections to the same element f(s1),
so that f(w0(S)) = 1. Hence the claim follows from Lemma 2.1.

Case 4. W = W (I2(2k)) (k ≥ 3): We have a reflection decomposi-
tion w0(S) = r̃(I2(2k), 1)s1. If k is even, then r̃(I2(2k), 1) is conjugate to
s1 (cf. Remark 2.13). Now by a similar argument to the previous case, any
f ∈ Hom(W, {±1}) maps w0(S) to 1. Thus Z(W ) is not a direct factor by
Lemma 2.1.

On the other hand, if k is odd, then r̃(I2(2k), 1) is conjugate to s2 (cf. Re-
mark 2.13). Thus ε1 ∈ Hom(W, {±1}) (ε(s1) = −1, ε(s2) = 1) sends w0(S) to
−1, so that W = Z(W )× ker ε1 by the proof of Lemma 2.1. Moreover, ker ε1 is
generated by two reflections s1s2s1 and s2, and so ker ε1 is a Coxeter system of
type I2(k) (since s1s2s1s2 has order k). Hence the claim holds in all cases.

Since the groups W (E7)
+ and W (H3)

+ are known to be (isomorphic to) the
well-examined simple groups S6(2) and A5 respectively (cf. [5], Sections 2.12–13,
etc.), we omit the proof of the following properties of these groups. Note that
these properties can also be proved by using Theorems 2.16 and 3.3 below.

Lemma 2.17. Let G = W (T )+, T ∈ {E7,H3}. Then G has trivial center,
is directly indecomposable and is generated by involutions. Moreover, G is not
isomorphic to a Coxeter group.

2.6 Notes on normalizers in Coxeter groups

In this subsection, we summarize some properties of normalizers NW (WI) of
parabolic subgroups WI in Coxeter groups W . Note that the explicit structure
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of NW (WI) is well-described in [1] (or in [4], when |W | < ∞) and also in [8];
however, such a strong result is not required for our purpose.

The following result is due to D. Krammer [6]. The first part appears in
Proposition 3.1.9 (a) of [6], while the second one is easily deduced by the argu-
ment of Section 3.1 of [6], particularly by Corollary 3.1.5.

Proposition 2.18 (cf. [6]). (i) If I ⊂ S, then NW (WI) is the semidirect
product WI ⋊GI of WI by the group GI = {w ∈W | w ·ΠI = ΠI}.
(ii) If I ⊂ J ⊂ S and WI is an infinite irreducible component of WJ , then
NW (WJ) ⊂WI∪I⊥ .

We also require the following result. This was originally given by Deodhar
[2], in the proof of Proposition 4.2, for the case |S| < ∞ only. Here we give a
proof covering the case |S| = ∞ as well for the sake of completeness.

Proposition 2.19 (cf. [2], Proposition 4.2). If (W,S) is irreducible and
|W | = ∞, then |Φ∖ ΦI | = ∞ for all proper subsets I ⊂ S.

Proof. We consider the case |S| < ∞ first. Put ΨJ = {γ ∈ Φ | supp(γ) = J}
for J ⊂ S. Our aim is to show |ΨS | = ∞. If this fails, and J ⊂ S is maximal
subject to |ΨJ | = ∞ (note that some of ΨK ’s must be infinite since their finite
union Φ is so), then J ⊊ S and s ∈ S∖J maps ΨJ injectively into ΨJ∪{s} when
s is adjacent to J in Γ. Since Γ is connected by the hypothesis, such an element
s indeed exists, contradicting the maximality of J . Hence the claim holds.

Secondly, suppose |S| = ∞. Since Γ is connected, there are infinitely many
finite subsets J ⊂ S such that J ̸⊂ I and ΓJ is connected. Now the claim holds,
since each ΦJ contains a root γ such that supp(γ) = J .

By those properties, we can prove the following corollary.

Corollary 2.20. Let s ∈ S and I = S ∖ {s}.
(i) If 1 ̸= w ∈ GI , then Φ [w] = Φ+ ∖ ΦI . Hence by (2.8), such an element w
is unique if it exists.
(ii) If |W | <∞ and w0(S) ∈ NW (WI), then NW (WI) =WI ⋊ {1, w0(S)}.
(iii) If (W,S) is irreducible and |W | = ∞, then GI = 1 and NW (WI) =WI .

Proof. (i) In this case, we have w · αs ∈ Φ− (otherwise, we have w · Φ+ ⊂ Φ+

but this is a contradiction). Now the claim follows from Lemma 2.9.
(ii) Note that w0(S) ̸∈ WI , while |GI | ≤ 2 by (i). Thus by Proposion 2.18 (i),
NW (WI) is generated byWI and w0(S). Now the claim holds, since w0(S)

2 = 1.
(iii) In this case, we have |Φ+ ∖ ΦI | = ∞ by Proposition 2.19. Thus we have
GI = 1 by (i), since the set Φ [w] is always finite. Hence the claim holds.

Owing to this description, we have the following:

Corollary 2.21. (i) If W = W (Bn), 2 ≤ n < ∞, then
∩n−1
i=1 NW (WS(Bi)) =

GBn
.

(ii) If W =W (Dn), 3 ≤ n <∞, then
∩n−1
i=2 NW (WS(Di)) = GDn

⋊ ⟨s1⟩.

Proof. Note that, by Lemma 2.12, GBn is generated by all w0(S(Bk)) (1 ≤
k ≤ n). On the other hand, by Lemma 2.12 again, the product GDn⟨s1⟩ is
a semidirect product with GDn

normal, and it is generated by all w0(S(Dk))
(1 ≤ k ≤ n).
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We prove the two claims in parallel. Let T = B and L = 1 (for (i)),
T = D and L = 2 (for (ii)), respectively. By the above remark, it is enough
to show that the group in the left side is generated by all w0(S(Tk)) (1 ≤ k ≤
n). We use induction on n. First, note that w0(S(Tn)) ∈ NW (WS(Ti)) for all
L ≤ i ≤ n − 1. Put W ′ = WS(Tn−1). Then by Corollary 2.20 (ii), we have
NW (W ′) = W ′ ⋊ ⟨w0(S(Tn))⟩. Thus the claim holds if n = L + 1; in fact, in
this case, W ′ =WS(TL) is generated by all w0(S(Ti)) (1 ≤ i ≤ L).

If n > L+ 1, then the above equality implies that

n−1∩
i=L

NW (WS(Ti)) =

(
n−2∩
i=L

NW (WS(Ti))

)
∩
(
W ′ ⋊ ⟨w0(S(Tn))⟩

)
=

(
n−2∩
i=L

NW ′(WS(Ti))

)
⋊ ⟨w0(S(Tn))⟩

since w0(S(Tn)) ∈
∩n−2
i=L NW (WS(Ti)). By the induction, the first factor of the

semidirect product is generated by all w0(S(Ti)) (1 ≤ i ≤ n − 1). Thus the
claim also holds in this case. Hence the proof is concluded.

We summarize some more properties of the normalizers. First, we have:

If I, J ⊂ S, then NW (WI) ∩NW (WJ) ⊂ NW (WI∩J). (2.15)

For I ⊂ S,w ∈ NW (WI) if and only if w · ΦI = ΦI . (2.16)

((2.15) follows from the well-known fact WI ∩ WJ = WI∩J . (2.16) follows
immediately from (2.11).) Moreover, we have the following:

Lemma 2.22. Let I ⊂ J ⊂ S such that J ∖ I ⊂ I⊥. Then

NW (WJ) ∩NW (WI) ⊂ NW (WJ∖I).

Proof. Let w ∈ NW (WJ) ∩ NW (WI) and s ∈ J ∖ I. Then w · ΦJ = ΦJ and
w · ΦI = ΦI by (2.16), so that we have w · αs ∈ ΦJ and w · αs ̸∈ ΦI . Now by
the hypothesis and (2.10), we have supp(w · αs) ⊂ J ∖ I and so w · αs ∈ ΦJ∖I .
Hence the claim follows from (2.16).

3 Main results

3.1 Direct indecomposability

In this subsection, we give the main result of this paper; all infinite irre-
ducible Coxeter groups are in fact directly indecomposable, even if it has infinite
rank (Theorem 3.3). As is mentioned in Introduction, this result was already
shown in [9] for the case of finite rank, in which the finiteness of the ranks is
essential and so cannot be removed immediately.

Our proof is based on the following complete description (proved in later
sections) of the centralizers of normal subgroups, which are generated by invo-
lutions, in irreducible Coxeter groups (possibly of infinite rank):

Theorem 3.1. (See Definition 2.8 for notations.) Let (W,S) be an irreducible
Coxeter system of an arbitrary rank, and H ◁W a normal subgroup generated
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by involutions. Then:
(i) If H ⊂ Z(W ), then ZW (H) =W .
(ii) If (W,S) = (W (Bn), S(Bn)), 2 ≤ n ≤ ∞, τ ∈ Aut(Γ (Bn)), H ̸⊂ Z(W )
and H ⊂ τ(GBn

), then ZW (H) = τ(GBn
). (cf. Lemma 2.12 for definition of

GBn .)
(iii) If (W,S) = (W (Dn), S(Dn)), 3 ≤ n ≤ ∞, τ ∈ Aut(Γ (Dn)), H ̸⊂ Z(W )
and H ⊂ τ(GDn), then ZW (H) = τ(GDn). (cf. Lemma 2.12 for definition of
GDn

.)
(iv) Otherwise, ZW (H) = Z(W ).

This theorem yields the following corollary. A group G is said to be a
central product of two subgroups H1,H2 if G = H1H2 and H2 ⊂ ZG(H1) (or
equivalently H1 ⊂ ZG(H2)). Note that H1 ∩H2 ⊂ Z(G) in this case.

Corollary 3.2. Let (W,S) be an irreducible Coxeter system of an arbitrary
rank, and suppose that W is a central product of two subgroups G1, G2 generated
by involutions. Then either G1 ⊂ Z(W ) or G2 ⊂ Z(W ).

Proof. By definition, we have G2 ⊂ ZW (G1), W = G1ZW (G1) and G1 ◁W .
Now if G1 satisfies the condition of cases (ii) or (iii) of Theorem 3.1, then G1 and
ZW (G1) are contained in the same proper subgroup of W . This is impossible,
so that we have G1 ⊂ Z(W ) (case (i)) or G2 ⊂ ZW (G1) = Z(W ) (case (iv)).

Now our main result follows immediately:

Theorem 3.3. The only nontrivial direct product decompositions of an irre-
ducible Coxeter group W (of an arbitrary rank) are the ones given in Theorem
2.16. In particular, W is directly indecomposable if and only if W ̸≃W (T ) for
T = B2k+1, I2(4k + 2) (k ≥ 1), E7, H3.

Proof. Assume that W = G1 ×G2 for nontrivial subgroups G1, G2 ⊂W . Then
both G1 and G2 are generated by involutions, since W is so. Thus by Corollary
3.2, we have either G1 = Z(W ) or G2 = Z(W ) (since G1, G2 ̸= 1 and |Z(W )| ≤
2). Hence Z(W ) ̸= 1 and so the claim follows from Theorem 2.16.

3.2 The Isomorphism Problem

By using these results, we give some results on the Isomorphism Problem of
general Coxeter groups. Let (W,S) be a Coxeter system with canonical direct
product decomposition W =

∏
ω∈ΩWω into irreducible components Wω. Then

we put

Ωfin = {ω ∈ Ω | |Wω| <∞}, Ωinf = Ω∖Ωfin,Wfin =
∏

ω∈Ωfin

Wω, Winf =
∏

ω∈Ωinf

Wω.

(Note thatW =Wfin×Winf .) Moreover, we write ΩT = {ω ∈ Ω |Wω ≃W (T )}
for any type T . Now our result (proved later) is stated as follows:

Theorem 3.4. (See above for notations.) Let (W,S), (W ′, S′) be two Coxeter
systems with the decompositions W =

∏
ω∈ΩWω, W

′ =
∏
ω′∈Ω′ W ′

ω′ into irre-
ducible components. Let πω :W →Wω, π

′
ω′ :W ′ →W ′

ω′ denote the projections.
(i) W ≃W ′ if and only if the following two conditions are satisfied:

(I) There is a bijection φ : Ωinf → Ω′
inf such that Wω ≃ W ′

φ(ω) for all
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ω ∈ Ωinf .
(II) Each of the following subsets of Ω has the same cardinality as the cor-

responding subset of Ω′:

ΩA1 ∪
(∪
k≥1

ΩB2k+1

)
∪ ΩE7 ∪ ΩH3 ∪

(∪
k≥1

ΩI2(4k+2)

)
, ΩB3 ∪ ΩA3 ,

ΩB2k+1
∪ ΩD2k+1

, ΩI2(6) ∪ ΩA2
, ΩI2(4k+2) ∪ ΩI2(2k+1) (k ≥ 2),

ΩT for T = An (4 ≤ n <∞), Bn (n <∞ even), Dn (4 ≤ n <∞ even),

E6, E7, E8, F4, H3, H4, I2(4k) (2 ≤ k <∞).

(ii) Suppose that W ≃W ′, and let f ∈ Isom(W,W ′). Then:
(I) f(Wfin) = W ′

fin (and so the map gfin defined by gfin = f |Wfin
is an

isomorphism Wfin →W ′
fin).

(II) There is a bijection φ : Ωinf → Ω′
inf such that for all ω ∈ Ωinf , the map

gω = π′
φ(ω) ◦ f |Wω

is an isomorphism Wω →W ′
φ(ω).

(III) Moreover, there is a map gZ ∈ Hom(Winf , Z(W
′)) such that

f(w) =

{
gω(w)gZ(w) if ω ∈ Ωinf , w ∈Wω,

gfin(w) if w ∈Wfin.

Note that this is an analogue of the Krull-Remak-Schmidt Theorem on di-
rect product decompositions of groups, and follows from that (together with
Theorem 3.3) if W has a composition series. (More precisely, the key property
in the proof of the K-R-S Theorem, which follows from the existence of compo-
sition series, is that any surjective normal endomorphism of an indecomposable
factor is either nilpotent or isomorphic. However, it is not clear whether or
not an irreducible Coxeter group has this property.) Our result here is also a
generalization of a result of [9].

In order to prove this theorem, we introduce the following “modified version”
of irreducible components. Here a group G is said to be admissible if either G
is a nontrivial directly indecomposable irreducible Coxeter group (cf. Theorem
3.3) or G is isomorphic to one of W (E7)

+, W (H3)
+.

Remark 3.5. Let W =
∏
ω∈ΩWω be the usual decomposition of a Coxeter

group W into irreducible components. Then, by subdividing every directly de-
composable Wω into the direct factors (cf. Theorem 3.3), we can obtain another
decomposition W =

∏
λ∈ΛGλ into admissible subgroups Gλ. Moreover, since

any infinite Wω is directly indecomposable, we can take the index set Λ so that
Ωinf ⊂ Λ and Gω =Wω for all ω ∈ Ωinf .

From now, we consider the following two conditions on a family G of groups:

If {Gλ}λ∈Λ is a subfamily of G, G′ ∈ G and f : G =
∏
λ∈Λ

Gλ → G′ is a

surjective homomorphism, then f maps a Gλ onto G′ (so that it maps

all other Gµ into Z(G′)).

(3.1)

If G ∈ G, then either Z(G) = 1 or Z(G) is cyclic of prime order. (3.2)

(Actually, the condition (3.2) can be slightly weakened to the form that Z(G) is
either trivial or a finite elementary abelian p-group with p prime. But we omit
the detail here, since we do not need such a generalization in this paper.)
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Remark 3.6. (i) If G satisfies (3.1), then all groups G ∈ G are directly in-
decomposable. In fact, if G admits a nontrivial decomposition G = G1 × G2

with projections πi : G → Gi (i = 1, 2), then the map G × G → G, (w, u) 7→
π1(w)π2(u) is surjective but does not satisfy the conclusion of (3.1).
(ii) If G satisfies (3.1) and (3.2), then any G ∈ G has the three properties
(I)–(III) in Lemma 2.1 whenever Z(G) ̸= G. This follows immediately from
(i).

Lemma 3.7. Any family G of admissible groups satisfies (3.1) and (3.2).

Proof. The condition (3.2) follows from Lemma 2.17. For (3.1), we may assume
G′ ̸≃ W (A1) (so that Z(G′) ̸= G′), since otherwise the conclusion is obvious.
Then there is an index λ ∈ Λ such that f(Gλ) ̸⊂ Z(G′). Put G1 = Gλ and
G2 =

∏
µ∈Λ∖{λ}Gµ. Then the hypothesis of (3.1) implies that G′ is a central

product (cf. Section 3.1) of f(G1) and f(G2), so that f(G1) ∩ f(G2) ⊂ Z(G′).
Thus the conclusion follows from Lemma 2.17 if G′ ≃ W (E7)

+ or W (H3)
+ (in

fact, the central product is a direct product since Z(G′) = 1, while G′ is directly
indecomposable).

On the other hand, suppose that G′ is a directly indecomposable irreducible
Coxeter group. Since both G1 and G2 are generated by involutions (cf. Lemma
2.17), f(G1) and f(G2) also have this property. Thus we have f(G2) ⊂ Z(G′)
by Corollary 3.2 (since f(G1) ̸⊂ Z(G′)). Now if Z(G′) ̸⊂ f(G1) (so that f(G1)∩
Z(G′) = 1 since |Z(G′)| ≤ 2), then the central product becomes a (nontrivial)
direct product, but this is impossible. This implies that f(G2) ⊂ Z(G′) ⊂ f(G1)
and so f(G1) = G′. Hence the claim holds.

Remark 3.8. By a similar argument, it is deduced that any family G, consisting
of cyclic groups of prime order and directly indecomposable groups with trivial
center, also satisfies the conditions (3.1) and (3.2).

We prepare some more notations. For a decomposition G =
∏
λ∈ΛGλ of G,

put

GΛ′ =
∏
λ∈Λ′

Gλ (for Λ′ ⊂ Λ), ΛZ = {λ | Z(Gλ) = Gλ}, Λ¬Z = Λ∖ ΛZ ,

Λp = {λ | |Z(Gλ)| = p},ΛZ,p = ΛZ ∩ Λp,Λ¬Z,p = Λ¬Z ∩ Λp (p prime or 1).

(3.3)

Note that the proof of the following theorem is essentially the same as the proof
of Theorem 2.1 of [9], but slightly more delicate by the lack of the assumption
on finiteness of the index sets (not only by generality of the context). Note also
that this is also an analogue of the Krull-Remak-Schmidt Theorem.

Theorem 3.9. (See (3.3) for notations.) Let G =
∏
λ∈ΛGλ, G

′ =
∏
λ′∈Λ′ G′

λ′

be decompositions of two groups G, G′ into nontrivial subgroups. Let πλ : G→
Gλ and π′

λ′ : G′ → G′
λ′ be the projections. Suppose that G = {Gλ | λ ∈ Λ} ∪

{G′
λ′ | λ′ ∈ Λ′} satisfies the conditions (3.1) and (3.2). Let f ∈ Isom(G,G′).

Then:
(i) There is a bijection φ : Λ → Λ′ such that Gλ ≃ G′

φ(λ) for all λ ∈ Λ.

Moreover, for any λ ∈ Λ¬Z , the map gλ = π′
φ(λ) ◦ f |Gλ

is an isomorphism
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Gλ → G′
φ(λ).

(ii) Moreover, there is a map gZ ∈ Hom(G,Z(G′)) such that

f(w) =

{
gλ(w)gZ(w) if λ ∈ Λ¬Z , w ∈ Gλ,

gZ(w) if w ∈ GΛZ

and that π′
φ(λ) ◦ gZ(Gλ) = 1 for all λ ∈ Λ¬Z .

(iii) If
∪
p ̸=1 Λp ⊂ Λ♮ ⊂ Λ, then

∪
p ̸=1 Λ

′
p ⊂ φ(Λ♮) and f(GΛ♮) = G′

φ(Λ♮).

Proof. Note that
∪
p ̸=1 Λp = {λ ∈ Λ | Z(Gλ) ̸= 1}. Then the claim (iii) is

deduced from the other claims (since now Z(G) ⊂ GΛ♮ and Z(G′) ⊂ G′
φ(Λ♮)).

From now, we prove the claims (i) and (ii). First, we put (symmetrically)

fλ′ = π′
λ′ ◦ f ∈ Hom(G,G′

λ′) (λ′ ∈ Λ′), f ′λ = πλ ◦ f−1 ∈ Hom(G′, Gλ) (λ ∈ Λ),

and define (symmetrically)

A′
λ = {λ′ ∈ Λ′ | fλ′(Gλ) ̸⊂ Z(G′

λ′)} ⊂ Λ′
¬Z for λ ∈ Λ¬Z ,

Aλ′ = {λ ∈ Λ | f ′λ(G′
λ′) ̸⊂ Z(Gλ)} ⊂ Λ¬Z for λ′ ∈ Λ′

¬Z .

Note that A′
λ ̸= ∅ since f(Gλ) ̸⊂ Z(G′) (and Aλ′ ̸= ∅ by symmetry). Moreover,

since fλ′ : G→ G′
λ′ is surjective, the condition (3.1) implies that

if λ′ ∈ A′
λ, then fλ′(Gλ) = G′

λ′ and fλ′(Gµ) ⊂ Z(G′
λ′) for all µ ∈ Λ∖ {λ}.

By symmetry, a similar property holds for λ ∈ Aλ′ (with respect to the map
f ′λ).

We prove the following claims:
Claim 1: If λ, µ ∈ Λ¬Z and λ ̸= µ, then A′

λ ∩ A′
µ = ∅.

Claim 2: If λ′ ∈ A′
λ, then λ ∈ Aλ′ . (Thus |A′

λ| = 1 for all λ ∈ Λ¬Z , by Claim
1 and symmetry. Moreover, by symmetry, the map φ : Λ¬Z → Λ′

¬Z defined by
A′
λ = {φ(λ)} is a bijection with inverse map satisfying Aλ′ = {φ−1(λ′)}.)
Claim 3: The map gλ (λ ∈ Λ¬Z) in (i) is an isomorphism Gλ → G′

φ(λ).

Claim 4: f(Z(GΛ¬Z,p
)) = Z(G′

Λ′
¬Z,p

) for all primes p.

Claim 5: For each prime p, ΛZ,p and Λ′
Z,p have the same cardinality.

Proof of Claim 1: Assume contrary that λ′ ∈ A′
λ ∩A′

µ. Then the relation
λ′ ∈ A′

λ means that fλ′(Gλ) ̸⊂ Z(G′
λ′), while the relation λ′ ∈ A′

µ implies
(by the above property) that fλ′(Gλ) ⊂ Z(G′

λ′) (since λ ̸= µ). This is a
contradiction.

Proof of Claim 2: Since G′
λ′ ̸= Z(G′

λ′), we can take an element w ∈ G′
λ′ ∖

Z(G′
λ′). Put uµ = f ′µ(w) ∈ Gµ for µ ∈ Λ, so that we have w = f(

∏
µ∈Λ uµ). It

suffices to show uλ = f ′λ(w) ̸∈ Z(Gλ). Now fλ′(uµ) ∈ Z(G′
λ′) for all µ ∈ Λ∖{λ},

while w = π′
λ′(w) ̸∈ Z(G′

λ′). Thus we have fλ′(uλ) ̸∈ Z(G′
λ′) and so uλ ̸∈ Z(Gλ)

(since fλ′(Gλ) = G′
λ′). Hence λ ∈ Aλ′ .

Proof of Claim 3: Note that gλ : Gλ → G′
φ(λ) is surjective (as above).

Now the following equivalence holds for all w ∈ Gλ:

fφ(λ)(w) ∈ Z(G′
φ(λ)) ⇐⇒ f(w) ∈ Z(G′) ⇐⇒ w ∈ Z(G) ⇐⇒ w ∈ Z(Gλ)

(we use the fact A′
λ = {φ(λ)} for the first equivalence). This implies that

ker gλ is contained in the simple group Z(Gλ) (cf. (3.2)), so that ker gλ = 1 or
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Z(Gλ). Thus gλ is injective (and so an isomorphism) if Z(Gλ) = 1. Moreover,
if Z(G′

φ(λ)) = 1, then f ′λ|G′
φ(λ)

is an isomorphism G′
φ(λ) → Gλ by symmetry, so

that we have Z(Gλ) = 1. Thus gλ is injective (as above) also in this case.
On the other hand, suppose Z(G′

φ(λ)) ̸= 1. Then by the above equivalence,

there is an element w ∈ Z(Gλ) such that gλ(w) ̸= 1 (since gλ is surjective).
Thus we have ker gλ ̸= Z(Gλ) and so ker gλ = 1. Hence gλ is an isomorphism.

Proof of Claim 4: Note that Z(G) =
∏
p ̸=1 Z(GΛp

) and each Z(GΛp
) is

an elementary abelian p-group, by (3.2). Z(G′) also admits a similar decompo-
sition. Thus the isomorphism f |Z(G) : Z(G) → Z(G′) maps each Z(GΛp) onto

Z(G′
Λ′

p
). Moreover, for any λ ∈ Λ¬Z,p, the composite homomorphism Gλ

f→
G′ → G′

Λ′
Z,p

(where the latter map is the projection) maps Z(Gλ) to 1, by Re-

mark 3.6 (ii) (note that Z(G′
Λ′

Z,p
) = G′

Λ′
Z,p

). Thus we have f(Z(Gλ)) ⊂ G′
Λ′

¬Z,p

for any λ ∈ Λ¬Z,p and so f(Z(GΛ¬Z,p
)) ⊂ Z(G′

Λ′
¬Z,p

). Now this claim holds by

symmetry.
Proof of Claim 5: Note that Z(GΛp

) = GΛZ,p
× Z(GΛ¬Z,p

) and Z(G′
Λ′

p
)

admits a similar decomposition. Moreover, we have f(Z(GΛp
)) = Z(G′

Λ′
p
) and

f(Z(GΛ¬Z,p
)) = Z(G′

Λ′
¬Z,p

) by Claim 4. Thus the complementary factors GΛZ,p
,

G′
Λ′

Z,p
, which are elementary abelian p-groups with basis having the same car-

dinality as ΛZ,p, Λ
′
Z,p respectively, are also isomorphic. Now this claim follows

from uniqueness of the dimension of a vector space.
Conclusion. Since ΛZ , Λ

′
Z are disjoint unions of ΛZ,p, Λ

′
Z,p respectively

(cf. (3.2)), Claim 5 implies that this φ extends (not uniquely) to a bijection
φ : Λ → Λ′ satisfying (i) (note that ΛZ,1 = Λ′

Z,1 = ∅ by the hypothesis).
Moreover, define a map gZ : G→ Z(G′) componentwise by

gZ(w) =

{∏
λ′∈Λ′∖{φ(λ)} fλ′(w) if λ ∈ Λ¬Z , w ∈ Gλ,

f(w) if w ∈ GΛZ
.

Note that GΛZ
⊂ Z(G), while in the above definition, we have fλ′(w) ∈ Z(G′

λ′)
by the fact A′

λ = {φ(λ)}. Since Z(G′) is abelian, these facts imply that gZ is a
well-defined group homomorphism. Now the claim (ii) follows from definition.

Proof of Theorem 3.4. Let W =
∏
λ∈ΛGλ, W

′ =
∏
λ′∈Λ′ G′

λ′ be the decompo-
sitions into admissible groups given in Remark 3.5.
(i) Each of the sets in the condition (II), except ΩE7

and ΩH3
in the last row,

has the same cardinality as the set {λ ∈ Λ | Gλ ≃ W (T ′)} where T ′ = A1, A3,
D2k+1, A2, I2(2k + 1) and T , respectively (note that no two admissible finite
groups of distinct types are isomorphic; cf. Lemma 2.17). Moreover, each of ΩE7

and ΩH3 has the same cardinality as {λ ∈ Λ | Gλ ≃ W (T ′)+} for T ′ = E7 and
H3, respectively. Similar relations also hold for W ′. Thus the two conditions
(I), (II) are satisfied if and only if there is a bijection ψ : Λ → Λ′ such that
Gλ ≃ G′

ψ(λ) for all λ ∈ Λ. Hence the claim follows from Theorem 3.9 (i) (which

can be applied indeed to the case, by Lemma 3.7).
(ii) Take φ : Λ → Λ′, gλ ∈ Isom(Gλ, G

′
φ(λ)) (λ ∈ Λ¬Z) and g

′
Z ∈ Hom(W,Z(W ′))

as in the conclusion of Theorem 3.9. By Remark 3.5, gω ∈ Isom(Wω,W
′
φ(ω)) for

all ω ∈ Ωinf , so that the claim (II) holds. The claim (I) follows from Theorem
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3.9 (iii) (by putting Λ♮ = Λ∖Ωinf). Moreover, the claim (III) also follows from
Theorem 3.9, by putting gZ = g′Z |Winf

. Hence the proof is concluded.

3.3 Automorphism groups

In this subsection, the complete direct product of groups is denoted by a
symbol

∏
. Owing to Theorems 3.4 and 3.9, we can examine the automorphism

groups ofW =
∏
ω∈ΩWω and G =

∏
λ∈ΛGλ respectively (Theorem 3.10), under

the notations and hypotheses in Section 3.2. Note that each Aut(Gλ), Aut(Wω)
is embedded into Aut(G), Aut(W ) respectively. The group Aut(Wfin) is also
embedded into Aut(W ).

On the other hand, the symmetric group on each isomorphism class of com-
ponents of G or W is also embedded into the automorphism group, as follows.
For the case of G, we partition the index set Λ¬Z into subsets Λξ (ξ ∈ Ξ) so that
λ, λ′ ∈ Λ¬Z are in the same subset if and only if Gλ ≃ Gλ′ . Moreover, for ξ ∈ Ξ,
we choose an “identity map” idµ,λ ∈ Isom(Gλ, Gµ) for each λ, µ ∈ Λξ so that
idλ,λ = idGλ

, idλ,µ = idµ,λ
−1 and idν,µ ◦ idµ,λ = idν,λ for all λ, µ, ν ∈ Λξ. (This

can be done by taking a maximal tree in the category of groups Gλ (λ ∈ Λξ) and
group isomorphisms.) Then each element τ of the symmetric group Sym(Λξ)
on Λξ induces an automorphism of the factor GΛξ

of G; namely,

τ(w) = idτ(λ),λ(w) ∈ Gτ(λ) for λ ∈ Λξ and w ∈ Gλ.

In this manner, Sym(Λξ) is embedded into Aut(GΛξ
), and so also into Aut(G).

Similarly, we write Ω =
⊔
υ∈Υ Ωυ, choose “identity maps” idω′,ω ∈ Isom(Wω,Wω′)

and then embed every symmetric group Sym(Ωυ) into Aut(W ). Moreover, put

Υfin = {υ ∈ Υ | |Wω| <∞ for ω ∈ Ωυ} and Υinf = Υ∖Υfin.

Recall (Section 2.1) the structure of the monoid Hom(G′, Z(G′)) (where
G′ is a group), the action of Aut(G′) on it and the embedding f 7→ f ♭ into
the monoid End(G′) compatible with the action of Aut(G′). For a subset
H ⊂ Hom(G′, Z(G′)), the image of H by the embedding is denoted by H♭. In
particular, the group Hom(G′, Z(G′))× of invertible elements of Hom(G′, Z(G′))

is embedded into Aut(G′) (as a subgroup Hom(G′, Z(G′))×
♭
).

Now for the group G, let

Hom(G,Z(G))o = {f ∈ Hom(G,Z(G)) |f(GΛZ
) = 1,

f(Gλ) ⊂ Z(Gλ) for all λ ∈ Λ¬Z}

(cf. (3.3) for notations). Since we assumed that each Gλ (λ ∈ Λ¬Z) satisfies
the three conditions in Lemma 2.1 (cf. Remark 3.6 (ii)), we have f(Z(G)) = 1
for all f ∈ Hom(G,Z(G))o. Thus by Lemma 2.4 (i), Hom(G,Z(G))o is an
abelian subgroup of Hom(G,Z(G))× with multiplication (f ∗g)(w) = f(w)g(w)
(f, g ∈ Hom(G,Z(G))o, w ∈ G).

On the other hand, since Z(Winf) = 1, Lemma 2.4 (ii) implies that the set
Hom(Winf , Z(W )) forms an abelian normal subgroup of Hom(W,Z(W ))× with
multiplication (f ∗ g)(w) = f(w)g(w) (f, g ∈ Hom(Winf , Z(W )), w ∈ Winf).
Since now Z(W ) is an elementary abelian 2-group, Hom(Winf , Z(W )) is also an
elementary abelian 2-group.

Now our result is stated as follows. Here G′
1G

′
2 denotes (for two subgroups

G′
1, G

′
2 of a group G′) the subgroup of G′ generated by G′

1 ∪G′
2, as usual.
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Theorem 3.10. (See above for notations. See also Section 3.2.)

(i) Put H1 = Hom(G,Z(G))×
♭
, H2 =

∏
λ∈Λ¬Z

Aut(Gλ), H3 =
∏
ξ∈ΞSym(Λξ)

and H4 = Hom(G,Z(G))♭o. Then

Aut(G) = (H1H2)⋊H3, H1 ◁Aut(G), H2 ◁H2H3, H1 ∩H2 = H4.

(ii) Put H ′
1 = Hom(Winf , Z(W ))♭, H ′

2 = Aut(Wfin), H
′
3 =

∏
ω∈Ωinf

Aut(Wω)

and H ′
4 =

∏
υ∈Υinf

Sym(Ωυ). Then

Aut(W ) = (H ′
1 ⋊ (H ′

2 ×H ′
3))⋊H ′

4, H
′
2H

′
4 = H ′

2 ×H ′
4, H

′
3H

′
4 = H ′

3 ⋊H ′
4.

(iii) The subgroup H =
(∏

ω∈ΩAut(Wω)
)(∏

υ∈ΥSym(Ωυ)
)
has finite index in

Aut(W ) if and only if, either Z(W ) = 1 or the odd Coxeter graph (cf. Definition
2.10) Γ odd of W consists of only finitely many connected components. (Hence
the index is finite whenever W has finite rank.)

From now, we prove this theorem. First, we prove (i) and (ii). Note that
H ′

2H
′
3 = H ′

2 ×H ′
3 and H ′

2H
′
4 = H ′

2 ×H ′
4 by definition. Moreover, by definition,

H2 = {f ∈ Aut(G) | f(w) = w (w ∈ GΛZ
), f(Gλ) = Gλ (λ ∈ Λ¬Z)},

H ′
3 = {f ∈ Aut(W ) | f(w) = w (w ∈Wfin), f(Wω) =Wω (ω ∈ Ωinf)}.

(3.4)

Claim 1. (i) Aut(G) = H1H2H3. (ii) Aut(W ) = H ′
1H

′
2H

′
3H

′
4.

Proof. (i) Let f ∈ Aut(G), and take φ, gλ, gZ as in Theorem 3.9. Note that
φ(Λξ) = Λξ for all ξ ∈ Ξ. Now define f1 ∈ Hom(G,Z(G)) by

f1(w) =

{
gZ ◦ g−1

φ−1(λ)(w)
−1 for λ ∈ Λ¬Z , w ∈ Gλ,

wf(w)−1 for w ∈ GΛZ

(this is well defined since GΛZ
⊂ Z(G)). Then by definition and Theorem 3.9,

we have f = f1
♭ ◦ f2 ◦ f3, where

f2 = (gφ−1(λ) ◦ idφ−1(λ),λ)λ∈Λ¬Z
∈ H2, f3 = (φ|Λξ

)ξ∈Ξ ∈ H3.

Moreover, we have f1
♭ = f ◦ f−1

3 ◦ f−1
2 ∈ Aut(G) and so f1 ∈ Hom(G,Z(G))×

by Lemma 2.2 (ii). Hence f1
♭ ∈ H1 and so f ∈ H1H2H3.

(ii) Let f ∈ Aut(W ), and take φ, gfin, gλ, gZ as in Theorem 3.4 (ii). Note that
φ(Ωυ) = Ωυ for all υ ∈ Υ. Now define f1 ∈ Hom(Winf , Z(W )) by

f1(w) = gZ ◦ g−1
φ−1(ω)(w)

−1 for ω ∈ Ωinf , w ∈Wω.

Then we have (by definition and Theorem 3.4 (ii))

f = f1
♭ ◦ gfin ◦ (gφ−1(ω) ◦ idφ−1(ω),ω)ω∈Ωinf

◦ (φ|Ωυ )υ∈Υinf
∈ H ′

1H
′
2H

′
3H

′
4.

Hence the proof is concluded.

Claim 2. (i) If f ♭ ∈ H1, λ, µ ∈ Λ¬Z and f ♭(Gλ) ⊂ Gµ, then λ = µ and
f(Gλ) ⊂ Z(Gλ).
(ii) If f ♭ ∈ H ′

1, ω, ω
′ ∈ Ωinf and f

♭(Wω) ⊂Wω′ , then ω = ω′ and f(Wω) = 1.
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Proof. (i) By the choice of λ, we can take w ∈ Gλ ∖ Z(Gλ). Now we have
πλ(f(w)) ∈ Z(Gλ) (where πλ is the projection G → Gλ) and so πλ(f

♭(w)) =
wπλ(f(w))

−1 ̸= 1. Since f ♭(w) ∈ Gµ, this implies that µ = λ. Now the latter
part follows from definition of the map f ♭.
(ii) By a similar argument to (i), we have ω = ω′ and f(Wω) ⊂ Z(Wω). Hence
the claim holds since Z(Wω) = 1.

Claim 3. (i) (H1H2) ∩H3 = 1. (ii) (H ′
1H

′
2H

′
3) ∩H ′

4 = 1.

Proof. (i) Let f1 ∈ H1, f2 ∈ H2 such that f1◦f2 ∈ H3. By (3.4) and definition of
H3, both f

−1
2 and f1◦f2 map each component Gλ (λ ∈ Λ¬Z) onto a component,

so that f1 also does so. By Claim 2 (i), f1 maps each Gλ (λ ∈ Λ¬Z) onto itself,
while f2 also does so (cf. (3.4)). Thus f1 ◦ f2 ∈ H3 also has this property. By
definition of H3, this occurs only if f1 ◦ f2 = idG. Hence the claim holds.
(ii) The proof is similar to (i); if fi ∈ H ′

i (i = 1, 2, 3) and f4 = f1 ◦ f2 ◦ f3 ∈ H ′
4,

then f1 = f4 ◦ f−1
3 ◦ f−1

2 must map each Wω (ω ∈ Ωinf) onto some component,
which is Wω by Claim 2 (ii). This implies that f4 maps each Wω (ω ∈ Ωinf)
onto itself, so that f4 = idW by definition of H ′

4. Hence the claim holds.

Claim 4. (i) H2 ◁H2H3. (ii) H
′
3 ◁H ′

3H
′
4.

Proof. For (i), it is enough to show that f3 ◦ f2 ◦ f−1
3 ∈ H2 for all f2 ∈ H2 and

f3 ∈ H3. By definition, f3 is identity on GΛZ
and maps each Gλ (λ ∈ Λ¬Z) onto

a component. Now by (3.4), f3 ◦ f2 ◦ f−1
3 also satisfies the condition in (3.4), so

that it belongs to H2. Hence the claim holds. The proof of (ii) is similar.

Claim 5. (i) H1 ◁Aut(G). (ii) H ′
1 ◁Aut(W ).

Proof. (i) Note that Aut(G) acts on the monoid Hom(G,Z(G)). Thus its sub-
group Hom(G,Z(G))× of the invertible elements is invariant under the action.
Now the claim follows from Lemma 2.2 (iii).
(ii) By Lemma 2.2 (iii), it is enough to show that the subgroup Hom(Winf , Z(W ))
of Hom(W,Z(W )) is invariant under the action of Aut(W ). Moreover, by
Claim 1, it is enough to show that h ◦ f ◦ h−1 ∈ Hom(Winf , Z(W )) for all
f ∈ Hom(Winf , Z(W )) and h ∈ H ′

2H
′
3H

′
4. Now we have h(Wfin) = Wfin by

definition of H ′
2, H

′
3 and H ′

4, so that h ◦ f ◦h−1(Wfin) = h(f(Wfin)) = h(1) = 1.
Hence the claim holds.

Claim 6. (i) H1 ∩H2 = H4. (ii) H
′
1 ∩ (H ′

2H
′
3) = 1.

Proof. (i) Let f ♭ ∈ H1∩H2. Then by (3.4), we have f ♭(w) = w (or equivalently
f(w) = 1) for all w ∈ GΛZ

and f ♭(Gλ) = Gλ for all λ ∈ Λ¬Z . Thus we have
f ∈ Hom(G,Z(G))o by Claim 2 (i), so that f ♭ ∈ H4. Conversely, H4 ⊂ H1 by
definition, while H4 ⊂ H2 by (3.4) and definition of H4. Hence the claim holds.
(ii) Let f ♭ ∈ H ′

1 ∩ (H ′
2H

′
3). Then for any ω ∈ Ωinf , we have f ♭(Wω) = Wω by

definition of H ′
2 and H ′

3. Thus we have f(Wω) = 1 by Claim 2 (ii). Hence f = 1
and f ♭ = idW .

Now the claims (i) and (ii) of Theorem 3.10 hold. Namely:
(i) We have H1∩H2 = H4 (Claim 6) and Aut(G) = (H1H2)H3 (Claim 1). Now
since H1 ◁Aut(G) (Claim 5) and H2 ◁H2H3 (Claim 4), the conjugation by an
element of H1,H2 or H3 maps H1 and H2 into the subgroup H1H2 generated
by H1 ∪H2. Thus H1H2 ◁Aut(G) and Aut(G) = (H1H2)⋊H3 (Claim 3).
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(ii) We have H ′
2H

′
3 = H ′

2 × H ′
3, H

′
2H

′
4 = H ′

2 × H ′
4 (as the above remark),

H ′
3H

′
4 = H ′

3 ⋊ H ′
4 (Claims 3, 4) and H ′

1 ◁ Aut(W ) (Claim 5), so H ′
1H

′
2H

′
3 =

H ′
1 ⋊ (H ′

2 ×H ′
3) (Claim 6). Now by a similar argument to (i), the conjugation

by an element of H ′
4 leaves H ′

1H
′
2H

′
3 invariant, so H ′

1H
′
2H

′
3 ◁ Aut(W ) since

Aut(W ) = H ′
1H

′
2H

′
3H

′
4 (Claim 1). Thus Aut(W ) = (H ′

1 ⋊ (H ′
2 × H ′

3)) ⋊ H ′
4

(Claim 3).

Proof of Theorem 3.10 (iii). If Z(W ) = 1, then all irreducible components of
W are directly indecomposable (cf. Theorem 3.3), so that the decomposition
W =

∏
ω∈ΩWω itself satisfies the conditions (3.1) and (3.2) in Section 3.2. Thus

we can apply the result (i) to this decomposition. Now H1 = 1 since Z(W ) = 1.
Moreover, Ω = Ω¬Z in this case, so that we have H = H2H3 = Aut(W ).

From now, we assume that Z(W ) ̸= 1. For f ∈ Aut(W ), let sep(f) be the
set of all ω ∈ Ω such that f(Wω) ̸⊂Wω′ for all ω′ ∈ Ω. Since any element of H
maps each component Wω onto a component, the cardinality of the set sep(f)
is invariant in each coset of Aut(W )/H. Moreover, by definition, we have

H =

(∏
ω∈Ωfin

Aut(Wω)

)(∏
υ∈Υfin

Sym(Ωυ)

)
×H ′

3H
′
4 ⊂ H ′

2 × (H ′
3H

′
4).

Case 1. Γ odd consists of only finitely many connected components:
This implies that |Ω| <∞ and |Hom(Winf , {±1})| <∞ (cf. Lemma 2.11). Since
Z(W ) is now a finite elementary abelian 2-group, (ii) implies that H ′

2H
′
3H

′
4

has index |H ′
1| = |Hom(Winf , Z(W ))| < ∞ in Aut(W ). Moreover, since now

|Wfin| <∞, the index of H in H ′
2H

′
3H

′
4 is ≤ |H ′

2| <∞. Thus H has finite index
also in Aut(W ).

Case 2. Γ odd consists of infinitely many connected components:
Now we have to show that H has infinite index in Aut(W ).

Subcase 2-1. The odd Coxeter graph of some Wω consists of in-
finitely many connected components: Note that ω ∈ Ωinf in this case. Now
by Lemma 2.11, we have |Hom(Wω, {±1})| = ∞ and so |Hom(Winf , Z(W ))| =
∞ (since we assumed that Z(W ) ̸= 1). Thus by (ii), the subgroup H ′

2H
′
3H

′
4

(⊃ H) has index |H ′
1| = ∞, so that H also has infinite index in Aut(W ).

Subcase 2-2. The odd Coxeter graph of every Wω consists of only
finitely many connected components: Then we have |Ω| = ∞ by the hy-
pothesis of Case 2. Since we assumed that Z(W ) ̸= 1, we can take an infinite
sequence ω0, ω1, ω2, . . . of distinct elements of Ω such that Z(Wω0

) ̸= 1. Let
u denote the unique element of Z(Wω0

) ∖ {1}. Now for k ≥ 1, we define
fk ∈ Hom(W,Z(W )) componentwise by

fk(w) =

{
uℓ(w) if ω ∈ {ω1, . . . , ωk} and w ∈Wω,

1 if ω ∈ Ω∖ {ω1, . . . , ωk} and w ∈Wω.

Then we have fk ◦fk = 1 and so fk ∗fk = 1 since Z(W ) is an elementary abelian

2-group. This implies that fk ∈ Hom(W,Z(W ))× and so fk
♭ ∈ Aut(W ), while

sep(fk
♭) = {ω1, . . . , ωk} by definition. Thus by the above remark, all fk

♭ belong
to distinct cosets in Aut(W )/H and so H has infinite index in Aut(W ). Hence
the proof is concluded.

Example 3.11. Let m = (m1,m2, . . . ) be an infinite sequence of nonnegative
integers. Here we examine Aut(Wm) for the group Wm =

∏
n≥1(Symn)

mn by
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using our result, where Symn = Sym({1, 2, . . . , n}) is the symmetric group of
degree n. Note that Sym1 = 1.

Since Symn (n ≥ 2) is the Coxeter group W (An−1), which is directly inde-
composable (cf. Theorem 3.3), we can apply Theorem 3.10 (i) to this decom-
position of Wm. In this case, we have Z(Symn) = 1 unless Z(Symn) = Symn

(namely n = 1, 2), so that Hom(Wm, Z(Wm))o = 1. Thus we have Aut(Wm) =
H1 ⋊H2 ⋊H3.

Note that Z(Wm) = (Sym2)
m2 ≃ {±1}m2 , while |Hom(Symn, {±1})| = 2

for all n ≥ 2 by Lemma 2.11. Thus Lemmas 2.3 and 2.4 (ii) imply that

H1 = Hom

(∏
n≥3

(Symn)
mn , Z(Wm)

)♭
⋊Hom(Symm2

2 , Z(Wm))×
♭

=

(∏
n≥3

Hom
(
(Symn)

mn , Z(Wm)
))♭

⋊Aut((Sym2)
m2)

≃
(∏

n≥3
{±1}m2mn

)
⋊GLm2(F2).

Secondly, recall the well-known fact that Aut(Symn) = Inn(Symn) (the group of
inner automorphisms) if n ̸= 6 and |Aut(Sym6)/Inn(Sym6)| = 2. This implies
that Aut(Sym2) = 1, |Aut(Sym6)| = 2|Sym6| and Aut(Symn) ≃ Symn if n ̸=
2, 6. Thus we have

H2 ≃
∏

n≥3
Aut(Symn)

mn ≃
(∏

3≤n̸=6
Symn

mn

)
×Aut(Sym6)

m6 .

Moreover, by definition, we have H3 ≃
∏
n≥3Symmn

.
As a special case, if all but finitely many terms in m are 0, then (by putting

|m| =
∑
nmn <∞) we have

|H1| = 2m2(|m|−m1−m2)
m2−1∏
i=0

(2m2 − 2i) = 2m2(|m|−m1−m2)+(m2
2 )

m2∏
i=1

(2i − 1),

|H2| = 2m6

∏
n≥3

(n!)mn , |H3| =
∏
n≥3

mn!.

Hence we have

|Aut(Wm)| = |H1| · |H2| · |H3|

= 2m2(|m|−m1−m2)+(m2
2 )+m6

m2∏
i=1

(2i − 1)
∏
n≥3

((n!)mnmn!)

=

(
2m2(|m|−m1−m2−1)+(m2

2 )+m6

m2∏
i=1

(2i − 1)
∏
n≥3

mn!

)
|Wm|.

4 Centralizers of normal subgroups generated
by involutions

4.1 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. From now, (W,S) always denotes a
Coxeter system. In the proof, we use the notion of core subgroups (cf. Section
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2.1). For a subgroup G ≤ W , let XG be the set of all elements in G of the
form w0(I) (I ⊂ S) such that 1 ̸= w0(I) ∈ Z(WI). Then we have the following
relation (proved below):

Proposition 4.1. Let H ◁W be a normal subgroup generated by involutions.
Then H is the smallest normal subgroup of W containing XH , and

ZW (H) =
∩

w0(I)∈XH

CoreW (NW (WI)).

On the other hand, the subgroups CoreW (NW (WI)) are determined com-
pletely (for irreducible (W,S)) by the following theorem, which we prove in later
subsections. Here we use the notation (W (D3), S(D3)) instead of (W (A3), S(A3)).

Theorem 4.2. (See Definitions 2.5 and 2.8 for notations.) Let (W,S) be an
irreducible Coxeter system of an arbitrary rank, and I nonempty proper subset
of S. Then:
(i) If (W,S) = (W (Bn), S(Bn)), 1 ≤ k < n ≤ ∞, τ ∈ Aut(Γ (Bn)) and
I = τ(S(Bk)), then CoreW (NW (WI)) = τ(GBn).
(ii) If (W,S) = (W (Dn), S(Dn)), 2 ≤ k < n ≤ ∞, τ ∈ Aut(Γ (Dn)) and
I = τ(S(Dk)), then CoreW (NW (WI)) = τ(GDn

).
(iii) Otherwise, CoreW (NW (WI)) = Z(W ).
(cf. Lemma 2.12 for definition of GBn

and GDn
.)

Note that, CoreW (NW (WI)) = NW (WI) = W if I = ∅ or S. Theorem 3.1
will be proved by combining Proposition 4.1 and Theorem 4.2.

In the proof of Proposition 4.1, we use the following two results:

Theorem 4.3 ([10], Theorem A). Let w be an involution in W . Then w is
conjugate in W to some element w0(I) (I ⊂ S) such that w0(I) ∈ Z(WI).

Lemma 4.4. Let WI be a finite parabolic subgroup of W such that w0(I) ∈
Z(WI). Then ZW (w0(I)) = NW (WI).

Proof. First, assume u ∈ ZW (w0(I)). Then u−1w0(I)u = w0(I) ∈ Z(WI) and
so w0(I) · (u · αs) = uw0(I) · αs = −u · αs for all s ∈ I. This implies that
u · αs ∈ ΦI for all s ∈ I, so that u ∈ NW (WI) by (2.16).

Conversely, assume u ∈ NW (WI). Put u′ = uw0(I)u
−1 ∈ WI . Then we

have u′ · αs = −αs for all s ∈ I (since w0(I) maps u−1 · αs ∈ ΦI (cf. (2.16)) to
−u−1 · αs). Hence we have u′ = w0(I) and so u ∈ ZW (w0(I)).

Proof of Proposition 4.1. By Theorem 4.3, every involution in H is conjugate
to some element of XH (since H ◁W ). This implies that any normal subgroup
of W containing XH also contains all the generators of H. Thus the first claim
follows. For the second one, apply Lemmas 2.7 and 4.4.

Proof of Theorem 3.1. The claim (i) is obvious. From now, we assume H ̸⊂
Z(W ). Note that Z(W ) ⊂ ZW (H). Note also that, by Proposition 4.1,

ZW (H) ⊂ CoreW (NW (WI)) for all w0(I) ∈ XH . (4.1)

Case 1. (W,S) = (W (Bn), S(Bn)), n ≥ 2 or (W (Dn), S(Dn)), n ≥ 3: Let
T = B, L = 1 for the former case, T = D, L = 2 for the latter case.
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Subcase 1-1. T = B, n ̸= 2 or T = D, n ̸= 4: Note that in this case, any
automorphism of Γ (Tn) preserves the sets S(Tk), elements w0(S(Tk)) (k ≥ L)
and so the subgroup GTn

.
Subsubcase 1-1-1. H ⊂ GTn

: This is a case (ii) or (iii) (for τ identity), and
so we have to show ZW (H) = GTn . The inclusion ⊃ holds since GTn is abelian.
Conversely, since H ̸⊂ Z(W ), XH contains an element other than w0(S), so
that we have ZW (H) ⊂ GTn by (4.1) and Theorem 4.2.

Subsubcase 1-1-2. H ̸⊂ GTn
: By the above remark, this is actually not a

case (ii) or (iii), so that we have to show ZW (H) ⊂ Z(W ). Now XH contains an
element w0(I) such that I ̸= S(Tk) for any L ≤ k ≤ n, since otherwise H ⊂ GTn

by Lemma 2.12. For this I, we have CoreW (NW (WI)) = Z(W ) by Theorem
4.2, so that the claim follows from (4.1).

Subcase 1-2. T = B, n = 2: Note that XH ⊂ {s1, s2, w0(S)} in this case.
Moreover, XH ̸⊂ {w0(S)} since H ̸⊂ Z(W ).

Subsubcase 1-2-1. s1 ∈ XH and s2 ̸∈ XH : In this case, we have XH ⊂
{s1, w0(S)} and so H ⊂ GB2

by Lemma 2.12. This is a case (ii) (for τ identity).
Now we have GB2

⊂ ZW (H) since GB2
is abelian, while ZW (H) ⊂ GB2

by (4.1)
and Theorem 4.2 (applying to {s1} ⊂ S). Thus the claim holds.

Subsubcase 1-2-2. s1 ̸∈ XH and s2 ∈ XH : By symmetry, this is also a
case (ii) (for the unique τ ̸= idS) and the claim holds similarly.

Subsubcase 1-2-3. s1 ∈ XH and s2 ∈ XH : Note that H = W . This is
not a case (ii) or (iii), and actually ZW (H) = Z(W ).

Subcase 1-3. T = D, n = 4: Note that (by definition)

XH ⊂ {s1, s2, s3, s4, s1s2s4, s1s2, s2s4, s4s1, w0(S)}.

Subsubcase 1-3-1. XH contains one of the first five elements: Now
we have H ̸⊂ τ(GD4

) for any τ , so that this is not a case (iii) and we have to
show ZW (H) ⊂ Z(W ). This claim follows from (4.1) (applying to the element
of XH given in the hypothesis here) and Theorem 4.2.

Subsubcase 1-3-2. XH contains at least two of the elements s1s2,
s2s4, s4s1: Now we have H ̸⊂ τ(GD4

) for any τ , so that this is not a case (iii)
and we have to show ZW (H) ⊂ Z(W ). Let XH contain two such elements sisj ,
sjsk, and put I = {si, sj}, J = {sj , sk}. Then we have

CoreW (NW (WI)) ∩ CoreW (NW (WJ)) ⊂ CoreW (NW (W{sj}))

by (2.4), (2.15) and (2.2). Thus we have ZW (H) ⊂ CoreW (NW (W{sj})) =
Z(W ) by (4.1) and Theorem 4.2.

Subsubcase 1-3-3. XH contains none of the first five elements and
at most one of s1s2, s2s4, s4s1: Note that XH ̸⊂ {w0(S)} since H ̸⊂ Z(W ).
Thus we have sisj ∈ XH ⊂ {sisj , w0(S)} for one of (i, j) = (1, 2), (2, 4), (4, 1).
Lemma 2.12 implies that this is a case (iii) (namely H ⊂ τ(GD4)), by taking
τ ∈ Aut(Γ ) mapping s1, s2 to si, sj respectively. Now τ(GD4) ⊂ ZW (H) since
τ(GD4

) is abelian. Conversely, we have CoreW (NW (W{si,sj})) = τ(GD4
) by

Theorem 4.2, so that ZW (H) ⊂ τ(GD4
) by (4.1). Thus the claim holds.

Case 2. (W,S) ̸≃ (W (Bn), S(Bn)) (n ≥ 2), (W (Dn), S(Dn)) (n ≥ 3): This
is not a case (ii) or (iii), so that we have to show ZW (H) ⊂ Z(W ). Since H ̸⊂
Z(W ), XH contains an element other than w0(S), so that we have ZW (H) ⊂
Z(W ) by (4.1) and Theorem 4.2. Hence the proof is concluded.
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4.2 Some lemmas

In the rest of this paper, we prove Theorem 4.2. In this subsection, we
prepare some lemmas used in our proof. From now, we abbreviate the notation
CoreW (NW (WI)) to CI .

First, by combining Lemma 2.22, (2.4) and (2.2), we have:

If I ⊂ J ⊂ S and J ∖ I ⊂ I⊥, then CJ ∩ CI ⊂ CJ∖I . (4.2)

Lemma 4.5 (Expanding Lemma). If I ⊂ S and s ∈ S ∖ (I ∪ I⊥), then
CI ⊂ CI∪{s}.

Proof. It is enough (by (2.3)) to show that CI ⊂ NW (WI∪{s}). Let w ∈ CI .
By the hypothesis, we have c = ⟨αs, αt⟩ < 0 for some t ∈ I. Now since sws ∈
CI ⊂ NW (WI), we have sws · αt ∈ ΦI (by (2.16)) and so ws · αt ∈ ΦI∪{s}. On
the other hand, we have ws · αt = w · αt − 2cw · αs. Thus w · αs ∈ ΦI∪{s} since
w · αt ∈ ΦI (by (2.16)). Hence we have w ∈ NW (WI∪{s}) by (2.16).

For s ∈ S and I ⊂ S, let dΓ (s, I) = min{dΓ (s, t) | t ∈ I} denote the distance
from s to the set I in the Coxeter graph Γ of (W,S).

Lemma 4.6 (Cutting Lemma). Let (W,S) be irreducible, I ⊂ S and s ∈
S ∖ I. Then for dΓ (s, I) < k < ∞, we have CI ⊂ CJ , where J = {t ∈ I |
dΓ (s, t) ≥ k}.

Proof. It is enough (by (2.3) and (2.16)) to show that w · ΦJ ⊂ ΦJ (or equiva-
lently, w ·ΠJ ⊂ ΦJ) for all w ∈ CI . Assume contrary that t ∈ J and w ·αt ̸∈ ΦJ .
Note that w ·αt ∈ ΦI (by (2.16)) and so s ̸∈ supp(w ·αt). Then by definition of
J , we have

(d =) dΓ (s, supp(w · αt)) < k ≤ dΓ (s, t).

Take a shortest path s0 = s, s1, . . . , sd−1, sd ∈ supp(w · αt) in Γ from s to
the set supp(w · αt). Then by the above inequality, we have si ∈ {t}⊥ for all
0 ≤ i ≤ d − 1. Put u = ss1 · · · sd−1 ∈ W . Then we have uwu−1 · αt = uw · αt
and so (by (2.13))

supp(uwu−1 · αt) = supp(w · αt) ∪ {s, s1, . . . , sd−1} ̸⊂ I

(note that s ̸∈ I). On the other hand, we have uwu−1 ∈ CI and so uwu−1 ·αt ∈
ΦI (by (2.16)). This is a contradiction. Hence the claim holds.

Lemma 4.7 (Shifting Lemma). Suppose that s, t ∈ S are in the same con-
nected component of the odd Coxeter graph Γ odd of (W,S). Then C{s} = C{t}.

Proof. By definition of Γ odd, and by symmetry, it is enough to show that C{s} ⊂
C{t} for any s, t such that m(s, t) = 2k + 1 is odd. Now by putting u = (st)k ∈
W , we have t = usu−1. Thus for w ∈ C{s}, we have

wtw−1 = wusu−1w−1 = u(u−1wu)s(u−1wu)−1u−1 = usu−1 = t

since u−1wu ∈ C{s}. Thus w ∈ NW (W{t}). Hence the claim follows from
(2.3).

Moreover, we have:
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Lemma 4.8. Let (W,S) be irreducible and I a nontrivial proper subset of S.
Then CoreW (WI) = 1.

Proof. Assume contrary that 1 ̸= w ∈ CoreW (WI) (so that w · ΦI = ΦI by
(2.16)). Fix s ∈ S ∖ I and take γ ∈ Φ+

I such that w · γ ∈ Φ−
I .

Case 1. (d =) dΓ (s, supp(γ)) ≤ dΓ (s, supp(w · γ)): Take a shortest path
s0 = s, s1, . . . , sd−1, sd ∈ supp(γ) in Γ from s to the set supp(γ). Then by
the above inequality, we have si ̸∈ supp(w · γ) for all 0 ≤ i ≤ d − 1. Put
u = ss1 · · · sd−1 ∈ W . Then we have u · γ ∈ Φ+ (by (2.12)), supp(u · γ) =
supp(γ) ∪ {s, s1, . . . , sd−1} ̸⊂ I (by (2.13)) and so u · γ ∈ Φ+ ∖ ΦI . On the
other hand, we have uwu−1 · (u · γ) = u · (w · γ) ∈ Φ− (by (2.12)). This is a
contradiction, since uwu−1 ∈ CoreW (WI) ⊂WI .

Case 2. dΓ (s, supp(γ)) > dΓ (s, supp(w ·γ)): Now by applying Case 1 to the
elements w−1 ∈ CoreW (WI) and −w · γ ∈ ΦI [w

−1 ], we have a contradiction
again. Hence the claim holds in any case.

Owing to Lemma 4.8, we have the following results:

If (W,S) is irreducible, |W | = ∞ and s ∈ S, then CS∖{s} = 1. (4.3)

If (W,S) is irreducible, J ⊊ S and I is an irreducible component of J

such that |WI | = ∞, then CJ = 1.
(4.4)

Indeed, for (4.3), Corollary 2.20 (iii) implies NW (WS∖{s}) = WS∖{s} and so
Lemma 4.8 proves the claim. For (4.4), we have NW (WJ) ⊂WI∪I⊥ by Proposi-
tion 2.18 (ii), while CoreW (WI∪I⊥) = 1 by Lemma 4.8 since I ∪ I⊥ ⊊ S, hence
the claim follows from (2.2).

4.3 Proof for finite case

In this subsection, we prove Theorem 4.2 for the case |W | < ∞. From
now, we abbreviate often the terms “Expanding Lemma”, “Cutting Lemma”,
“Shifting Lemma” to ‘EL’, ‘CL’, ‘SL’, respectively.

Lemma 4.9. Let (W,S) be irreducible, |W | < ∞ and s ∈ S. Suppose that no
condition below is satisfied: (I) W =W (Bn), n ≥ 2, s = s1, (II) W =W (B2),
s = s2, (III) W =W (I2(m)), m even. Then C{s} = Z(W ).

Proof. Since Z(W ) ⊂ C{s} and
∩
t∈S NW (W{t}) = Z(W ), it is enough to show

that C{s} ⊂ C{t} for all t ∈ S.

Case 1. The odd Coxeter graph Γ odd of (W,S) is connected: Then
the claim follows from the Shifting Lemma.

Case 2. W = W (Bn), n ≥ 3 and s ̸= s1: We have C{s}
SL
= C{si} for all

2 ≤ i ≤ n, while C{s2}
EL
⊂ C{s1,s2}

CL
⊂ C{s1} (since n ≥ 3). Thus the claim holds.

Case 3. W =W (F4): By symmetry, we may assume s = s1 or s2. Now we

have C{s1}
SL
= C{s2}

EL
⊂ C{s2,s3}

CL
⊂ C{s3}

SL
= C{s4}. Hence the claim holds.

Corollary 4.10. Let (W,S) be irreducible, |W | < ∞, s ∈ S and suppose that
there is a unique vertex t of Γ farthest from s. Suppose further that W and t do
not satisfy any of the three conditions (I)–(III) in Lemma 4.9. Then CS∖{s} =
Z(W ).
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Proof. Now we have CS∖{s}
CL
⊂ C{t} by the choice of t. Then apply Lemma

4.9.

Lemma 4.11. Suppose that one of the following conditions is satisfied: (I)
W = W (B3), s = s2, (II) W = W (D4), s = s3, (III) W = W (H3), s = s2,
(IV) W = W (I2(m)) (m ≥ 6 even), s ∈ S. Then CI = Z(W ), where I =
S ∖ {s}.

Proof. By the hypothesis and Corollary 2.20 (ii), we have NW (WI) = WI ×
Z(W ). Now a direct computation shows that sWIs ∩ NW (WI) = 1, so that
WI ∩ CI = 1 by (2.5). Since Z(W ) ⊂ CI , we have CI = Z(W ).

Lemma 4.12. (i) If W =W (Bn), 1 ≤ n <∞, then CoreW (GBn
) = GBn

.
(ii) If W =W (Dn), 3 ≤ n <∞, then CoreW (GDn

⋊ ⟨s1⟩) = GDn
.

Proof. The claim (i) is obvious, since GBn ◁W (cf. Lemma 2.12). For (ii), we
have GDn ⊂ CoreW (GDn ⋊ ⟨s1⟩) since GDn ◁W , while s1 ̸∈ CoreW (GDn ⋊ ⟨s1⟩)
since (s1s3)s1(s1s3)

−1 = s3 ̸∈ GDn
⋊ ⟨s1⟩. Thus the claim holds.

Proof of Theorem 4.2 (for finite W ). Note that Z(W ) ⊂ CI by definition.
Case 1. (W,S) = (W (Tn), S(Tn)) for T = B, n ≥ 3 or T = D, 3 ≤ n ̸= 4:

Put L = 1 in the former case, L = 2 in the latter case. Note that in this
case, any automorphism of Γ (Tn) preserves the sets S(Tk), elements w0(S(Tk))
(k ≥ L) and so the subgroup GTn

.
Subcase 1-1. I = S(Tk) for some L ≤ k < n: This is a case (i) or (ii) of

Theorem 4.2 (for τ identity), so that we have to show CI = GTn
. Note that

CS(Ti)

EL
⊂ CS(Tj)

CL
⊂ CS(Ti) and so CS(Ti) = CS(Tj) for all L ≤ i < j < n.

Thus we may assume I = S(TL), and we have CI ⊂
∩n−1
i=L NW (WS(Ti)). By

Corollary 2.21, (2.3) and Lemma 4.12, we have CI ⊂ GTn
. Conversely, since

GTn
is abelian and contains w0(I), we have GTn

⊂ ZW (w0(I)) = NW (WI) by
Lemma 4.4. Thus GTn

⊂ CI since GTn
◁W . Hence CI = GTn

.
Subcase 1-2. I ̸= S(Tk) for all L ≤ k < n: By the above remark, this is

not a case (i) or (ii), and so we have to show CI ⊂ Z(W ). Note that I ̸= S.
Let M be the first index ≥ 1 such that sM ̸∈ I, so that S(TM−1) ⊂ I (where

we put S(T0) = ∅). If T = D and M = 2, then we have CI
EL
⊂ CS∖{sM} since

I ̸= ∅. Otherwise, there is some M < i ≤ n such that si ∈ I (since otherwise

we have I = S(TM−1); a contradiction), and so M < n and CI
EL
⊂ CS∖{sM}. In

any case, we may assume that I = S∖ {sM}. Now there are the following three
cases:

Subsubcase 1-2-1. M ≤ L + 1: Note that M < n, and so (Tn,M) ̸=
(D3, 3). If Tn = B3 and M = 2, then CI = Z(W ) by Lemma 4.11. Otherwise,
we have a unique vertex of Γ farthest from s; that is s3−M if Tn = D3 and
M ≤ 2, and sn otherwise (note that Tn ̸= D4). Thus CI = Z(W ) by Corollary
4.10.

Subsubcase 1-2-2. L+ 2 ≤M ≤ n− 2: This hypothesis implies that

CI
CL
⊂ CI∖{sM−1,sM+1}

EL
⊂ CS∖{sM−1},



PART I 33

so that the claim follows inductively from the case of smaller M .
Subsubcase 1-2-3. L + 2 ≤ M = n − 1: Note that n ≥ L + 3 and I =

S(Tn−2) ∪ {sn}. Now we have CI
CL
⊂ CS(Tn−3)

EL
⊂ CS(Tn−2) and so CI ⊂ C{sn}

by (4.2). Thus CI ⊂ C{sn} = Z(W ) by Lemma 4.9.
Case 2. (W,S) = (W (B2), S(B2)): Since I is proper and nonempty, we have

I = {si} (i = 1 or 2). This is a case (i), by taking τ = idS (if i = 1), τ ̸= idS
(if i = 2). Now we have to show CI = τ(GB2). We have CI ⊂ NW (Wτ({s1})) =
τ(GB2) by Corollary 2.21 (i). Conversely, we have τ(GB2) ⊂ CI by a similar
argument to Subcase 1-1. Thus CI = τ(GB2

).
Case 3. (W,S) = (W (D4), S(D4)): Note that I is proper and nonempty.
Subcase 3-1. |I| = 1: This is not a case (i) or (ii), so that we have to show

CI ⊂ Z(W ). This follows from Lemma 4.9.
Subcase 3-2. |I| = 2 and s3 ∈ I: This is also not a case (i) or (ii), so that

we have to show CI ⊂ Z(W ). Let I = {s3, si}. Then we have CI
CL
⊂ C{si},

while C{si} = Z(W ) by the previous case. Thus CI ⊂ Z(W ).
Subcase 3-3. |I| = 2 and s3 ̸∈ I: Note that there is τ ∈ Aut(Γ ) such

that τ(S(D2)) = I. This is a case (ii), so that we have to show CI = τ(GD4
).

By symmetry, we may assume τ = idS . First, we have CI
EL
⊂ CS(D3) and so

CI ⊂
∩3
i=2NW (WS(Di)) = GD4

⋊ ⟨s1⟩ by Corollary 2.21 (ii). Thus we have
CI ⊂ GD4

by (2.3) and Lemma 4.12. Conversely, we have GD4
⊂ CI by a

similar argument to Subcase 1-1. Hence we have CI = GD4
.

Subcase 3-4. |I| = 3 and s3 ∈ I: Note that there is τ ∈ Aut(Γ ) such that
τ(S(D3)) = I. This is a case (ii), so that we have to show CI = τ(GD4). By

symmetry, we may assume τ = idS . Now we have CI
CL
⊂ CS(D2)

EL
⊂ CI , while

CS(D2) = GD4 by the previous subcase. Thus CI = GD4 .
Subcase 3-5. I = S ∖ {s3}: This is not a case (i) or (ii), so that we have

to show CI ⊂ Z(W ). This follows from Lemma 4.11.
Case 4. (W,S) ̸≃ (W (Bn), S(Bn)) (n ≥ 2), (W (Dn), S(Dn)) (n ≥ 3):

This is not a case (i) or (ii), so that we have to show CI ⊂ Z(W ). Note that
|S| ≥ 2 since I is proper and nonempty.

Subcase 4-1. |S| = 2: Namely, (W,S) = (W (T ), S(T )), T = A2 or I2(m)
(5 ≤ m < ∞), and |I| = 1. Then we have CI = Z(W ) by Lemma 4.11 (for the
latter case, with m even) or Lemma 4.9 (the other cases).

Subcase 4-2. |S| = 3: Namely, (W,S) = (W (H3), S(H3)) (note that

W (A3) ≃ W (D3)). Now we have CI
EL
⊂ CS∖{si} for some i, while CS∖{si} =

Z(W ) by Lemma 4.11 (if i = 2) or Corollary 4.10 (if i ̸= 2). Thus CI ⊂ Z(W ).
Subcase 4-3. |S| ≥ 4: Namely, (W,S) = (W (T ), S(T )) for T = An

(n ≥ 4), En (n = 6, 7, 8), F4 or H4. Now we have CI
EL
⊂ CS∖{si} for some i.

Thus we may assume I = S ∖ {si}.
Subsubcase 4-3-1. There is a unique vertex of Γ farthest from si:

Now we have CI = Z(W ) by Corollary 4.10.
Subsubcase 4-3-2. There are at least two vertices of Γ farthest

from si: Namely, we have (T , i) = (A2k+1, k + 1) (k ≥ 2), (E6, 2), (E6, 4)
or (E8, 5). Now there are exactly two vertices s, t of Γ farthest from si, and
there is a vertex ̸= s, t adjacent to s and not adjacent to t. This implies that

CI
CL
⊂ C{s,t}

CL
⊂ C{t}, while C{t} = Z(W ) by Lemma 4.9. Thus CI ⊂ Z(W ).

Hence the proof is concluded.
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4.4 Proof for infinite case

In this subsection, we prove Theorem 4.2 in the case |W | = ∞. The key
facts are (4.3) and (4.4).

In the proof, we use a characterization (Proposition 4.14) of certain infi-
nite Coxeter systems, which is based on the characterization of connected Cox-
eter graphs of finite type. Before stating this, we prepare the following graph-
theoretic lemma.

Lemma 4.13. Let G be a connected acyclic graph (i.e. a tree) on nonempty
vertex set V (G) of an arbitrary cardinality (with no edge labels here).
(i) If all vertices of G have degree ≤ 2 and G has a terminal vertex (i.e. vertex
of degree 1) s0, then G ≃ Γ (An) (as unlabelled graphs) for some 1 ≤ n ≤ ∞.
(ii) If s0 ∈ V (G) and all vertices of G except s0 have degree ≤ 2, then each
connected component G′ of G ∖ {s0} contains exactly one vertex s adjacent to
s0, G′ ≃ Γ (An) (as unlabelled graphs) for some 1 ≤ n ≤ ∞ and s is a terminal
vertex of G′.
(iii) If all vertices of G have degree 2, then G ≃ Γ (A∞,∞) (as unlabelled graphs).

Proof. (i) By the hypothesis, for any s ∈ V (G), G contains a unique simple

path Ps = (t
(0)
s = s0, t

(1)
s , . . . , t

(ℓ−1)
s , t

(ℓ)
s = s) from s0 to s. Let ℓ(s) = ℓ, the

length of Ps. Then for all s1, s2 ∈ V (G), we have either Ps1 ⊂ Ps2 or Ps2 ⊂ Ps1 :

Otherwise, for the first index k such that t
(k)
s1 ̸= t

(k)
s2 , the vertex t

(k−1)
s1 = t

(k−1)
s2 is

adjacent to distinct vertices t
(k)
s1 , t

(k)
s2 (and t

(k−2)
s1 if k ≥ 2) but this is impossible

by the hypothesis on the degree of t
(k−1)
s1 .

This observation shows that the map ℓ : V (G) → {0, 1, 2, . . . } is injective
and satisfies that i ∈ ℓ(V (G)) whenever 0 ≤ i < j and j ∈ ℓ(V (G)). Thus the
set V (G) is finite or countable. Moreover, it also implies that two vertices s1, s2
are adjacent if ℓ(s1) = ℓ(s2)± 1, while by definition of ℓ, these are not adjacent
if ℓ(s1) ̸= ℓ(s2)± 1. Thus the claim holds.
(ii) First, take a vertex t of G′ and a simple path P in G from s0 to t. Then
the vertex s of P next to s0 is adjacent to s0 and contained in G′. On the other
hand, if G′ contains two vertices adjacent to s0, then s0 and a path in G′ between
these two vertices form a closed path in G. This is a contradiction, so that the
first claim follows. Since s has degree ≤ 2 in G and adjacent to s0 ̸∈ V (G′), s is
a terminal vertex of G′. Now the second claim is deduced by applying (i) to G′

and s.
(iii) This follows from (ii), since G is nonempty and has no terminal vertices.

Proposition 4.14. Let (W,S) be an irreducible Coxeter system of an arbitrary
rank, with Coxeter graph Γ . Suppose that |W | = ∞ and |WI | <∞ for all finite
subsets I ⊂ S. Then Γ ≃ Γ (A∞), Γ (B∞), Γ (D∞) or Γ (A∞,∞).

Proof. In this proof, a full subgraph ΓI of Γ is said to be forbidden if |I| < ∞
and |WI | = ∞. The hypothesis means that |W | = ∞ and Γ is connected and
contains no forbidden subgraphs. This implies |S| = ∞ immediately.

Step 1. Γ is acyclic: This follows immediately from the fact that any
nontrivial cycle in Γ forms a forbidden subgraph.

Step 2. No s ∈ S has degree ≥ 4 in Γ : Otherwise, this s and the four
adjacent vertices form a forbidden subgraph of Γ . This is a contradiction.

Step 3. At most one s ∈ S has degree 3 in Γ : Assume contrary that
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two distinct vertices s, t ∈ S have degree 3. Since Γ is connected, there is a
path P in Γ between s and t. Then s, t, P and all the vertices adjacent to s or
t form a forbidden subgraph. This is a contradiction.

Step 4. If some s ∈ S has degree 3 in Γ , then Γ ≃ Γ (D∞): By
Steps 1–3, we can apply Lemma 4.13 (ii) to this case. This lemma shows that
ΓS∖{s} consists of three connected components ≃ Γ (An1), Γ (An2), Γ (An3) (as
unlabelled graphs) respectively, of which a terminal vertex is adjacent to s in
Γ . By symmetry, we may assume n1 ≥ n2 ≥ n3 ≥ 1.

Now we have n1 = ∞ since |S| = ∞. If n2 ≥ 2, then Γ must contain a

forbidden subgraph (≃ Γ (Ẽ8) as unlabelled graphs), but this is a contradiction.
Thus we have n2 = n3 = 1 and so Γ ≃ Γ (D∞) as unlabelled graphs. Moreover,
every edge of Γ must have no label (or label ‘3’), since otherwise Γ must contain
a forbidden subgraph again. Hence Γ ≃ Γ (D∞) (as Coxeter graphs) in this
case.

Step 5. If all vertices of Γ have degree ≤ 2, then Γ ≃ Γ (A∞),
Γ (B∞) or Γ (A∞,∞): First, we consider the case that Γ has a terminal vertex.
Then Lemma 4.13 (i) implies that Γ ≃ Γ (A∞) as unlabelled graphs (note
that |S| = ∞). Moreover, by a similar argument to Step 4, the hypothesis
(Γ contains no forbidden subgraphs) detects the edge-labels of Γ , so that we
have Γ ≃ Γ (A∞) or Γ (B∞) (as Coxeter graphs). The other case is similar; we
have Γ ≃ Γ (A∞,∞) as Coxeter graphs by Lemma 4.13 (iii) and the hypothesis.
Hence the proof is concluded.

Proof of Theorem 4.2 (for infinite W ). Note that Z(W ) = 1 in this case.
Case 1. (W,S) = (W (Tn), S(Tn)) for Tn = A∞, B∞, D∞ or A∞,∞: Put

L = 1 if Tn = B∞, L = 2 if Tn = D∞. Moreover, for k ≥ 1, put

Jk = {s1, s2, . . . , sk} if Tn ̸= A∞,∞, Jk = {s−k, s−k+1, . . . , sk} if Tn = A∞,∞.

Subcase 1-1. Tn = B∞ or D∞, and I = S(Tk) for some L ≤ k < ∞:
This is a case (i) or (ii) (for τ identity), so that we have to show CI = GT∞ .
Put Gi =WJk+i

and Hi = NGi
(WI) for i ≥ 1. Then we have

∪∞
i=1Gi =W and∪∞

i=1Hi = NW (WI), so that CI ⊂
∪∞
i=1 CoreGi

(Hi) by Lemma 2.6. Moreover,
by the result of finite case (Section 4.3), we have CoreGi

(Hi) = GTk+i
for all

i ≥ 1. Since
∪∞
i=1GTk+i

= GT∞ (cf. Lemma 2.12), we have CI ⊂ GT∞ .

On the other hand, we have CS(TL)

EL
⊂ CI , while GT∞ ⊂ ZW (w0(S(TL)))

since w0(S(TL)) ∈ GT∞ and GT∞ is abelian. Thus GT∞ ⊂ NW (WS(TL)) by
Lemma 4.4, GT∞ ⊂ CS(TL) by (2.3) and so GT∞ ⊂ CI . Hence CI = GT∞ .

Subcase 1-2. The hypothesis of Subcase 1-1 is not satisfied: This is
not a case (i) or (ii), so that we have to show CI = 1.

Subsubcase 1-2-1. |I| < ∞: Let w ∈ CI . Now take a sufficiently large
4 ≤ k < ∞ so that I ⊂ Jk and w ∈ WJk . Put Gi = WJk+i

and Hi =
NGi(WI) for i ≥ 1, so that

∪∞
i=1Gi = W and

∪∞
i=1Hi = NW (WI). Now by

the hypothesis of Subcase 1-2, and by the result for finite case (Section 4.3),
we have CoreGi

(Hi) ⊂ Z(Gi) ⊂ {1, w0(Jk+i)} for all i. Moreover, by Lemma
2.6, we have CI ⊂

∪∞
i=1 CoreGi

(Hi). Since w0(Jk+i) ̸∈ WJk for any i ≥ 1, this
implies that w = 1 by the choice of k. Hence we have CI = 1.

Subsubcase 1-2-2. |I| = ∞: If I has an irreducible component J of infinite
cardinality, then CI = 1 by (4.4). Thus we may assume that I is a union of
infinitely many irreducible components of finite cardinality. Now we can choose
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indices 4 ≤ i ≤ j < ∞ so that sk ̸∈ I for all i ≤ k ≤ j, si−1 ∈ I and sj+1 ∈ I.
Let K1, K2 be the (distinct) irreducible components of I containing si−1, sj+1

respectively. Then we have CI
CL
⊂ CI∖(K1∪K2) and so CI ⊂ CK1∪K2 by (4.2).

Moreover, we have CK1∪K2
= 1 by Subsubcase 1-2-1. Thus CI = 1.

Case 2. (W,S) ̸≃ (W (T ), S(T )) for T = A∞, B∞, D∞, A∞,∞: This is
not a case (i) or (ii), so that we have to show CI = 1. By Proposition 4.14, there
is a finite subset J0 ⊂ S such that |WJ0 | = ∞. This J0 consists of only finitely
many irreducible components, and so we have |WJ | = ∞ for some irreducible
component of J0. Since Γ is connected and |J | <∞, there is a (finite) sequence
s1, s2, . . . , sr of elements of S such that si ̸∈ Ii−1 ∪ Ii−1

⊥ for all 1 ≤ i ≤ r and
J ⊂ Ir, where we put I0 = I and Ii = Ii−1 ∪ {si} (1 ≤ i ≤ r) inductively. Now

we have CIi−1

EL
⊂ CIi for all 1 ≤ i ≤ r, so that CI ⊂ CIr−1

and CI ⊂ CIr .
Subcase 2-1. Ir ̸= S: Now an irreducible component of Ir (namely, the

one containing J) generates an infinite group. Thus CI ⊂ CIr = 1 by (4.4).
Subcase 2-2. Ir = S: Note that r ≥ 1 since I is proper. Since (W,S) is

irreducible, we have CI ⊂ CIr−1 = 1 by (4.3). Hence the proof is concluded.
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ALMOST CENTRAL INVOLUTIONS IN SPLIT EXTENSIONS
OF COXETER GROUPS BY GRAPH AUTOMORPHISMS

KOJI NUIDA

In this paper, given a split extension of an arbitrary Coxeter group by
automorphisms of the Coxeter graph, we determine the involutions
in that extension whose centralizer has finite index. Our result has
applications to many problems such as the isomorphism problem
of general Coxeter groups. In the argument, some properties of
certain special elements and of the fixed-point subgroups by graph
automorphisms in Coxeter groups, which are of independent interest,
are also given.

1 Introduction

Let (W,S) be an arbitrary Coxeter system, possibly of infinite rank, and G
a group acting on W . We assume that the action of G preserves the set S;
namely, each element of G gives rise to an automorphism of the Coxeter graph
of (W,S). The subject of this paper is the almost central involutions in the
semidirect product W ⋊ G corresponding the action of G; that is, involutions
which is central in some subgroup of W ⋊G of finite index. We determine those
involutions in W ⋊ G, hence the subgroup generated by those involutions, in
terms of the structure of the Coxeter system (W,S) and the action of G on W
(Theorem 3.1). Actually, this subgroup is the product of some finite irreducible
components of W , specified in terms of the action of G, and a subgroup of G.
Note that this subgroup is determined by the group structure of W ⋊G only, so
our result can extract some information on the Coxeter groupW from the group
structure of W ⋊G. Moreover, if W ⋊G admits another expression W ′ ⋊G′ of
this type, our result exhibits some relation between the Coxeter groups W and
W ′ through the subgroup in problem (Theorem 3.2).

The main motive of this research is an application to the isomorphism prob-
lem of general Coxeter groups; that is, the problem of deciding which Coxeter
groups are isomorphic as abstract groups. An important phase of the prob-
lem is to determine whether a given group isomorphism f between two Coxeter
groups W and W ′ maps the reflections in W onto those of W ′. As summarized
in Section 3.3, it is shown by a result of the author’s preceding paper [14] that
both the centralizer of a reflection t in W and that of f(t) in W ′ are semidirect
products satisfying the hypothesis of our main theorem. Since those centralizers
are isomorphic via f , our main theorem can derive some properties of f(t) from
those of W and of t. In particular, f(t) is a reflection in W ′ whenever W and
t satisfy a certain condition which is independent on the choice of W ′ and f
(Theorem 3.7). When the condition is actually satisfied will be investigated in
a forthcoming paper [13] of the author. Note that this argument works without
any assumption on finiteness of ranks of W or of W ′, in contrast with most of
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the preceding results on the isomorphism problem which covers the case of finite
ranks only.

For other applications, our result implies that the product of all finite irre-
ducible components of a Coxeter group W is independent on the choice of the
generating set S of W (Example 3.3). On the other hand, regarding certain
semidirect product decompositions of W into two Coxeter groups which arise
from the partition of S into conjugacy classes, our result shows that, under a
certain condition, the normal factor possesses no finite irreducible component
(Example 3.6). See Section 3.2 for further examples.

This paper is organized as follows. Section 2 is a preliminary for basics and
further remarks on abstract groups and Coxeter groups. Section 3 summarizes
the main result and its applications mentioned above. In Section 4, we recall
the notion of essential elements in Coxeter groups introduced by Daan Krammer
[10], and summarize some properties studied by Krammer and by Luis Paris [16].
In Section 5, we give some results on the fixed-point subgroup of a Coxeter group
by an automorphism of the Coxeter graph, together with preceding results given
by Robert Steinberg [18], by Bernhard Mühlherr [11] and by Masayuki Nanba
[12]. Finally, Section 6 is devoted to the proof of the main theorem.
Acknowledgement. The author would like to express his deep gratitude to
everyone who helped him, especially to his supervisor Itaru Terada and also to
Kazuhiko Koike for their precious advice and encouragement. The author had
been supported by JSPS Research Fellowship throughout this research.

2 Preliminaries

2.1 On abstract groups

In this subsection, we fix notations for abstract groups, and give some definitions
and facts. Let G be an arbitrary group. We denote H ≤ G if H is a subgroup
of G, and H ⊴G if H is a normal subgroup of G. For a subset X ⊆ G, let ⟨X⟩
and ⟨X⟩◁G denote the subgroup and the normal subgroup, respectively, of G
generated by X. Put

ZH(X) = {g ∈ H | gx = xg for all x ∈ X} for H ≤ G,

so ZG(X) is the centralizer of X in G. Write

xg = g−1xg and Xg = {xg | x ∈ X} for g, x ∈ G and X ⊆ G.

For H ≤ G, put

CoreGH =
∩
g∈G

Hg,

the core of H in G. It is easily verified that CoreGH is the unique largest normal
subgroup of G contained in H.

Lemma 2.1. Let G be a group.

1. If H ⊴G, then ZG(H)⊴G.

2. If X ⊆ G, then ZG(⟨X⟩◁G) = CoreGZG(X).



PART II 41

Proof. The proof of (1) is straightforward. For (2), the inclusion ⊆ follows
from (1) since ⟨X⟩ ⊆ ⟨X⟩◁G, so it suffices to show that H ⊆ ZG(⟨X⟩◁G)
whenever H ⊴ G and H ⊆ ZG(X). Now we have X ⊆ ZG(H) ⊴ G by (1), so
⟨X⟩◁G ⊆ ZG(H), proving the claim.

Let [G : H] denote the index of a subgroup H ≤ G in G. Recall the following
well-known properties:

if G ≥ H1 ≥ H2, then [G : H2] = [G : H1] [H1 : H2] ; (2.1)

if H1,H2 ≤ G, then [G : H1] ≥ [H2 : H1 ∩H2] . (2.2)

From these properties it is easy to deduce that

if H1,H2 ≤ G and [G : H2] <∞, then the followings are equivalent:

[G : H1] <∞; [G : H1 ∩H2] <∞; [H2 : H1 ∩H2] <∞. (2.3)

Lemma 2.2. Let H ≤ G. Then [G : H] <∞ if and only if [G : CoreGH] <∞.

Proof. The only nontrivial part is the “only if” part. Let G =
⊔n
i=1Hgi (where

n = [G : H] < ∞) be a decomposition into cosets. Then CoreGH =
∩n
i=1H

gi .
Now for 1 ≤ k ≤ n, two subgroups Hgk and H have the same (finite) index in G,

so the subgroup
∩k
i=1H

gi has finite index in
∩k−1
i=1 H

gi by (2.2). Now iterative
use of (2.1) yields the desired conclusion.

We say that an element g ∈ G is almost central in G if [G : ZG(g)] <∞.

Corollary 2.3. Let G be a group and g ∈ G.

1. We have [G : ZG(⟨g⟩◁G)] <∞ if and only if g is almost central in G.

2. If g is almost central in G, then all h ∈ ⟨g⟩◁G are almost central in G.

Proof. The claim (1) follows immediately from Lemmas 2.1 (2) and 2.2, and (2)
is a consequence of (1) and the observation ZG(h) ≥ ZG(⟨g⟩◁G).

Lemma 2.4. Let G1 ⋊G2 be a semidirect product of two groups, and suppose
that Hi ≤ Gi has finite index in Gi for i = 1, 2. Then [G1 ⋊G2 : H1H2] <∞.

Proof. Decompose Gi as
⊔ri
j=1 gi,jHi, where ri <∞. Then

G1 ⋊G2 =
∪

1≤j≤r1, 1≤k≤r2

g1,jH1g2,kH2 =
∪
j,k

g1,jg2,kH
g2,k
1 H2.

Since [G1 : H1] < ∞, we have
[
H
g2,k
1 : H

g2,k
1 ∩H1

]
< ∞ by (2.2). Let H

g2,k
1 =⊔nk

ℓ=1 hk,ℓ(H
g2,k
1 ∩H1) (where nk < ∞) be the corresponding coset decomposi-

tion. Then we have

G1 ⋊G2 =
∪
j,k

nk∪
ℓ=1

g1,jg2,khk,ℓ(H
g2,k
1 ∩H1)H2 ⊆

∪
j,k,ℓ

g1,jg2,khk,ℓH1H2,

where the last union is taken over the finite set of the (j, k, ℓ), as desired.
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2.2 Coxeter groups

This subsection summarizes some basic definitions and facts for Coxeter groups,
which are found in the book [9] unless otherwise noticed, and give further results
and remarks. Some more preliminaries focusing into the two topics, essential
elements and fixed-point subgroups by Coxeter graph automorphisms, will be
given in Sections 4 and 5.

Definitions

A pair (W,S) of a group W and its generating set S is called a Coxeter system
if W admits the following presentation

W = ⟨S | (st)ms,t = 1 for all s, t ∈ S such that ms,t <∞⟩,

where the ms,t ∈ {1, 2, . . . } ∪ {∞} are symmetric in s, t ∈ S, and ms,t = 1 if
and only if s = t. A group W is called a Coxeter group if some S ⊆ W makes
(W,S) a Coxeter system. The cardinality |S| of S is called the rank of (W,S)
or of W , which is not assumed to be finite unless otherwise noticed. Now ms,t

coincides with the order of st ∈ W , so the system (W,S) determines uniquely
(up to isomorphism) the Coxeter graph denoted by Γ, that is a simple unoriented
graph with vertex set S in which every two vertices s, t ∈ S is joined by an edge
with label ms,t if and only if ms,t ≥ 3. (By convention, the label ‘3’ is usually
omitted when drawing a picture.)

An automorphism of the Coxeter graph Γ is briefly called a graph automor-
phism of (W,S) or of W . Let Aut Γ denote the set of the graph automorphisms
of W . Then mτ(s),τ(t) = ms,t for τ ∈ AutΓ and s, t ∈ S, so this τ extends
uniquely to an automorphism of the group W denoted also by τ .

For I ⊆ S, letWI denote the standard parabolic subgroup ⟨I⟩ ofW generated
by I. A subgroup conjugate to someWI is called a parabolic subgroup. (In some
context, the term “parabolic subgroups” signifies the subgroups WI themselves
only.) Now (WI , I) is also a Coxeter system, of which the Coxeter graph ΓI is
the full subgraph of Γ with vertex set I. If I is (the vertex set of) a connected
component of Γ, then WI is called an irreducible component of (W,S) (or of
W , if the set S is obvious from the context). If Γ is connected, then (W,S)
and W are called irreducible. Now W is the (restricted) direct product of the
irreducible components; however, each irreducible component is not necessarily
directly indecomposable as an abstract group.

Regarding the standard parabolic subgroups, it is well known that

if I, J ⊆ S, then WI ∩WJ =WI∩J . (2.4)

Then, since each w ∈ W is a product of a finite number of elements of S, it
follows that W possesses a unique minimal standard parabolic subgroup con-
taining w, called the standard parabolic closure of w and denoted here by SP(w).
Now the support supp(w) ⊆ S of w ∈W is defined by

Wsupp(w) = SP(w).

On the other hand, we have the following fact for parabolic subgroups:

Proposition 2.5 (See e.g. [7, Corollary 7]). Let I, J ⊆ S and w ∈ W .
Then WI ∩ (WJ)

w = (WK)u for some K ⊆ I and u ∈ WI . Moreover, we have
K ̸= I whenever WI ̸= (WJ)

w.
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This proposition denies the existence of an infinite, properly descending se-
quence (WI1)

w1 ⊃ (WI2)
w2 ⊃ · · · of parabolic subgroups with I1 finite, since it

enables us to choose the Ii inductively as descending properly. ThusW also pos-
sesses a unique minimal parabolic subgroup containing a given w ∈ W , called
the parabolic closure of w and denoted here by P(w).

Let ℓ denote the length function of (W,S), namely ℓ(w) (where w ∈ W ) is
the minimal length n of an expression w = s1 · · · sn with si ∈ S (so ℓ(w−1) =
ℓ(w)). Such an expression of w with n = ℓ(w) is called a reduced expression.
The following three well-known properties will be used in the arguments below,
without references:

if w ∈W and s ∈ S, then ℓ(ws) = ℓ(w)± 1;
for I ⊆ S, the length function ℓI of (WI , I) agrees with ℓ on WI ;
supp(w) = {s1, . . . , sn} for any reduced expression w = s1 · · · sn.

Theorem 2.6 (Exchange Condition). Let w = s1 · · · sn ∈W , si ∈ S and t ∈
S with ℓ(wt) < ℓ(w). Then there exists an index i such that wt = s1 · · · ŝi · · · sn
(si omitted).

Geometric representation and root systems

Let V denote the geometric representation space ofW , that is an R-vector space
equipped with the basis Π = {αs | s ∈ S} and the symmetric bilinear form ⟨ , ⟩
determined by

⟨αs, αt⟩ = − cos
π

ms,t
if ms,t <∞ and ⟨αs, αt⟩ = −1 if ms,t = ∞.

W acts faithfully on V by s · v = v − 2⟨αs, v⟩αs for s ∈ S and v ∈ V , making
⟨ , ⟩ W -invariant. Let Φ = W · Π, Φ+ = Φ ∩ R≥0Π and Φ− = −Φ+ denote,
respectively, the root system, the set of positive roots and the set of negative
roots. We have Φ = Φ+ ⊔ Φ−, and Φ consists of unit vectors with respect to
⟨ , ⟩. For any subset Ψ ⊆ Φ and w ∈W , write

Ψ+ = Ψ ∩ Φ+, Ψ− = Ψ ∩ Φ− and Ψ [w] = {γ ∈ Ψ+ | w · γ ∈ Φ−}.

Then ℓ(w) coincides with the cardinality |Φ [w] | of Φ [w], so w = 1 if and only
if Φ [w] = ∅. This implies a further property that

for w, u ∈W, we have w = u if and only if Φ [w] = Φ [u] . (2.5)

For any v =
∑
s∈S csαs ∈ V , the support supp(v) ⊆ S of v is defined by

supp(v) = {s ∈ S | cs ̸= 0}.

For I ⊆ S, put

ΠI = {αs | s ∈ I} ⊂ Π, VI = spanRΠI ⊂ V and ΦI = Φ ∩ VI .

Then it is well known (see e.g. [8, Lemma 4]) that

ΦI =WI ·ΠI , (2.6)

the root system of a Coxeter system (WI , I). Note that Φ [w] ⊆ Φsupp(w) for
w ∈ W . Moreover, it is well known that for I ⊆ S, any w ∈ W admits a
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unique decomposition w = wIwI with wI ∈ WI and ΦI [w
I ] = ∅. Note that

Φ [wI ] = ΦI [w]. This implies that

if w ∈W and s ∈ supp(w), then s ∈ supp(γ) for some γ ∈ Φ [w] (2.7)

(if this fails, then Φ [w] = ΦI [w] = Φ [wI ] where I = supp(w) ∖ {s}, so w =
wI ∈ WI by (2.5), contradicting the definition of supp(w)). Now we prepare a
technical lemma which will be used in later sections.

Lemma 2.7. Let 1 ̸= w ∈W and I = supp(w) ⊆ S.

1. Let γ ∈ Φ+, J = supp(γ) and suppose that I ∩ J = ∅ and J is adjacent to
I in the Coxeter graph Γ. Then w · γ ∈ Φ+

I∪J ∖ ΦJ .

2. Suppose that s ∈ S ∖ I is adjacent to I in Γ. Then supp(ws) = I ∪ {s}.

3. For i = 1, 2, let 1 ̸= ui ∈ W , Ji = supp(ui) and suppose that Ji ∩ I = ∅
and J2 is adjacent to I in Γ. Then u1wu2 ̸= w.

Proof. (1) Since the action of w ∈WI leaves the coefficient in γ of any αs ∈ ΠJ
unchanged, it suffices to show that w · γ ̸= γ. Take s ∈ I adjacent to J , and
β ∈ Φ+

I such that s ∈ supp(β) and w · β ∈ Φ−
I (see (2.7)). This choice yields

that ⟨β, γ⟩ < 0 and ⟨w · β, γ⟩ ≥ 0 since I ∩ J = ∅, showing that w · γ ̸= γ since
⟨ , ⟩ is W -invariant.
(2) Put J = supp(ws). Then we have w = (ws)s ∈WJ∪{s} and so I ⊆ J ∪ {s},
therefore I ⊆ J since s ̸∈ I. On the other hand, ws ·αs = −w ·αs ∈ Φ−∖{−αs}
by (1), so we have ws · αs ∈ Φ− and s ∈ J . Thus we have I ∪ {s} ⊆ J , while
ws ∈WI∪{s}, proving the claim.

(3) Take s ∈ J2 adjacent to I, and γ ∈ Φ [u2
−1 ] ⊆ Φ+

J2
with s ∈ supp(γ) (see

(2.7)), so β = u2
−1 · γ lies in Φ−

J2
. Then w · β ∈ Φ− since I ∩ J2 = ∅, while

wu2 · β = w · γ ∈ Φ+ ∖ ΦS∖I by (1) and so u1wu2 · β ∈ Φ+ since J1 ∩ I = ∅.
Thus we have u1wu2 ̸= w as desired.

For γ = w · αs ∈ Φ, let sγ = wsw−1 denote the reflection along the root γ
acting on V by sγ · v = v − 2⟨γ, v⟩γ for v ∈ V . Let

SW =
∪
w∈W

wSw−1

denote the set of the reflections in W , which depends on the set S in general.

Lemma 2.8. Let W be an infinite irreducible Coxeter group. Then the orbit
W · γ ⊆ Φ of any root γ ∈ Φ is an infinite set.

The proof of this lemma requires the following two results:

Proposition 2.9 ([4, proof of Proposition 4.2]). Let W be an infinite
irreducible Coxeter group of finite rank, and I ⊂ S a proper subset. Then
|Φ∖ ΦI | = ∞.

Proposition 2.10 ([15, Lemma 2.9]). Let w ∈W and suppose that I, J ⊆ S
are disjoint subsets such that w · ΠI = ΠI and w · ΠJ ⊆ Φ−. Then we have
ΦI∪J [w] = Φ+

I∪J ∖ ΦI .
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Proof of Lemma 2.8. First we show that, for any β ∈ Φ+, we have ⟨β, αs⟩ < 0
for some s ∈ S. This is obvious if |S| = ∞ (choose s ∈ S ∖ supp(β) adjacent
in the infinite connected graph Γ to the finite set supp(β)), so suppose that
|S| < ∞. Assume contrary that ⟨β, αs⟩ ≥ 0 for all s ∈ S. Put I = {s ∈
S | ⟨β, αs⟩ = 0} ̸= S (note that ⟨β, β⟩ = 1), so sβ fixes ΦI pointwise. Then
for any s ∈ S ∖ I, we have ⟨β, αs⟩ > 0 and sβ · αs = αs − 2⟨β, αs⟩β ∈ Φ−.
Thus Proposition 2.10 implies that Φ [sβ ] = Φ+ ∖ ΦI , which has cardinality
ℓ(sβ) < ∞, contradicting Proposition 2.9. Hence the claim of this paragraph
holds.

For the lemma, we may assume that γ ∈ Φ+. Then by taking s ∈ S with
⟨γ, αs⟩ < 0 and putting γ1 = s ·γ, we have γ1 ̸= γ and γ1−γ ∈ R≥0Π. Iterating,
we obtain an infinite sequence γ0 = γ, γ1, γ2, . . . of distinct positive roots in
W · γ inductively, proving the claim.

We also prepare a technical lemma.

Lemma 2.11. Let β, γ ∈ Φ+, I ⊆ S and suppose that supp(γ) ̸⊆ supp(β) and
supp(γ) ̸⊆ I. Then sγ ̸∈ sβWI .

Proof. Assume contrary that sγ = sβw for some w ∈ WI . Then we have
w · γ = sβsγ · γ = −sβ · γ, while w · γ ∈ Φ+ and sβ · γ ∈ Φ+ by the hypothesis.
This is a contradiction.

Finite, affine and hyperbolic Coxeter groups

The finite irreducible Coxeter groups are completely classified, as summarized
in [9, Chapter 2]. If I ⊆ S and WI is finite, let w0(I) denote the unique
longest element of WI , which is an involution and maps ΠI onto −ΠI . If WI is
irreducible (but not necessarily finite) and 1 ̸= w ∈ WI , then we have Iw = I
if and only if WI is finite and w = w0(I). This implies the well-known fact
that the center Z(WI) of an arbitrary WI is an elementary abelian 2-group.
Moreover, if WI is finite but not irreducible, then w0(I) = w0(I1) · · ·w0(Ik)
where WI1 , . . . ,WIk are the irreducible components of WI . It is well known
that, if w ∈WI and ℓ(ws) < ℓ(w) for all s ∈ I, then WI is finite and w = w0(I).

Theorem 2.12 ([17, Theorem A]). For any involution w ∈ W , there is a
finite WI (where I ⊆ S) such that w is conjugate to w0(I) and w0(I) ∈ Z(WI).

The cases where |WI | <∞ and w0(I) ∈ Z(WI) are determined as well.
LetW be an irreducible Coxeter group of finite rank. ThenW is called affine

or compact hyperbolic, respectively, if the bilinear form ⟨ , ⟩ satisfies that (1) it
is positive semidefinite or nondegenerate, respectively; (2) it is not positive
definite; and (3) its restriction to any proper subspace VI ⊂ V (where I ⊂
S) is positive definite. (See [9, Section 6.8] for another definition of compact
hyperbolicness and its equivalence to ours.) The next proposition says that
these are the minimal non-finite irreducible Coxeter groups.

Proposition 2.13. Let W be a Coxeter group of finite rank.

1. ([9, Theorem 6.4]) We have |W | <∞ if and only if ⟨ , ⟩ is positive definite.

2. If |W | = ∞ and every proper standard parabolic subgroup WI ⊂ W is
finite, then W is irreducible, and is either affine or compact hyperbolic.
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Proof. For (2), it is easy to show that this W is irreducible. Thus by (1) and
the definition of compact hyperbolicness, it now suffices to show that this ⟨ , ⟩ is
positive semidefinite if it is degenerate. This follows from the observation that
now V is the sum of a positive definite subspace VS∖{s} (where s ∈ S; see (1)) of

codimension 1 and the nonzero radical V ⊥ of V (note that V ⊥ ̸⊆ VS∖{s}).

The affine and the compact hyperbolic Coxeter groups are completely deter-
mined in [9, Chapter 2 and Section 6.9]. See the lists in Figures 1 and 2, where
we abbreviate si to i. Note that the names of the compact hyperbolic Coxeter
groups given here are not standard and are very temporary.

On the other hand, it is shown in [15, Proposition 4.14] that the infinite
irreducible Coxeter groups of infinite ranks, in which every proper standard
parabolic subgroup of finite rank is finite, are exhausted by Figure 3.

On centralizers and normalizers in Coxeter groups

The centralizers and the normalizers in Coxeter groups play important roles in
our arguments. Here we summarize some properties which we require.

Lemma 2.14 (e.g. [15, Lemma 4.4]). Let WI be a finite standard parabolic
subgroup of W such that w0(I) ∈ Z(WI). Then the centralizer ZW (w0(I))
coincides with the normalizer NW (WI) of WI in W .

Proposition 2.15. Let W be an infinite irreducible Coxeter group. Then no
involution in W is almost central in W (see Section 2.1 for terminology).

Proof. First, if s ∈ S, then W acts transitively on the conjugacy class of s in
W , which is an infinite set (Lemma 2.8), so the kernel of this action is ZW (s)
and has infinite index in W . Thus s is not almost central.

By Theorem 2.12, it suffices to prove that the longest element w0(I) of any
finiteWI ̸= 1 with w0(I) ∈ Z(WI) is not almost central. Note that ZW (w0(I)) =
NW (WI) (Lemma 2.14), while [NW (WI) : ZW (WI)] < ∞ since |WI | < ∞. By
the first paragraph, ZW (s) has infinite index in W for any s ∈ I, so do ZW (WI)
(see (2.1)) and ZW (w0(I)), as desired.

Finally, in [15, Theorem 3.1], the centralizer of a normal subgroup generated
by involutions in an irreducible W is completely determined. The following
observation is an easy consequence of the result.

Proposition 2.16 (See [15, Theorem 3.1]). Suppose that W is an arbitrary
Coxeter group, and H ≤ W is a subgroup generated by involutions which is
normal in W . Then ZW (H) is also generated by involutions.

3 The main theorem and its applications

The first subsection of this section summarizes the main theorem of this paper
(Theorem 3.1) and its corollary (Theorem 3.2) together with some notational
remarks. The second subsection consists of some examples, and explains what
our theorem yields in these cases. Finally, the third subsection is devoted to
an application of our theorem to the analysis of the isomorphism problem of
Coxeter groups (the problem of deciding which Coxeter groups are isomorphic
as abstract groups), which is the original motive of this research.
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3.1 Main theorem

First we prepare some notations. Let W be an arbitrary Coxeter group, and G
a group acting on W via a map ρ : G→ AutΓ, g 7→ ρg, yielding the semidirect
product W ⋊G with respect to ρ. Let Cfin

W and Cinf
W be the set of the finite and

the infinite irreducible components of W , respectively, and CW = Cfin
W ∪ Cinf

W .
Then the G-action permutes the elements of each of CW , Cfin

W and Cinf
W . Let

ρ† : G → Sym(Cfin
W ), g 7→ ρ†g, denote the induced permutation representation of

G on Cfin
W . For C ⊆ CW , let W (C) be the product of the irreducible components

in C, and put Wfin = W (Cfin
W ) and Winf = W (Cinf

W ). Moreover, for an arbitrary
group H, let HACI be the set of the almost central involutions in H (see Section
2.1 for the terminology).

Now our main theorem is as follows:

Theorem 3.1. Here we adopt the above notations.

1. Let wg be an involution in W ⋊ G with w ∈ W and g ∈ G. Then wg is
almost central in W ⋊ G if and only if w ∈ W (Oρ) and g ∈ Gρ ∪ {1},
where Gρ is the set of all h ∈ GACI satisfying the following condition:

ρh is identity on all irreducible components of W

except a finite number of finite irreducible components, (3.1)

and Oρ ⊆ Cfin
W is the union of the ρ†(G)-orbits with finite cardinalities.

2. We have
⟨(W ⋊G)ACI⟩ =W (Oρ)⋊ ⟨Gρ⟩.

Note that, assuming Theorem 5.1 below, the condition (3.1) is equivalent to
the finiteness of the index [W : W ρg ] of the fixed-point subgroup W ρg by ρg.
The proof of Theorem 3.1 is postponed until Section 6.

Since the subgroup ⟨HACI⟩ of a group H is determined by the isomorphism
type of H only, we obtain the following consequence.

Theorem 3.2. For i = 1, 2, let Wi ⋊Gi be a semidirect product (via ρi : Gi →
AutΓi) as in Theorem 3.1, and f :W1 ⋊G1

∼→W2 ⋊G2 a group isomorphism.
Then f maps W1(Oρ1)⋊ (G1)ρ1 onto W2(Oρ2)⋊ (G2)ρ2 .

3.2 Examples

First we observe that, if |G| < ∞, then every ρ†(G)-orbit in Cfin
W is finite, so

Oρ = Cfin
W in Theorem 3.1, therefore ⟨(W ⋊ G)ACI⟩ = Wfin ⋊ Gρ and Gρ is

generated by all involutions h ∈ G satisfying (3.1).

Example 3.3. Let W be an arbitrary Coxeter group. Then, by putting G = 1,
Theorem 3.1 shows that ⟨WACI⟩ = Wfin. Thus if f : W

∼→ W ′ is a group iso-
morphism between two Coxeter groups, then f(Wfin) = W ′

fin; hence, by taking
W ′ = W and f = idW , it follows that the factor Wfin is independent on the
choice of the generating set S ⊆W .

Example 3.3 is slightly generalized as follows:
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Example 3.4. Let W wrSn = Wn ⋊ Sn denote the wreath product of W with
the symmetric group Sn on n letters, so σ ∈ Sn acts on (w1, . . . , wn) ∈ Wn by
ρσ(w1, . . . , wn) = (wσ−1(1), . . . , wσ−1(n)). Then Theorem 3.1 implies that

⟨(W wrSn)ACI⟩ =

{
W wrSn if |W | <∞;

Wfin
n if |W | = ∞.

Indeed, if |W | = ∞, then W possesses either an infinite irreducible component
or infinitely many finite irreducible components, so no non-identity σ ∈ Sn
satisfies the condition (3.1) in any case.

We say that an irreducible component WI of W has finite multiplicity in W
if W possesses only finitely many irreducible components with Coxeter graph
isomorphic to ΓI . Note that, even if |G| = ∞, the factor W (Oρ) in the theorem
contains all WI ∈ Cfin

W with finite multiplicities.

Example 3.5. Let G = AutΓ ∗ AutΓ be the free product of two copies of
AutΓ, and ρ : G → AutΓ the map obtained by forgetting the distinction of
the two factors AutΓ of G. Then Oρ is the set of all WI ∈ Cfin

W with finite
multiplicities, and Gρ = 1 since we have GACI = ∅ by properties of free products.
Roughly speaking, Theorem 3.1 extracts the finite irreducible components of W
with finite multiplicities in this manner.

For the final example, we prepare some further facts and notations. Let Γodd

denote the odd Coxeter graph of a Coxeter group W , which is the subgraph of
Γ obtained by removing all the edges with non-odd labels. It is well known (see
[9, Exercise 5.3]) that two orbits W · αs and W · αt (where s, t ∈ S) intersects
nontrivially if and only if s and t lie in the same connected component of Γodd.
Let S = S1 ⊔ S2 be a partition where both factors are unions of connected
components of Γodd, and Φ∼S1

=
∪
s∈S1

W · αs ⊆ Φ. Now a general theorem of
Vinay V. Deodhar [5] or of Matthew Dyer [6] shows that the subgroupW (Φ∼S1)
generated by the reflections sγ along γ ∈ Φ∼S1 , which is normal inW since Φ∼S1

is W -invariant, is a Coxeter group. Moreover, the set Φ∼S1
plays the role of

a root system of W (Φ∼S1
); for example, any non-identity w ∈ W (Φ∼S1

) sends
some γ ∈ Φ+

∼S1
to a negative root.

Now we show that W decomposes as W (Φ∼S1
) ⋊WS2

. First, if 1 ̸= w ∈
W (Φ∼S1

) ∩WS2
, then w · γ ∈ Φ− for some γ ∈ Φ+

∼S1
as mentioned above, and

γ ∈ ΦS2 since w ∈ WS2 . Now by (2.6), we have γ ∈ W · αs ∩W · αt for some
s ∈ S1 and t ∈ S2, contradicting the choice of the partition S = S1 ⊔ S2. Thus
we have W (Φ∼S1

) ∩WS2
= 1, while S ⊆ W (Φ∼S1

)WS2
generates W , yielding

the desired decomposition.
Moreover, this argument also shows that each s ∈ S2 preserves the set Φ+

∼S1

of positive roots of W (Φ∼S1
) (since αs ̸∈ Φ∼S1

), so also the set of simple roots
of W (Φ∼S1), therefore WS2 acts on W (Φ∼S1) as graph automorphisms. Thus
Theorem 3.1 yields the following observation:

Example 3.6. In the situation, suppose further that W is infinite and irre-
ducible. Then ⟨WACI⟩ = 1 (Example 3.3), while W (Φ∼S1

)(Oρ) contains all the
finite irreducible components of W (Φ∼S1) with finite multiplicities as mentioned
above. Since 1 = W (Φ∼S1)(Oρ) ⋊ (WS2)ρ (Theorem 3.2), it follows that no
finite irreducible component of W (Φ∼S1

) has finite multiplicity in W (Φ∼S1
).

In addition, if WS2
is finite, then we have W (Φ∼S1

)(Oρ) = W (Φ∼S1
)fin.

Now it follows that W (Φ∼S1
) possesses no finite irreducible component.
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3.3 Application to the isomorphism problem of Coxeter
groups

An important phase of the isomorphism problem of Coxeter groups is of deciding
whether a given group isomorphism f : W

∼→ W ′ between two Coxeter groups
W and W ′ (with generating sets S and S′, respectively) maps the set SW of

reflections in W onto that S′W ′
in W ′; or, whether the subset SW of W is

independent on the choice of S. Note that, as is shown in [2, Lemma 3.7], we

have f(SW ) = S′W ′
if and only if f(S) ⊆ S′W ′

. Roughly speaking, our result
below measures how f(s) differs from reflections for each s ∈ S, within a certain
compass. In most successful cases, the result is able to show that all f(s) are
reflections in W ′ (see Theorem 3.7).

Note that our results cover the case |S| = ∞ as well, in contrast with almost
all of the preceding results on the isomorphism problem which cover the case of
finite ranks only.

Preliminaries on centralizers and normalizers

The central tools of our argument are the centralizers ZW (WI) and the nor-
malizers NW (WI) of standard parabolic subgroups WI , which are described by
the author [14] in a general setting (note that the normalizers had already been
described by Brigitte Brink and Robert B. Howlett [3]). Here we summarize
some of the author’s results which we use.

Here we require the result only for the case that |WI | < ∞ and w0(I) ∈
Z(WI). Now ZW (WI) and NW (WI) admit the following decompositions:

ZW (WI) = (Z(WI)×W⊥I)⋊ YI and NW (WI) = (WI ×W⊥I)⋊ ỸI . (3.2)

Here W⊥I denotes the subgroup of W generated by the reflections in the set
ZW (WI) ∖ WI , which is a Coxeter group by a theorem of Deodhar [5] or of
Dyer [6]. Since Z(WI) is an elementary abelian 2-group, both Z(WI) ×W⊥I

and WI × W⊥I are also Coxeter groups. The factor ỸI of NW (WI) acts on
WI ×W⊥I as graph automorphisms, preserving the factor WI . The factor YI
of ZW (WI) is torsion-free and is the kernel of the induced action of ỸI on WI ,

so YI is normal and has finite index in ỸI since |WI | <∞.

The results

Let f : W
∼→ W ′ be a group isomorphism between two Coxeter groups W and

W ′ as above, and I ⊆ S a subset with |WI | < ∞ and w0(I) ∈ Z(WI). Our
temporal subject is the element f(w0(I)) ∈W ′. Since f(w0(I)) is an involution
in W ′ as well as w0(I), Theorem 2.12 allows us to assume for simplicity that
f(w0(I)) = w0(J) for some J ⊆ S′ with |W ′

J | <∞ and w0(J) ∈ Z(W ′
J). Let Y

′
J

and Ỹ ′
J denote the last factors of ZW ′(W ′

J) and of NW ′(W ′
J), respectively (see

(3.2)).
We start with a very simple observation: since the isomorphism f maps

w0(I) to w0(J), it also maps ZW (w0(I)) onto ZW ′(w0(J)), so the combination
of Lemma 2.14 and (3.2) yields the following isomorphism

f : (WI ×W⊥I)⋊ ỸI
∼−→ (W ′

J ×W ′⊥J)⋊ Ỹ ′
J . (3.3)
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Let ρ and ρ′ denote the maps representing the actions of ỸI and Ỹ ′
J in (3.3),

respectively. Then by (3.3) and the results in Section 3.3, Theorem 3.2 yields
the following isomorphism

f : (WI ×W⊥I)(Oρ)⋊ (ỸI)ρ
∼−→ (W ′

J ×W ′⊥J)(O′
ρ′)⋊ (Ỹ ′

J)ρ′ . (3.4)

Now the left and the right sides of (3.4) contain, as normal subgroups, WI and

W ′
J which are ρ(ỸI)-invariant and ρ′(Ỹ ′

J)-invariant, respectively. Thus if we
know much enough of the structure of the left side of (3.4), then we would be
able to say something about the variation of the set J , so about the property
of f(w0(I)). This is hopeful at least for individual cases, since [14] also gives a
method for computing the explicit structure of the decompositions (3.2).

From now, we assume further that ỸI = YI (this is satisfied if WI admits
no nontrivial graph automorphism). For an arbitrary group G, let GINV be the
set of the involutions in G, so ⟨GINV⟩ ⊴ G and ⟨GINV⟩ is determined by the
isomorphism type of G only as well as ⟨GACI⟩. Then, since both WI ×W⊥I and

W ′
J×W ′⊥J are generated by involutions and the torsion-free group YI possesses

no involution, we can derive from (3.3) the following isomorphism

f :WI ×W⊥I ∼−→ (W ′
J ×W ′⊥J)⋊G, where G = ⟨(Ỹ ′

J)INV⟩, (3.5)

by taking the ⟨(∗)INV⟩ of both sides. Now consider the centralizers of the normal
subgroups f−1(W ′

J) and W
′
J in the left and the right sides of (3.5), respectively,

which are also isomorphic via f . Since f−1(W ′
J) is generated by involutions,

Proposition 2.16 implies that the centralizer in the left side is also generated by
involutions, so is the centralizer in the right side. The latter is the intersection
of the right side of (3.5) and ZW ′(W ′

J) = (Z(W ′
J)×W ′⊥J)⋊ Y ′

J , that is

(Z(W ′
J)×W ′⊥J)⋊ (Y ′

J ∩G),

and all of its involutions are contained in the former factor since Y ′
J ∩ G is

torsion-free as well as Y ′
J . Thus it follows that Y ′

J ∩G = 1, so the G-action on
the finite group W ′

J is faithful, therefore G is also finite. Hence, as mentioned
in the first paragraph of Section 3.2, (3.5) and Theorem 3.2 yield the following
isomorphism

f :WI ×W⊥I
fin

∼−→ (W ′
J ×W ′⊥J

fin)⋊Gρ′ . (3.6)

This reduces our problem to the study of semidirect product decompositions of
Coxeter groups whose irreducible components are finite.

Finally, specializing to the case I = {s}, we obtain the following result.

Theorem 3.7. Let (W,S) be an arbitrary Coxeter system.

1. Suppose that s ∈ S, and W⊥s
fin is either trivial or generated by a sin-

gle reflection conjugate to s. Then f(s) ∈ S′W ′
for any Coxeter system

(W ′, S′) and any group isomorphism f :W
∼→W ′.

2. Suppose that every s ∈ S satisfies the hypothesis of (1). Then f(S) ⊆ S′W ′

for any Coxeter system (W ′, S′) and any group isomorphism f :W
∼→W ′,

so f preserves the set of reflections. Hence the set SW is determined by
W only and independent on the choice of S ⊆W .
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Proof. We only prove (1), since (2) follows immediately from (1) and the first
remark of Section 3.3. Now the above argument works for I = {s}, so it suffices
to deduce that |J | = 1, implying that f(s) = w0(J) ∈ S′ as desired. This is
immediately done if W⊥s

fin = 1, since J ̸= ∅ and now both sides of (3.6) have
cardinality 2.

Suppose that W⊥s
fin = ⟨t⟩ with t ∈ W conjugate to s. Then both sides of

(3.6) have cardinality 4. Thus if |J | ̸= 1, then it follows that J = {s′, t′} for
two commuting generators s′, t′ ∈ S′ and the right side of (3.6) is W ′

J itself,

so we have an isomorphism f : ⟨s⟩ × ⟨t⟩ ∼→ ⟨s′⟩ × ⟨t′⟩. Since we assumed that
f(s) = w0(J) = s′t′, it follows that f(t) is either s′ or t′, which cannot be
conjugate to f(s) = s′t′ in W ′, contradicting the choice of t. Hence |J | = 1.

Moreover, a forcecoming paper [13] of the author will describe for which
s ∈ S the hypothesis is indeed satisfied, and show that this case occurs very
frequently.

4 Essential elements and Coxeter elements

Krammer introduced in his Ph.D. thesis [10] the notion of essential elements of
Coxeter groups. An element w of a Coxeter group W is called essential in W
if the parabolic closure P(w) of w is W itself (see Section 2.2 for terminology).
Note that any W of infinite rank cannot possess an essential element, while a
Coxeter element s1s2 · · · sn of an infinite irreducible W of finite rank (where
S = {s1, s2, . . . , sn}) is always essential in W (see Theorem 4.1). Here we
summarize some properties of essential elements required in later sections, as
follows:

Theorem 4.1. Let W be an infinite irreducible Coxeter group of finite rank.

1. Any essential element of W has infinite order.

2. Let 0 ̸= k ∈ Z. Then w ∈W is essential inW if and only if wk is essential
in W .

3. If n = |S| and γ1, . . . , γn ∈ Φ are linearly independent, then sγ1 · · · sγn is
essential in W . Hence any Coxeter element of W is essential in W .

The claim (1) is an immediate consequence of a well-known theorem of
Jacques Tits, which says that any finite subgroup of a Coxeter group is contained
in a finite parabolic subgroup (see e.g. [1, Lemma 1.2] for a proof). On the other
hand, (2) and (3) are shown by Paris in his recent preprint [16]; however, he
proved (3) only for Coxeter elements though his idea is adaptable applicable to
the generalized version. Here we include proofs of (2) and (3) along Paris’ idea
for the sake of completeness.

For (2), we fixW and w as in the statement. For γ ∈ Φ, let σwγ = ((σwγ )n)n∈Z
be the infinite sequence of + and − such that (σwγ )n = ε if and only if wn ·γ ∈ Φε.
We define (σwγ )∞ (or (σwγ )−∞, respectively) to be ε ∈ {+,−} if (σwγ )n = ε (or
(σwγ )−n = ε, respectively) for all sufficiently large n. Following [10], we say that
γ is w-periodic if wn · γ = γ for some n ̸= 0. Now we include the proofs of the
following two lemmas for the sake of completeness.
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Lemma 4.2 (See [10, Proposition 5.2.2]). If γ ∈ Φ is not w-periodic, then
only finitely many sign-changes occur in the sequence σwγ .

Proof. By the hypothesis, all roots wn ·γ such that (σwγ )n ̸= (σwγ )n+1 are distinct
and contained in the finite set Φ [w] ∪ −Φ [w].

A root γ ∈ Φ is called w-odd (see [10]) if it is not w-periodic (so both (σwγ )±∞
are defined; see Lemma 4.2) and (σwγ )∞ ̸= (σwγ )−∞. A reflection sγ is called
w-odd if γ is w-odd.

Lemma 4.3 (See [10, Lemma 5.2.7]). For k ∈ Z∖{0}, a root of W is w-odd
if and only if it is wk-odd.

Proof. Note that γ ∈ Φ is w-periodic if and only if it is wk-periodic. Thus for

a non-w-periodic γ, all of (σwγ )±∞ and (σw
k

γ )±∞ are defined (Lemma 4.2) and
we have

(σw
k

γ )±∞ =

{
(σwγ )±∞ if k > 0;

(σwγ )∓∞ if k < 0,

respectively. Thus the claim follows.

Let P∞(w) denote the subgroup of W generated by the w-odd reflections.
The following result of [10] is crucial in our argument.

Proposition 4.4 (See [10, Corollary 5.8.7]). The parabolic closure P(w) is
a direct product of P∞(w) and a finite number of finite groups.

Moreover, the following result of the author [15] is also required. See also
[16, Theorem 4.1] for the case of finite ranks.

Proposition 4.5 ([15, Theorem 3.3]). If W is an infinite irreducible Coxeter
group, then W is directly indecomposable as an abstract group.

Corollary 4.6. Suppose that W is infinite and irreducible. Then w ∈ W is
essential in W if and only if P∞(w) =W .

Proof. The ‘if’ part is a consequence of Proposition 4.4. For the “only if” part,
assume that P(w) = W . Then Proposition 4.4 implies that W is the direct
product of P∞(w) and certain finite groups, whileW is directly indecomposable
(Proposition 4.5). Thus W must coincide with one of the direct factors, which
cannot be finite since |W | = ∞, so W = P∞(w) as desired.

Now the claim (2) of Theorem 4.1 follows easily from Lemma 4.3 and Corol-
lary 4.6, since the wk-odd reflections are precisely the w-odd reflections.

For the proof of (3), we prepare two lemmas. Here we say that (W,S) is
(non)degenerate to signify the (non)degenerateness of the bilinear form ⟨ , ⟩,
respectively.

Lemma 4.7 (See [16, Lemma 3.2]). Let W be a Coxeter group of finite rank.

Then there is a nondegenerate Coxeter system (W̃ , S̃) of finite rank such that

S ⊆ S̃ and W̃S =WS.

Proof. We put n = |S| and S = {s1, s3, . . . , s2n−1}, and apply the following

algorithm inductively for 1 ≤ k ≤ n, beginning with S̃ = S:
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if the Coxeter system (⟨Ik⟩, Ik) (where Ik = {si ∈ S̃ | i ≤ 2k})
is degenerate, add a new generator s2k to S̃ so that s2k−1s2k has

infinite order and s2k commutes with the other elements of S̃.

By computing the determinant of the matrix of the bilinear form with respect
to the basis {αsi}i, it is checked inductively that the Coxeter system (⟨Ik⟩, Ik)
will be nondegenerate when the k-th step is done. Hence the Coxeter system
(W̃ , S̃) = (⟨In⟩, In) obtained finally is the desired one.

Lemma 4.8. Any element of a proper standard parabolic subgroup WI of W
has a nonzero 1-eigenvector in V .

Proof. It suffices to consider the case that S = {s1, s2, . . . , sn} is finite and I =
S∖{sn}. Then, by definition of theW -action, the n-th row of the representation
matrix Aw of w ∈ WI relative to the basis Π of V is (0 0 · · · 0 1). Thus the
matrix In −Aw is singular as desired.

The following property is the essence of the claim (3) of Theorem 4.1.

Proposition 4.9. Let W be a Coxeter group with |S| = n < ∞, and suppose
that γ1, . . . , γn ∈ Φ are linearly independent. Then the standard parabolic closure
of sγ1 · · · sγn ∈W is W itself.

Proof. Assume contrary that w = sγ1 · · · sγn ∈ WI for a proper WI ⊂ W . We
may assume without loss of generality that (W,S) is nondegenerate, since we

can extend S to S̃ = S⊔{t1, . . . , tm} as in Lemma 4.7 and consider t1 · · · tmw ∈
W̃J instead of w, where J = S̃ ∖ (S ∖ I). Choose a nonzero v ∈ V such
that w · v = v (Lemma 4.8). Then, since (W,S) is nondegenerate, there is an
index i such that ⟨v, γi⟩ ̸= 0 and ⟨v, γj⟩ = 0 for all j > i. This implies that
w · v = sγ1 · · · sγi · v, which is the sum of sγi · v = v − 2⟨v, γi⟩γi and a linear
combination of γ1, . . . , γi−1. Now the property w · v = v yields an expression
of 2⟨v, γi⟩γi as a linear combination of the other γj , contradicting the linear
independence of γ1, . . . , γn. Hence the claim follows.

Now the claim (3) of Theorem 4.1 is easily proved, since the hypothesis of
Proposition 4.9 is invariant under the action of W . Hence the proof of Theorem
4.1 is concluded.

5 On the fixed-point subgroups by Coxeter graph
automorphisms

The subject of this section is the fixed-point subgroup

W τ = {w ∈W | τ(w) = w}

of a Coxeter group W by a graph automorphism τ ∈ AutΓ (as mentioned in
Section 2.2, the automorphism of W induced by τ is also denoted by τ). Let
τ\S denote the set of the ⟨τ⟩-orbits in S. Then it was shown by Steinberg
[18, Theorem 1.32] that W τ is a Coxeter group with respect to the following
generating set

S(W τ ) = {w0(I) ∈W | I ∈ τ\S and |WI | <∞}
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(see also [11] and [12]). Here we show the following properties of the subgroup
W τ , which will be used in the proof of the main theorem.

Theorem 5.1. Let W be an arbitrary Coxeter group and τ ∈ AutΓ. Then W τ

has finite index in W if and only if τ is identity on all irreducible components
of W except a finite number of finite irreducible components.

Theorem 5.2. Let W be an infinite irreducible Coxeter group and τ ∈ AutΓ.

1. If |WI | < ∞ for all I ∈ τ\S, then the Coxeter group W τ is also infinite
and irreducible with respect to the generating set S(W τ ).

2. Suppose that the hypothesis of (1) fails and every orbit I ∈ τ\S is finite.
Then for any 1 ̸= w ∈ W τ , there is an element u ∈ W of infinite order
such that ukwτ(u)−k ̸= w for all 0 ̸= k ∈ Z.

Note that the result on infiniteness of W τ in Theorem 5.2 (1) is mentioned
in [11, Section 5] without proof in a generalized setting.

5.1 Proof of Theorem 5.1

Our first step is to prove the following lemma:

Lemma 5.3. Let W be an (irreducible) affine or compact hyperbolic Coxeter

group with typeW ̸= Ã1 (see Section 2.2 for terminology). Suppose further that
AutΓ ̸= {idS}. Then for any idS ̸= τ ∈ AutΓ, there is an element w ∈ W of
infinite order such that ⟨w⟩ ∩ ⟨τ(w)⟩ = 1.

From now until the end of the proof of Lemma 5.3, we assume that S is
finite and the base field of the (finite-dimensional) geometric representation
space V is extended from R to C. Then the bilinear form ⟨ , ⟩ and the faithful
W -action also extend naturally so that W is embedded injectively in the group
of orthogonal linear transformations of V relative to ⟨ , ⟩. For λ ∈ C, let Vλ(w)
denote the λ-eigenspace of w ∈ W , and let V√1(w), V̸=

√
1(w) be the sum of

Vλ(w) where λ runs over the roots of unity, over C ∖ {0} except the roots of
unity, respectively. Then some elementary linear algebra shows that, if w ∈W ,
0 ̸= λ ∈ C and 0 ̸= k ∈ Z, then Vλ(wk) is the sum of Vµ(w) where µ ∈ C varies
subject to µk = λ. Hence we have V√1(w

k) = V√1(w) and V̸=
√
1(w

k) = V ̸=
√
1(w)

whenever k ̸= 0.
Now we have the following:

Lemma 5.4. Let w1, w2 ∈ W and suppose that either V√1(w1) ̸= V√1(w2) or
V ̸=

√
1(w1) ̸= V̸=

√
1(w2). Then ⟨w1⟩ ∩ ⟨w2⟩ = 1.

Proof. Assume contrary that k, ℓ ∈ Z ∖ {0} and w1
k = w2

ℓ. Then, in the first
case V√1(w1) ̸= V√1(w2), the above observation implies that

V√1(w1
k) = V√1(w1) ̸= V√1(w2) = V√1(w2

ℓ),

contradicting the assumption w1
k = w2

ℓ. The other case is similar.

Define actions of τ ∈ AutΓ on V and the dual space V ∗ with dual basis
{α∗

s | s ∈ S} (as linear transformations) by

τ(αs) = ατ(s) and τ(α
∗
s) = α∗

τ(s) for s ∈ S.
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Then τ preserves the bilinear form ⟨ , ⟩, and we have τ(w) · τ(v) = τ(w · v)
for w ∈ W and v ∈ V . Thus for 0 ̸= λ ∈ C and w ∈ W , it follows that
Vλ(τ(w)) = τ(Vλ(w)), V√1(τ(w)) = τ(V√1(w)) and V̸=

√
1(τ(w)) = τ(V ̸=

√
1(w)).

Moreover, we have τ(η)(τ(v)) = η(v) for η ∈ V ∗ and v ∈ V . Note also that
Ann(τ(V ′)) = τ(Ann(V ′)) for any subspace V ′ ⊆ V , where Ann(V ′) = {η ∈
V ∗ | η(V ′) = 0} denotes the annihilator of V ′.

By these observations, we have the following lemmas. In these lemmas, write
v⊥ = {v′ ∈ V | ⟨v, v′⟩ = 0} for v ∈ V .

Lemma 5.5. Let idS ̸= τ ∈ AutΓ, β, γ ∈ Φ+ and V ′ ⊂ V a subspace of
codimension 1. Suppose that ⟨β, γ⟩ = −1, V ′ ⊆ β⊥ ∩ γ⊥ and Ann(V ′) is not
τ -invariant. Then w = sβsγ ∈W has infinite order and ⟨w⟩ ∩ ⟨τ(w)⟩ = 1.

Proof. Since ⟨β, γ⟩ = −1, we have wk · β = (2k + 1)β + 2kγ ̸= β for all k ≥ 1,
showing that w has infinite order. Thus V√1(w) ̸= V , since otherwise we have

V1(w
k) = V and wk = 1 for a sufficiently large k, a contradiction. Now we have

V ′ ⊆ β⊥ ∩ γ⊥ ⊆ V1(w) ⊆ V√1(w) ⊂ V and dimV − dimV ′ = 1,

implying that V ′ = V√1(w). Since Ann(V ′) is not τ -invariant, we have

Ann(V√1(w)) ̸= τ(Ann(V√1(w))) = Ann(V√1(τ(w))),

so V√1(w) ̸= V√1(τ(w)). Hence Lemma 5.4 completes the proof.

Lemma 5.6. For i = 1, 2, let βi, γi ∈ Φ+ and V (i) ⊂ V a subspace of codi-
mension 3, and suppose that ⟨βi, γi⟩ < −1, V (i) ⊆ βi

⊥ ∩ γi⊥ and Cβ1 + Cγ1 ̸=
Cβ2 +Cγ2. Then each wi = sβi

sγi ∈W has infinite order and ⟨w1⟩ ∩ ⟨w2⟩ = 1.

Proof. Put vi
± = (−ci ±

√
c2i − 1)βi + γi and λi

± = 2c2i − 1 ∓ 2ci
√
c2i − 1,

respectively, where ci = ⟨βi, γi⟩. Then a direct computation shows that wi ·
vi

± = λi
±vi

± and |λi±| ̸= 1, respectively, and λi
+λi

− = 1, so wi has infinite
order. Moreover, since βi

⊥∩γi⊥ ⊆ V1(wi), the hypothesis implies that dimV −
dimV1(wi) ≤ 3, so the characteristic polynomial χwi(x) = det(x · idV − wi) of
wi decomposes as

χwi
(x) = (x− 1)|S|−3(x− λi

+)(x− λi
−)(x− µi) where µi ∈ C.

Now we have ±1 = detwi = ±χwi
(0) = ±λi+λi−µi since wi is a product of

involutions, so µi = ±1. Thus V̸=
√
1(wi) = Cvi+ + Cvi− = Cβi + Cγi, so

V ̸=
√
1(w1) ̸= V̸=

√
1(w2) by the hypothesis. Hence Lemma 5.4 completes the

proof.

Corollary 5.7. Let idS ̸= τ ∈ AutΓ, β, γ ∈ Φ+ and V ′ ⊂ V a subspace of
codimension 3. Suppose that ⟨β, γ⟩ < −1, V ′ ⊆ β⊥ ∩ γ⊥ and Cβ + Cγ is not
τ -invariant. Then w = sβsγ ∈W has infinite order and ⟨w⟩ ∩ ⟨τ(w)⟩ = 1.

Proof. Note that τ(Cβ+Cγ) = Cτ(β)+Cτ(γ) and τ(sβsγ) = sτ(β)sτ(γ). Then
the claim follows from Lemma 5.6, where β1 = β, γ1 = γ, β2 = τ(β), γ2 = τ(γ),
V (1) = V ′ and V (2) = τ(V ′).
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Table 1: List for the proof of Lemma 5.3, affine case

W τ β γ Ann(V ′)

Ãn (n ≥ 2) τ(1) ̸= 1 α1 011 · · · 11 2α∗
1 − α∗

2 − α∗
n+1

B̃n (n ≥ 3) α1 0122 · · · 22
√
2 2α∗

1 − α∗
3

C̃n (n ≥ 2) α1 0
√
2
√
2 · · ·

√
2
√
21

√
2α∗

1 − α∗
2

D̃n (n ≥ 4) τ(1) ̸= 1 α1 0122 · · · 2211 2α∗
1 − α∗

3

Ẽ6 τ(1) ̸= 1 α1 0232121 2α∗
1 − α∗

2

Ẽ7 α1 02343212 2α∗
1 − α∗

2

Table 2: List for the proof of Lemma 5.3, compact hyperbolic case

W τ β γ V ′

X1 α1 01111 α3, α4

X2(m1,m2) α4 s1s2 · α3 α2

X3(m1,m2,m3) τ(3) ̸= 3 α3 s2 · α1 ∅
Y1 α4 α̃4 α3

Y2 α5 α̃5 α1, α2

Y3(5) α5 α̃5 α1, α2

Y4(5) α4 α̃4 α1

Y5 α4 α̃4 α1

Y6(m,m) (m ≥ 5) α3 s2 · α1 ∅

Proof of Lemma 5.3. This lemma is deduced from Lemma 5.5 for affine case
and Corollary 5.7 for compact hyperbolic case, by constructing the β, γ and V ′

as in Tables 1 and 2 (see also Figures 1 and 2). Note that β + γ is the null root
of W in an affine case. If |AutΓ| ≥ 3, we assume by symmetry that τ satisfies
the condition in the second column of the lists, where we abbreviate si to i. In
the next two columns, a word c1c2 · · · cr (where r = |S|) signifies

∑r
i=1 ciαi ∈ V

and α̃i denotes the unique highest root of the finite Coxeter group WS∖{si}.
Finally, the last column gives a basis of V ′ or of Ann(V ′).

Now we cancel the assumption |S| < ∞ placed above. To prove Theorem
5.1, note that if τ ∈ AutΓ leaves WI ⊆W invariant, then WI possesses its own
fixed-point subgroup WI

τ which coincides with W τ ∩WI .

Proof of Theorem 5.1. The only nontrivial part is the “only if” part, so we
prove it. Note that, by (2.2), the hypothesis implies that

[G :W τ ∩G] <∞ for any subgroup G ≤W, (5.1)

so W τ ∩G ̸= 1 for every infinite subgroup G of W .

Step 1: if I ⊆ S is finite, and WI is infinite and irreducible, then
τ(WI) =WI .

Assume contrary that τ(I) ̸= I, or equivalently I ̸⊆ τ(I). Then we have
I ∩ τ(I) ̸= I, while W τ ∩WI ⊆ WI ∩Wτ(I) = WI∩τ(I) (see (2.4)), therefore no

essential element in WI lies in W
τ . Hence by Theorem 4.1, any power wk (with

k ̸= 0) of a Coxeter element w of WI has infinite order and is not in W τ , so we
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have W τ ∩ ⟨w⟩ = 1, contradicting (5.1).

Step 2: the claim holds if W has finite rank.

Now it suffices to show that τ is identity on every infinite irreducible compo-
nent WI . Moreover, since (by Step 1) τ(WI) =WI and (by (5.1)) [WI :WI

τ ] <
∞, it actually suffices to consider the case WI =W , namely W itself is infinite
and irreducible. In this case, our aim is to show that τ is identity.

First, we consider the case that W is not of type Ã1 and every proper
WJ ⊂ W is infinite. Then by combining Proposition 2.13 (2) and Lemma 5.3,
we have ⟨w⟩ ∩ ⟨τ(w)⟩ = 1 for some w ∈ W of infinite order whenever τ ̸= idS .
This implies that W τ ∩ ⟨w⟩ = 1, contradicting (5.1). Thus τ must be identity

now, as desired. On the other hand, the claim also holds if typeW = Ã1, since
now we have W τ = 1 whenever τ ̸= idS .

Finally, we consider the remaining case that a proper WJ ⊂ W is infinite.
We may assume that J = S ∖ {s} for some s ∈ S, so it suffices to show that
τ |J = idJ . Since |S| < ∞, we may assume further that WJ is irreducible:
indeed, if WJ is not irreducible and WK is an infinite irreducible component of
WJ (which exists since |J | < ∞), then the set S ∖ {s′}, where s′ is an element
of J ∖ K farthest from s in Γ, possesses the desired properties. Now Step 1
implies that τ(J) = J , so [WJ :WJ

τ ] < ∞ (by (5.1)), therefore the induction
on |S| shows that τ |J = idJ , as desired.

Step 3: if I ∈ τ\S, then |I| <∞.

Assume contrary that |I| = ∞. Then for any w ∈ WI with J = supp(w)
(finite and) nonempty, we have J ̸= I and so J ̸= τ(J) (since I is a ⟨τ⟩-orbit),
therefore J ̸⊆ τ(J) and w ̸∈ Wτ(J). This means that τ(w) ̸= w. Thus we have
W τ ∩WI = 1, contradicting (5.1).

Step 4: τ is identity on every infinite irreducible component WI .

First, we consider the case that a (not necessarily proper)WJ ⊆WI of finite
rank is infinite. We can take an irreducible WJ . Now assume contrary that τ
is not identity on WI , so τ(s) ̸= s for some s ∈ I. Then, since WI is irreducible
and |J | < ∞, an irreducible WK ⊆ WI of finite rank contains both WJ and s.
This WK is also infinite, so τ(K) = K (Step 1), therefore [WK :WK

τ ] <∞ by
(5.1). Now Step 2 implies that τ is identity on WK , contradicting the choice of
s. Hence the claim holds in this case.

In the remaining case, WI is of type A∞, A±∞, B∞ or D∞ (see Figure 3)
as mentioned in Section 2.2. Note that τ(WI) = WI , since otherwise we have
W τ ∩WI = 1, contradicting (5.1). Now the claim is trivial in the first and the
third cases where Aut Γ = {idS}.

In the case typeWI = A±∞, if τ is not identity on WI , then Step 3 implies
that τ is a turning of the infinite path ΓI , so there is an infinite J ⊂ I with
J ∩ τ(J) = ∅. Now we have W τ ∩WJ = 1, contradicting (5.1). This verifies the
claim.

Finally, in the case typeWI = D∞, if τ is not identity on WI , then τ(s1) =
s2, τ(s2) = s1 and τ fixes J = I ∖ {s1, s2} pointwise. Put K = J ∪ {s2}. Since
any w ∈ WK satisfies that τ(w) ∈ WJ∪{s1}, we have W τ ∩ WK = WJ (see

(2.4)), so [WK :WJ ] < ∞ by (5.1). However, putting γk =
∑k
i=2 αsi ∈ Φ+

K for
k ≥ 3, Lemma 2.11 implies that all of the infinitely many reflections sγk belong
to distinct cosets in WK/WJ . This contradiction yields the claim.
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Step 5: conclusion.

Assume that the “only if” part fails. Then by Step 4, W possesses infinitely
many finite irreducible components WI1 ,WI2 , . . . on which τ is not identity.
Since every ⟨τ⟩-orbit is finite (Step 3), there is an infinite sequence s1, s2, . . . of
distinct elements of S such that J = {si | i ≥ 1} satisfies that τ(J)∩J = ∅; take
s1 as any element of I1 with τ(s1) ̸= s1, and if s1, . . . , sk are already chosen, then
take sk+1 ∈ Ii where Ii does not intersect with the ⟨τ⟩-orbits of the preceding sj
and τ(sk+1) ̸= sk+1. Now we have W τ ∩WJ = 1 and |WJ | = ∞, contradicting
(5.1). Hence the proof is concluded.

5.2 Proof of Theorem 5.2

We start with some preliminaries. Let τ ∈ AutΓ and w ∈ W τ , and denote the
support of w as an element of (W τ , S(W τ )) by suppτ (w). The following (part
of a) result of [12] shows a relation between supp(w) and suppτ (w).

Proposition 5.8 (See [12, Proposition 3.3]). Let w = w0(I1) · · ·w0(Ir)
(where w0(Ii) ∈ S(W τ )) be a reduced expression of w ∈ W τ with respect to
S(W τ ). Then any expression of w obtained by replacing each w0(Ii) with its
reduced expression, with respect to S, is also reduced with respect to S. Hence
supp(w) =

∪r
i=1 Ii.

Secondly, we give a remark on the Coxeter graph of the Coxeter system
(W τ , S(W τ )), denoted here by Γτ . Let τ\Γ be the graph with vertex set τ\S,
in which two orbits I, J ∈ τ\S are joined if and only if these sets are adjacent
in Γ. Then the vertex set S(W τ ) of Γτ is regarded as a subset of the vertex set
τ\S of τ\Γ via an embedding w0(I) 7→ I. Now we have the following result on
a relation between Γτ and τ\Γ.

Lemma 5.9. Under the embedding S(W τ ) ↪→ τ\S of the vertex set, the under-
lying graph of Γτ is a full subgraph of τ\Γ.

Proof. Let I, J ∈ τ\S be two distinct orbits with both WI and WJ finite. It is
obvious that I and J are not adjacent in Γτ (i.e. w0(I) and w0(J) commute) if
these are not adjacent in τ\S. Thus our remaining task is to show that w0(I)
and w0(J) do not commute if I and J are adjacent in τ\S, namely some s ∈ I is
adjacent to J in Γ. Now Lemma 2.7 (1) implies that w0(J) ·αs ∈ Φ+

J∪{s}∖Φ{s},

so w0(I)w0(J) · αs ∈ Φ+. On the other hand, we have w0(I) · αs ∈ Φ−
I , so

w0(J)w0(I) · αs ∈ Φ−. Thus we have w0(I)w0(J) ̸= w0(J)w0(I) as desired.

Moreover, note that τ\Γ is connected whenever Γ is. Indeed, for any I, J ∈
τ\S, a path in the connected graph Γ between any s ∈ I and any t ∈ J gives
rise to a path in τ\Γ between I and J .

Proof of Theorem 5.2 (1). As is remarked above, the irreducibility of W
yields the connectedness of τ\Γ, while the hypothesis implies that the embedding
Γτ ↪→ τ\Γ in Lemma 5.9 is now an isomorphism. Thus Γτ is connected as
desired.

For the infiniteness of W τ , assume the contrary. Then W τ possesses the
longest element wτ0 with respect to S(W τ ). Now for any s ∈ S, belonging
by the hypothesis to an I ∈ τ\S with |WI | < ∞, the wτ0 and w0(I) admit
a reduced expression with respect to S(W τ ) and S ending with w0(I) and s,
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respectively, by Exchange Condition. Thus Proposition 5.8 implies that wτ0
admits a reduced expression with respect to S ending with s. Since s ∈ S is
arbitrary, this means that W is finite and wτ0 is the longest element of W (see
Section 2.2), contradicting the hypothesis that W is infinite. Hence the claim
follows.

Proof of Theorem 5.2 (2). Note that the graph τ\Γ is connected. Since
the hypothesis of (1) now fails, there is a path I0I1 · · · Ir in τ\Γ, where Ii ∈
τ\S, such that w0(I0) ∈ suppτ (w) and |WIr | = ∞. By choosing the shortest
possible path, we may assume that |WIi | < ∞ and w0(Ii) ̸∈ suppτ (w) for
1 ≤ i ≤ r − 1. Now Lemma 5.9 says that I0I1 · · · Ir−1 is also a path in Γτ , so
by applying Lemma 2.7 (2) to the Coxeter system (W τ , S(W τ )), it is deduced

that w0(Ir−1) ∈ suppτ (w′ww′−1
) where w′ = w0(Ir−1) · · ·w0(I2)w0(I1) ∈ W τ .

Thus Proposition 5.8 implies that supp(w′ww′−1
) ⊆ S contains Ir−1, does not

intersect Ir and is adjacent to Ir in Γ.
Take s ∈ Ir adjacent to supp(w′ww′−1

) in Γ. Now we show that, if WIr

possesses an element u′ of infinite order such that s ∈ supp(u′
k
) for all 0 ̸= k ∈ Z,

then u = w′−1
τ−1(u′)w′ is the desired element. Indeed, for k ̸= 0, we have

τ−1(u′)kw′ww′−1
u′

−k ̸= w′ww′−1
by the choice of u′ and Lemma 2.7 (3) (note

that τ−1(u′) ∈WIr ), so, since τ(w
′) = w′, we have

ukwτ(u)−k = w′−1(
τ−1(u′)kw′ww′−1

u′
−k)

w′ ̸= w.

Finally, we show the existence of such an element u′, concluding the proof.
Since |WIr | = ∞ and Ir ∈ τ\S is a finite orbit, an irreducible component of
WIr , therefore that containing s, is infinite. Now Theorem 4.1 implies that a
Coxeter element of this component possesses the desired property.

6 Proof of the main theorem

This section is devoted to the proof of Theorem 3.1. First, note that the factor
W (Oρ) in the statement is ρ(G)-invariant, so the product W (Oρ)⟨Gρ⟩ of two
subgroups of W ⋊ G is indeed the semidirect product W (Oρ) ⋊ ⟨Gρ⟩. This
implies that, since W (Oρ) is generated by involutions, the claim (2) follows
immediately from (1). So we prove (1) below.

For the “only if” part, we assume that wg ∈ (W ⋊ G)ACI and prove that
w ∈W (Oρ) and g ∈ Gρ ∪ {1}. Now by (2.2) and Corollary 2.3 (2), we have

[H : ZH(w′g′)] <∞ for any H ≤W ⋊G and w′g′ ∈ ⟨wg⟩◁W⋊G. (6.1)

Note that ρg(w) = w−1 and g2 = 1 since 1 = (wg)2 = wρg(w) · g2. We divide
the proof into the following five steps.

Step 1: ρg maps each WI ∈ Cinf
W onto itself.

Assume contrary that ρg mapsWI onto an irreducible component other than
WI . Let π :W ↠WI be the projection. Take s ∈ I and put a = swgs(wg)−1 ∈
⟨wg⟩◁W⋊G. Then we have a = swρg(s)w

−1 ∈ W , so ZWI
(a) = ZWI

(π(a)).
Thus (6.1) implies that π(a) ∈ WI is almost central in WI . However, the first
assumption yields that π(ρg(s)) = 1, so π(a) = sπ(w)1π(w)−1 = s, which is not
almost central in WI by Proposition 2.15. This is a contradiction.



PART II 62

Step 2: ρg is identity on every WI ∈ Cinf
W .

Assume that the claim fails for WI . Note that ρg(WI) =WI by Step 1. Let
π :W ↠WI be the projection. Then we may assume without loss of generality
that ℓ(π(w)) ≤ ℓ(π(uwρg(u)

−1)) for all u ∈ WI ; if this inequality fails, replace
wg with another involution u(wg)u−1 = uwρg(u)

−1 · g in ⟨wg⟩◁W⋊G, which is
also almost central in W ⋊G by (6.1), and use the induction on ℓ(π(w)).

Put τ = ρg|I ∈ AutΓI , which is assumed to be non-identity. Now if π(w) =
1, then we have ZWI

(wg) = ZWI
(g) = WI

τ and so [WI :WI
τ ] < ∞ by (6.1),

contradicting Theorem 5.1. Thus π(w) ̸= 1.
We show that π(w) is an involution in WI

τ . Let s1 · · · sn (where n ≥ 1
and si ∈ I) be an arbitrary reduced expression of π(w) ∈ WI . Then, since
ρg(w) = w−1 and ρg(WI) =WI , we have

π(w) = π(ρg(w)
−1) = ρg(π(w)

−1) = τ(π(w)−1) = τ(sn) · · · τ(s1),

so ℓ(π(w)τ(s1)) < ℓ(π(w)), therefore Exchange Condition shows that π(w) =
s1 · · · ŝi · · · snτ(s1) for an index i. Now if i ≥ 2, then π(s1wτ(s1)

−1) = s2 · · · ŝi · · · sn
is shorter than π(w), contradicting the minimality of ℓ(π(w)). Thus we have
i = 1 and π(w) = s2 · · · snτ(s1). Since the original reduced expression s1 · · · sn is
arbitrary, we can apply this argument to the new expression of π(w). Iterating,
we have

π(w) = s3 · · · snτ(s1)τ(s2) = · · · = snτ(s1) · · · τ(sn−1) = τ(s1) · · · τ(sn).

Since π(w) = s1 · · · sn = τ(sn) · · · τ(s1), the claim of this paragraph follows.
Now if ms,τ(s) = ∞ for some s ∈ I, then since τ2 = idI , Theorem 5.2 (2)

(applied to π(w)) gives us an element u ∈WI of infinite order such that

π(ukwgu−k(wg)−1) = ukπ(w)τ(u)−kπ(w)−1 ̸= 1 for all k ̸= 0.

This means that Z⟨u⟩(wg) = 1, so [ ⟨u⟩ : Z⟨u⟩(wg) ] = ∞, contradicting (6.1).
On the other hand, if ms,τ(s) <∞ for all s ∈ I, then the Coxeter group WI

τ is
infinite and irreducible by Theorem 5.2 (1). Now we have

ZWI
τ (π(w)) = ZWI

τ (w) = ZWI
τ (wg),

which has finite index inWI
τ by (6.1). Thus the non-identity involution π(w) ∈

WI
τ is almost central in WI

τ , contradicting Proposition 2.15. Hence Step 2 is
concluded.

Step 3: w ∈Wfin.

We show that π(w) = 1 for any WI ∈ Cinf
W with projection π : W ↠ WI .

Since ρg is identity on WI (Step 2), we have ZWI
(wg) = ZWI

(w) = ZWI
(π(w))

and so (by (6.1)) π(w) is almost central in WI . Now since 1 = π(wρg(w)) =
π(w)ρg(π(w)) = π(w)2, the claim follows from Proposition 2.15.

Step 4: w ∈W (Oρ).

Assume the contrary. Then there exist a ρ†(G)-orbit O ⊆ Cfin
W with infinite

cardinality and WI ∈ O (with projection πI : W ↠ WI) such that πI(w) ̸= 1.
Fix the O, and let O0 be the set of all such WI ∈ O, so |O0| <∞.

We show that ρ†h(O0) = O0, or equivalently ρ†h(O0) ⊆ ρ†h(O0), for any
h ∈ ZG(wg). Note that ρh(w) = w since wgh = hwg = ρh(w)hg. Now if
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WI ∈ O0 and ρ†h(WI) = WJ ̸∈ O0, then πJ(ρh(w)) = ρh(πI(w)) ̸= 1 and

πJ(w) = 1, contradicting ρh(w) = w. Thus ρ†h(O0) ⊆ O0 as desired.
Since O is an infinite ρ†(G)-orbit, we can choose infinitely many finite sub-

sets O1,O2, . . . of O, irreducible components WI0 ,WI1 ,WI2 , · · · ∈ O and ele-
ments g0, g1, g2, · · · ∈ G inductively, where we start with arbitrary WI0 ∈ O0

and g0 = 1, subject to the conditions WIk ̸∈
∪k−1
i=0 Oi, ρ

†
gk
(WI0) = WIk and

Ok = ρ†gk(O0) ∋ WIk for all k ≥ 1. Now if i < j and h ∈ ZG(wg), then the

previous paragraph implies that ρ†gih(WI0) = ρ†giρ
†
h(WI0) ∈ ρ†gi(O0) = Oi, while

ρ†gj (WI0) = WIj ̸∈ Oi, so we have gj ̸= gih. Thus all the gi belong to distinct
cosets in G/ZG(wg), while [G : ZG(wg)] <∞ by (6.1). This contradiction yields
the claim.

Step 5: g ∈ Gρ ∪ {1}.
Note that g2 = 1. Since hwg = ρh(w) · hg for h ∈ G, we have ZG(wg) ⊆

ZG(g) and so g is almost central in G by (6.1). From now, we check (3.1).
By Step 4, the union O of a finite number of some ρ†(G)-orbits with finite

cardinalities satisfies that w ∈ W (O). Since |O| < ∞, it suffices to show
that ρg is identity on all WI ∈ O′ = CW ∖ O except a finite number of finite
irreducible components. Now O′ is ρ†g-invariant as well as its complement O,
whileW (O′) ⊆ ZW (w), so ZW (O′)(wg) = ZW (O′)(g) is the fixed-point subgroup
W (O′)τ (where τ = ρg|W (O′)). Since ZW (O′)(wg) has finite index in W (O′) by
(6.1), the claim follows from Theorem 5.1.

Hence the “only if” part has been proved. From now, we prove the other
part; so we assume that w ∈ W (Oρ), g ∈ Gρ ∪ {1} and wg is an involution,
and prove that wg is almost central in W ⋊G. By the choice of w, there are a
finite number of finite ρ†(G)-orbits in Cfin

W such that their union O satisfies that
w ∈W (O). Now note that

ZW⋊G(wg) ⊇ ZW⋊G(w) ∩ ZW⋊G(g) ⊇ (ZW (w)ZG(w)) ∩ (ZW (g)ZG(g)),

so it suffices to show that both ZW (w)ZG(w) and ZW (g)ZG(g) have finite index
in W ⋊G (see (2.3)). Moreover, Lemma 2.4 reduces the claim to the following
four claims:

Step 6: ZW (w) has finite index in W .

This follows since w lies in the finite direct factor W (O) of W .

Step 7: ZG(w) has finite index in G.

Since W (O) is finite and ρ(G)-invariant, the action gives rise to a homo-
morphism ρ′ from G to the finite group AutW (O). Now ker ρ′ is contained in
ZG(w) (since w ∈W (O)) and has finite index in G, proving the claim.

Step 8: ZW (g) has finite index in W .

This is trivial if g = 1. If g ∈ Gρ, then the property (3.1) and Theorem 5.1
imply that the fixed-point subgroup W ρg = ZW (g) by ρg has finite index in W ,
as desired.

Step 9: ZG(g) has finite index in G.

This is obvious from the choice of g.

Hence the proof of Theorem 3.1 is concluded.
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