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1 Bijective Proofs

We consider to prove the following proposition:

Proposition 1.1. For any integer n ≥ 1, we have n! = 1 +
n−1∑
k=1

k · k!.

First Proof. We use mathematical induction. For n = 1, both sides in the

statement are equal (to 1) as desired. Let n ≥ 2, and suppose that the claim

holds for the case of n − 1 in order to prove the claim for n. By the claim

for n− 1 we have

(n− 1)! = 1 +
n−2∑
k=1

k · k! ,

and we also have

n!− (n− 1)! = n · (n− 1)!− (n− 1)! = (n− 1) · (n− 1)! .

By adding these two equalities, we have

n! = 1 +
n−2∑
k=1

k · k! + (n− 1) · (n− 1)! = 1 +
n−1∑
k=1

k · k!

which is the claim for the case of n. Hence the claim holds for every n.

This proof is certainly correct, and has an advantage that it is easier to

find the strategy of the proof as it goes on a “standard” way using mathe-

matical induction. On the other hand, one may think that this proof does

not explain any “intuitive” reason of why this proposition holds.

Next, we consider the following alternative proof for the proposition.

Second Proof. Let Sn denote the symmetric group on n letters. Let id denote

the identity permutation (i.e., that fixes every element), and for each σ ∈
Sn \ {id}, let k(σ) denote the maximum integer a with σ(a) ̸= a. Here, each

σ ̸= id moves at least two elements, therefore we have σ(a) ̸= a for some



FY2022 “Combinatorics” Lecture Note (Koji Nuida) 2

a ≥ 2. Hence the maximum of such a’s indeed exists and we have k(σ) ≥ 2.

For each integer k with 1 ≤ k ≤ n− 1, let

Xk := {σ ∈ Sn \ {id} | k(σ) = k + 1} .

Then by the argument above, Sn is the disjoint union of subsets {id} and

Xk’s. Now for any σ ∈ Xk, σ fixes every integer larger than or equal to

k+2. Therefore this σ can be regarded as an element of Sk+1, while we have

σ(k+ 1) ̸= k+ 1 and hence σ is not an element of Sk. By this argument, we

have Xk = Sk+1 \ Sk and

|Xk| = |Sk+1| − |Sk| = (k + 1)!− k! = k · k! .

As Sn is the disjoint union of {id} and Xk’s as above, counting the elements

yields |Sn| = 1 +
n−1∑
k=1

k · k!, while we have |Sn| = n!. Therefore we have

n! = |Sn| = 1 +
n−1∑
k=1

k · k!, which implies the claim.

The key point of the latter proof is the observation that both terms n! and

1+
n−1∑
k=1

k ·k! in the claim represent the number of the elements of the same set,

just counted in a different way (hence they are certainly equal). In this proof,

the quantities in the given equality are equipped with the “meaning” as the

number of elements of a concrete set; one may feel that such a “meaning”

helps our intuitive understanding of why this proposition holds. In general,

such a technique, of first representing each quantity in a given equality as the

number of elements of some concrete set and then showing that the two sets

have the same number of elements, is called bijective proof, combinatorial

proof, counting argument, etc.

We consider another example of bijective proofs.

Proposition 1.2. For integers n ≥ k ≥ 1, we have

(
n

k

)
=

n

k
·
(
n− 1

k − 1

)
,

where

(
n

k

)
denotes the binomial coefficient.
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Assuming the explicit expression

(
n

k

)
=

n!

k!(n− k)!
the proof is obvious,

but here we give a proof based on the original definition that

(
n

k

)
is the

number of choices of k elements from n elements.

Proof. The claim is equivalent to the equality k ·
(
n

k

)
= n ·

(
n− 1

k − 1

)
, which

we prove from now. Let [n] := {1, 2, . . . , n} and

X := {(I, a) | a ∈ I ⊆ [n] , |I| = k} .

We count the elements of this set X in two ways.

• If we count the elements of X in a way of first choosing I and then

choosing a from I, then there are

(
n

k

)
choices of I (by the definition

of the binomial coefficient) and k choices of a, hence |X| = k ·
(
n

k

)
in

total.

• If we count the elements of X in a way of first choosing a and then

choosing I involving a, then there are n choices of a and

(
n− 1

k − 1

)
choices of I (as we have to choose the remaining k − 1 elements from

n− 1 elements other than a), hence |X| = n ·
(
n− 1

k − 1

)
in total.

They are the left-hand side and the right-hand side in the claim, respectively.

Hence the claim holds.

From now on, we explain a bijective proof for the following theorem called

Euler’s pentagonal number theorem.

Theorem 1.1. We have
∏
n≥1

(1− tn) =
∞∑

k=−∞

(−1)ktk(3k−1)/2.

Formally, both sides of the formula above are regarded as “formal power

series (in variable t)”; but here we do not introduce the definition of formal
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power series, and we just interpret the claim above as “if we naively expand

both sides in a form of power series in t, then for each N , the coefficients of

tN in both sides are equal”. For example, when focusing on the coefficient of

t6 in the left-hand side, it is the sum of

• the term −t6 from the product (1− t6);

• the term (−t5)(−t1) = t6 from the product (1− t5)(1− t1);

• the term (−t4)(−t2) = t6 from the product (1− t4)(1− t2); and

• the term (−t3)(−t2)(−t1) = −t6 from the product (1−t3)(1−t2)(1−t1),

resulting in the coefficient being 0. Here we note that in the right-hand side

of the claim, when k is a negative value, say k = −K, the exponent becomes

(−K)(−3K − 1)/2 = K(3K + 1)/2; therefore we can rewrite the right-hand

side as

1 +
∞∑
k=1

(−1)ktk(3k−1)/2 +
∞∑

K=1

(−1)KtK(3K+1)/2 .

We also note that for any positive integers k and K we have k(3k − 1)/2 ̸=
K(3K + 1)/2. Indeed, if k ≤ K then we have k(3k − 1)/2 < K(3K + 1)/2

obviously, while if k > K, i.e., k ≥ K + 1 then we have

k(3k − 1)

2
≥ (K + 1)(3K + 2)

2
>

K(3K + 1)

2
.

This implies that the coefficient of each term when expanding the right-hand

side is 0, 1, or −1. In particular, the coefficient of the constant term, i.e., the

coefficient of t0, in the right-hand side is 1, while it is also 1 in the left-hand

side as well; therefore it suffices to focus only on the terms with positive

exponents.

In order to investigate the expansion of the left-hand side of the claim,

we use the following notion.
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Definition 1.1. A partition means a finite (possibly empty) sequence of

positive integers in weakly decreasing order:

λ = (λ1, λ2, . . . , λℓ) (λi’s are integers with λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0).

More precisely, when such a sequence λ satisfies |λ| :=
ℓ∑

i=1

λi = n, we say

that λ is a partition of integer n and write λ ⊢ n. Here ℓ is called the length

of the partition λ, denoted by ℓ(λ). (We express the empty sequence by ∅;
then ∅ is regarded as the partition consisting of 0 components, with ∅ ⊢ 0

and ℓ(∅) = 0.)

Under the definition, the terms in the left-hand side contributing to the

coefficient of tN are the terms (−tλ1) · · · (−tλℓ) = (−1)ℓtN coming from the

products (1−tλ1) · · · (1−tλℓ) corresponding to partitions λ = (λ1, . . . , λℓ) ⊢ N

with distinct components. Therefore, by expressing by e(N) (respectively,

o(N)) the number of partitions of N with even (respectively, odd) lengths

and distinct components, the coefficient of tN in the left-hand side becomes

e(N)− o(N).

The following notion is useful for visualizing the partitions of integers.

Definition 1.2. Let λ = (λ1, . . . , λℓ) be a partition. We define the Young

diagram of λ to be the collection of square boxes arranged in a way that the

first row (from the top) has λ1 boxes, the second row has λ2 boxes, ..., and

the ℓ-th row has λℓ boxes (see Figure 1).

Figure 1: Young diagram of partition λ = (4, 2, 1)

We note that by the definition of Young diagrams, the number of boxes

at each row is weakly decreasing from the top to the bottom. From now
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on, let Y denote the set of non-empty Young diagrams (i.e., those with at

least one box) having rows with distinct lengths (i.e., the numbers of boxes).

We write the set of Young diagrams Y ∈ Y with N boxes as YN , and write

the set of such Young diagrams with even (respectively, odd) rows as YN,e

(respectively, YN,o). Then we have e(N)−o(N) = |YN,e|−|YN,o|. Intuitively,
the equality in the claim is interpreted as that the numbers of elements of

YN,e and YN,o are “approximately” equal. In order to analyze the “error” in

the approximation, we define the following Young diagrams. For an integer

k ≥ 1, let Ŷk denote the Young diagram with k rows for which the first row

has 2k − 1 boxes and the lengths of rows are decremented by 1, hence the

last, k-th row has k boxes. Similarly, for an integer K ≥ 1, let ỸK denote the

Young diagram with K rows for which the first row has 2K boxes and the

lengths of rows are decremented by 1, hence the last, K-th row has K + 1

boxes. Let

E := {Ŷk | k ≥ 1} ∪ {ỸK | K ≥ 1} .

We note that the numbers of boxes of Ŷk and ỸK are ((2k − 1) + k) · k/2 =

k(3k − 1)/2 and (2K + (K + 1)) · K/2 = K(3K + 1)/2, respectively. Now

when k ≥ 1 is odd, by setting N = k(3k − 1)/2, the coefficient of tN in

the right-hand side of the claim becomes −1, therefore we have to show that

|YN,e| − |YN,o| = −1 or equivalently |YN,e| = |YN,o| − 1. For the proof, it

suffices to show that there exists a bijection between the set YN,o excluded

the “exception” Ŷk and the set YN,e (hence these sets have the same number

of elements). On the other hand, when k ≥ 1 is even, by setting N =

k(3k−1)/2, the coefficient of tN in the right-hand side of the claim becomes 1,

therefore we have to show that |YN,e|−|YN,o| = 1 or equivalently |YN,e|−1 =

|YN,o|. For the proof, it suffices to show that there exists a bijection between

the set YN,e excluded the “exception” Ŷk and the set YN,e. Similarly, for the

comparison of the coefficients of tN with N = K(3K + 1)/2, it suffices to

compare the sets YN,e and YN,o where ỸK is treated as the “exception”. For

the other N ’s, we need not to consider such exceptions, and it suffices to show
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the existence of a bijection simply between YN,e and YN,o. Summarizing, our

task is to show the following: for each N ≥ 1, there exists a bijection between

YN,e \ E and YN,o \ E .
For each Y ∈ Y , we write the length of the last row of Y as a = a(Y ),

and write as b = b(Y ) the unique k satisfying that the lengths of Y ’s first to

k-th rows are decreased by 1 and the length of Y ’s (k+1)-th row is decreased

by at least 2 from the k-th row. Here we note that we set b(Y ) = 1 when the

lengths of the first and the second rows differ by at least 2, and we set b(Y )

to be the number of rows of Y when the lengths of all the rows are decreased

by 1 (see Figure 2). For example, for the Young diagram Y of λ = (7, 6, 4, 3),

we have a(Y ) = 3 and b(Y ) = 2. Now we define φ(Y ) to be the element of

Y obtained by the following procedure:

• When a ≤ b, move the boxes at the last row of Y to (the right of) the

first a rows, one box per each row (see the left part of Figure 3).

• When a > b, move the rightmost boxes of the first b rows of Y to the

bottom of the diagram, i.e., as the row next to the last row of Y (see

the right part of Figure 3).

Here, when a ≤ b, if Y has precisely b rows and a = b (i.e., Y = Ŷb) then the

operation is not well-defined (as the rows with deletion and with insertion

overlap); we omit such cases from the operation. Similarly, when a > b,

if Y has precisely b rows and a = b + 1 (i.e., Y = Ỹb) then the operation

is not well-defined (as the b-th and the (b + 1)-th rows after the operation

will both have length b); we omit such cases from the operation. That is,

the operation φ is in fact defined for elements of Y \ E . Now we have the

following properties.

Lemma 1.1. For any Y ∈ Y \ E, we have φ(Y ) ∈ Y \ E.

Proof. First we show that φ(Y ) ∈ Y . When a(Y ) ≤ b(Y ), the property

follows from the fact that the operation φ does not decrease the differences
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Figure 2: Sketch of the definitions of a = a(Y ) and b = b(Y )

Figure 3: Sketch of the definition of operation φ (the left part is for a ≤ b,
and the right part is for a > b)

of lengths between the rows. When a(Y ) > b(Y ), the difference of lengths

between two consecutive rows is changed by φ only at the b(Y )-th and the

(b(Y ) + 1)-th rows and at the newly introduced row and the original last

row. If Y has precisely b(Y ) rows (note that now a(Y ) ≥ b(Y ) + 2 as

Y ̸∈ E), then the property holds as the length of the newly introduced row is

b(Y ) < a(Y )− 1. In the other case, for the former pair of rows, the lengths

are still different after the operation as the difference of the lengths in the

original Y is at least 2. For the latter pair of rows, the lengths of the newly

introduced row being b(Y ) and of the original last row being a(Y ) are indeed

difference by the condition above. Hence we have φ(Y ) ∈ Y in any case.

From now, we show that φ(Y ) ̸∈ E . Assume for the contrary that the

lengths of all the rows of φ(Y ) are decremented by 1. If a(Y ) ≤ b(Y ), then

the phenomenon above happens only when b(Y ) = a(Y ). In this case, the
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condition Y ̸∈ E implies that Y has at least b(Y )+1 rows. Now the length of

Y ’s b(Y )-th row is at least a(Y )+2 = b(Y )+2, therefore the length of φ(Y )’s

b(Y )-th row is at least b(Y )+3. However, such an element of E does not exist,

a contradiction. On the other hand, if a(Y ) > b(Y ), then φ(Y ) has at least

b(Y ) + 1 rows and its last row has length b(Y ). However, such an element

of E does not exist, a contradiction. Hence we have a contradiction in any

case, therefore we have φ(Y ) ̸∈ E , as desired. Hence the claim holds.

Lemma 1.2. For any Y ∈ Y \ E, we have φ(φ(Y )) = Y .

Proof. First we consider the case a(Y ) > b(Y ). By the definition of φ, we

have a(φ(Y )) = b(Y ) and b(φ(Y )) ≥ b(Y ), therefore a(φ(Y )) ≤ b(φ(Y )).

Now the operation φ for φ(Y ) moves the b(Y ) boxes in the last row, which

were moved by the first operation φ, back to the first b(Y ) rows; hence we

have φ(φ(Y )).

Secondly, we consider the other case a(Y ) ≤ b(Y ). When Y has at least

b(Y ) + 1 rows, let c be the length of the second last row of Y . Then by the

definition of φ, we have a(φ(Y )) ≥ c > a(Y ) and b(φ(Y )) = a(Y ), therefore

a(φ(Y )) > b(φ(Y )). Now the operation φ for φ(Y ) moves the rightmost

boxes in the first a(Y ) rows, which were moved by the first operation φ, back

to the bottom; hence we have φ(φ(Y )).

On the other hand, when Y has precisely b(Y ) rows, the condition Y ̸∈ E
implies that a(Y ) < b(Y ). Then by the definition of φ, we have a(φ(Y )) ≥
a(Y ) + 1 and b(φ(Y )) = a(Y ), therefore a(φ(Y )) > b(φ(Y )). Now the

operation φ for φ(Y ) moves the rightmost boxes in the first a(Y ) rows,

which were moved by the first operation φ, back to the bottom; hence we

have φ(φ(Y )). Therefore the claim holds in any case.

By Lemma 1.2, φ is the inverse map of itself, therefore it is a bijection

from Y \ E to the same set. Moreover, by the definition of φ, it does not

change the total number of boxes and increases the number of rows by 1,

therefore we have φ(YN,e \E) ⊆ YN,o \E and φ(YN,o \E) ⊆ YN,e \E . Now the
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surjectivity of φ implies that φ(YN,e\E) = YN,o\E and φ(YN,o\E) = YN,e\E .
Summarizing, it follows for each N that φ is a bijection between YN,e \E and

YN,o \ E , as desired. This completes the proof of Theorem 1.1.

Exercises

Problem 1. For integers n ≥ k ≥ 0, give a bijective proof of the expression

of the binomial coefficient

(
n

k

)
=

n!

k!(n− k)!
.

(Hint: By multiplying the denominator, the target equality becomes

k!(n − k)! ·
(
n

k

)
= n!. Its right-hand side means the number of elements

of Sn; in what way can we obtain the left-hand side by counting the elements

of Sn?)

Problem 2. For integer n ≥ 1, give a bijective proof of the equality
n∑

k=0

(−1)k
(
n

k

)
= 0.

(Hint: We can rewrite the claim as
∑
k; even

(
n

k

)
=
∑
k; odd

(
n

k

)
.)
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2 Generating Functions

As an example, we consider the sequence (bn)n defined by the following re-

currence relation:

b0 = b1 = 1 , bn = bn−1 + bn−2 (n ≥ 2).

It is well-known that this defines the Fibonacci numbers, for which the gen-

eral term can be explicitly computed by an elementary method. Here, as

an alternative approach, we are trying to compute the general term by us-

ing a tool called generating functions. For the purpose, we introduce the

generating function for the sequence (bn)n as follows:

B(t) :=
∑
n≥0

bnt
n .

Formally, this is a kind of “formal power series”; here we postpone the de-

tailed explanation and just regard it as “a formal sum similar to polynomi-

als”. In order to derive a “functional equation” for this generating function,

we (heuristically) consider B̂(t) := B(t) − tB(t) − t2B(t). For n ≥ 2, com-

putation of the coefficient of tn in B̂(t) yields

[coeff. of tn in B(t)]− [coeff. of tn in tB(t)]− [coeff. of tn in t2B(t)]

= [coeff. of tn in B(t)]− [coeff. of tn−1 in B(t)]− [coeff. of tn−2 in B(t)]

= bn − bn−1 − bn−2 = 0

(where the last equality follows from the recurrence relation). Therefore,

B̂(t) is a polynomial in t of degree at most 1. By computing the coefficients

of t1 and t0 similarly, we have

[coeff. of t1 in B̂(t)]

= [coeff. of t1 in B(t)]− [coeff. of t1 in tB(t)]− [coeff. of t1 in t2B(t)]

= [coeff. of t1 in B(t)]− [coeff. of t0 in B(t)]− 0

= b1 − b0 = 0 ,



FY2022 “Combinatorics” Lecture Note (Koji Nuida) 12

[coeff. of t0 in B̂(t)]

= [coeff. of t0 in B(t)]− [coeff. of t0 in tB(t)]− [coeff. of t0 in t2B(t)]

= [coeff. of t0 in B(t)]− 0− 0

= b0 = 1 .

Summarizing, we have B̂(t) = B(t)− tB(t)− t2B(t) = 1, therefore B(t) can

be written as

B(t) =
1

1− t− t2
.

(Here we postpone the explanation of the meaning of the rational expression

in the right-hand side as “formal power series”.)

In order to determine the coefficient of each monomial in B(t) (i.e., the

general term of (bn)n) from the expression above, we perform a partial frac-

tion decomposition by using the relation 1−t−t2 =

(
1− 1 +

√
5

2
t

)(
1− 1−

√
5

2
t

)
:

B(t) =
1

1− t− t2
=

1√
5t

(
1

1− 1+
√
5

2
t
− 1

1− 1−
√
5

2
t

)
.

By naively applying the formula for the sums of geometric progressions, the

right-hand side becomes

1√
5t

∑
k≥0

(
1 +

√
5

2
t

)k

−
∑
k≥0

(
1−

√
5

2
t

)k
 .

As the coefficient of tn is bn, by dividing the coefficient of tn+1 in the paren-

theses by
√
5, we have

bn =
1√
5

(1 +
√
5

2

)n+1

−

(
1−

√
5

2

)n+1
 .

We have thus determined the general term of (bn)n.

Besides the example above that can be already solved elementarily, we

give another example that is more complicated. For integer n ≥ 0, we define
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the n-th Catalan number Cn to be the number of ways of moving from

the point (0, 0) to the point (2n, 0) on the coordinate plane subject to the

following rule:

• Each step is either “1 in the direction of x-axis, 1 in the direction of

y-axis” or “1 in the direction of x-axis, −1 in the direction of y-axis”.

• The y-coordinate should be kept non-negative during the move.

Any path satisfying these conditions is called a Dyck path. For example, when

n = 3, by expressing the step (1, 1) and (1,−1) as ↗ and ↘, respectively,

there are in total the following 5 Dyck paths from (0, 0) to (6, 0):

↗↗↗↘↘↘ , ↗↗↘↗↘↘ , ↗↗↘↘↗↘ , ↗↘↗↗↘↘ , ↗↘↗↘↗↘ ,

therefore C3 = 5. Note that C0 = 1 by regarding the case of n = 0 as having

the empty path as the unique Dyck path. We try to determine the general

term of Catalan numbers by using the generating function C(t) :=
∑
n≥0

Cnt
n.

We first give a recurrence relation for Catalan numbers. For the purpose,

for n ≥ 1, we focus on the point at which a given Dyck path firstly intersects

with the x-axis (i.e., the y-coordinate becomes 0) except for the starting point

(0, 0). By considering the possible patterns of the change of y-coordinate,

we can observe that such a point must be of the form (2k, 0) (where k is

an integer and 1 ≤ k ≤ n). Now for such a Dyck path, the first step is ↗,

the 2k-th step is ↘, and the second to the (2k − 1)-th steps give “a move

from (1, 1) to (2k − 1, 1) while keeping the y-coordinate not less than 1”.

By a translation in the direction of (−1,−1), the path indicated by “. . . ”

corresponds to a Dyck path from (0, 0) to (2k−2, 0). On the other hand, the

remaining part of the path from (2k, 0) to (2n, 0) corresponds to a Dyck path

from (0, 0) to (2n− 2k, 0) by a translation in the direction of (−2k, 0). The

whole path is determined by the pair of those two paths. As the value of k
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varies over the range 1 ≤ k ≤ n, we obtain the following recurrence relation:

C0 = 1 , Cn =
n∑

k=1

Ck−1Cn−k (n ≥ 1).

Now we consider Ĉ(t) := C(t)− tC(t)2. For n ≥ 1, we have

[coeff. of tn in Ĉ(t)] = [coeff. of tn in C(t)]− [coeff. of tn in tC(t)2]

= Cn − [coeff. of tn−1 in C(t)2]

= Cn −
n−1∑
k=0

[coeff. of tk in C(t)] · [coeff. of tn−1−k in C(t)]

= Cn −
n−1∑
k=0

CkCn−1−k

= Cn −
n∑

k=1

Ck−1Cn−k = 0

(where the last equality follows from the recurrence relation above). This

implies that Ĉ(t) is a constant, while the coefficient of t0 is C0 − 0 = 1,

therefore we have Ĉ(t) = C(t)− tC(t)2 = 1 and

tC(t)2 − C(t) + 1 = 0 .

In order to solve the quadratic equation in C(t) above, by multiplying

both sides by 4t we have

4t2C(t)2 − 4tC(t) + 4t = 0 ,

which can be transformed as

(2tC(t)− 1)2 = 1− 4t .

To obtain a square root of 1 − 4t in the right-hand side, we prepare the

following lemma.
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Lemma 2.1. For any real number λ, define

Fλ(t) :=
∑
n≥0

λ(λ− 1) · · · (λ− n+ 1)

n!
tn .

Then we have Fλ(t)Fµ(t) = Fλ+µ(t).

Proof. Let Pn(λ, µ) and Qn(λ, µ) denote the coefficients of tn in the left-hand

and the right-hand sides of the claim, respectively. They are both elements

of the polynomial ring R[λ, µ]. Let Rn(λ, µ) := Pn(λ, µ) − Qn(λ, µ). Now if

we fix any integer µ ≥ 0, then Rn(λ, µ) is regarded as an element of R[λ]. In
this setting, the terms in Fµ(t) of degree µ+ 1 or higher all have coefficients

0, therefore we have

Fµ(t) =

µ∑
n=0

(
µ

n

)
tn = (1 + t)µ .

If moreover λ is also a non-negative integer, then we have Fλ(t) = (1 + t)λ

and Fλ+µ(t) = (1 + t)λ+µ similarly, therefore Fλ(t)Fµ(t) = Fλ+µ(t), hence

Pn(λ, µ) = Qn(λ, µ) or equivalently Rn(λ, µ) = 0. This implies that when

fixing any integer µ ≥ 0, the polynomial Rn(λ, µ) in λ has value 0 at every

non-negative integer point, implying that it is the zero polynomial. Accord-

ingly, we have Rn(λ, µ) = 0 for any λ ∈ R and any non-negative integer µ.

Then by fixing any real number λ, the polynomial Rn(λ, µ) in µ has value

0 at every non-negative integer point, implying that it is the zero polyno-

mial. Accordingly, we have Rn(λ, µ) = 0 for any λ, µ ∈ R. This means that

Pn(λ, µ) and Qn(λ, µ) always coincide, therefore the definitions of Pn and Qn

imply the desired equality Fλ(t)Fµ(t) = Fλ+µ(t).

By Lemma 2.1 we have F1/2(t)
2 = F1(t) = 1+ t; by substituting −4t into

t we have F1/2(−4t)2 = 1− 4t. This implies that

2tC(t)− 1 = ±F1/2(−4t) (1)
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(note that the set of all formal power series forms an integral domain as

explained above, therefore any element has at most two square roots). More-

over, we have

F1/2(−4t) =
∑
n≥0

1/2 · (1/2− 1) · · · (1/2− n+ 1)

n!
(−4t)n

= 1 +
1

2
· (−4t) +

∑
n≥2

1 · (−1) · (−3) · · · (−(2n− 3))

2n · n!
(−4)ntn ,

while for n ≥ 2, we have

1 · (−1) · (−3) · · · (−(2n− 3))

2n · n!
(−4)n =

(−1)n−1 · 1 · 1 · 3 · · · (2n− 3)

n!
(−2)n

= − (2n− 2)!

2 · 4 · · · (2n− 2) · n!
2n

= − (2n− 2)!

2n−1 · 1 · 2 · · · (n− 1) · n!
2n

= −2 · (2n− 2)!

(n− 1)!n!
,

therefore we have

F1/2(−4t) = 1− 2t+
∑
n≥2

(−2)
(2n− 2)!

(n− 1)!n!
tn .

Now comparison of the constant terms in both sides of Eq.(1) determines the

sign ±, which yields

2tC(t)− 1 = −F1/2(−4t)

and

2tC(t) = 1− F1/2(−4t) = 2t+
∑
n≥2

2
(2n− 2)!

(n− 1)!n!
tn =

∑
n≥1

2
(2n− 2)!

(n− 1)!n!
tn .

Dividing both sides by 2t yields the generating function C(t) given by

C(t) =
∑
n≥1

(2n− 2)!

(n− 1)!n!
tn−1 =

∑
n≥0

(2n)!

n!(n+ 1)!
tn .
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Hence the general term of Catalan numbers is determined as

Cn =
(2n)!

n!(n+ 1)!
=

1

n+ 1

(
2n

n

)
.

We note that there are a significantly large number of other equivalent combi-

natorial characterizations for Catalan numbers; we refer for them to Chapter

6, Exercise 6.19 of Stanlay’s book [6] (see also an exercise below).

From now on, we consider the question “what is a formal power series?”

postponed from the argument above. A possible approach, similar to the

formal definition of polynomial rings, is focusing on the maps with domains

being the set {0, 1, 2, . . . } of exponents, defining addition and multiplication

for the set of all such maps appropriately, and so on. Here we adopt a different

approach. Roughly speaking, as an analogy of analytically convergent power

series being the limits of polynomial sequences, we want to deal with (not

necessarily convergent) formal power series as “the limits of polynomials”.

For the purpose, we prepare some definitions and properties.

Definition 2.1. Let K be a field. We say that a map ν : K → R≥0 is a

non-Archimedean valuation on K if the following conditions hold:

1. For any x ∈ K, the conditions ν(x) = 0 and x = 0 are equivalent.

2. For any x, y ∈ K, we have ν(xy) = ν(x)ν(y).

3. For any x, y ∈ K, we have ν(x+ y) ≤ max{ν(x), ν(y)}.

We simply call a non-Archimedean valuation a valuation in the following

argument. The following general result is well-known (we omit the proof

here).

Proposition 2.1. Let ν : K → R≥0 be a valuation on K, and define d : K ×
K → R by d(x, y) := ν(x − y). Then d is a metric on K. Let K̂ be

the completion of K with respect to this metric. Then K̂ is naturally an

extension field of K, and ν is extendible to a valuation ν̂ on K̂. Moreover,

the set {x̂ ∈ K̂ | ν̂(x̂) ≤ 1} forms a complete subring of K̂.
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Let K be a field. We are going to define a valuation ν on the univariate

rational function field K(t) over K. First, we define ν(0) := 0, and for

any polynomial f(t) = adt
d + · · · + ad+ℓt

d+ℓ (ad ̸= 0), define ν(f) := e−d.

Based on this, for h(t) = f(t)/g(t) (f(t), g(t) ∈ K[t], g ̸= 0) we define

ν(h) := ν(f)/ν(g). Then the value of ν is well-defined regardless of the

expression f(t)/g(t) of h(t).

Proposition 2.2. The ν above is a valuation on K(t).

Proof. The fact that ν is a map to R≥0 and Condition 1 in the definition

are deduced from the argument above and the property e−d > 0. Condition

2 is deduced by observing that if f(t) = adt
d + · · · + ad+ℓt

d+ℓ (ad ̸= 0) and

g(t) = bd′t
d′+· · ·+bd′+ℓ′t

d′+ℓ′ (bd′ ̸= 0) then we have f(t)g(t) = adbd′t
d+d′+· · · ,

adbd′ ̸= 0, and e−(d+d′) = e−de−d′ . For Condition 3, first, for f(t) = adt
d+· · ·+

ad+ℓt
d+ℓ (ad ̸= 0) and g(t) = bd′t

d′ + · · ·+ bd′+ℓ′t
d′+ℓ′ (bd′ ̸= 0), the coefficients

in f(t)+g(t) of all the terms with degree less than min{d, d′} are 0. Therefore
we have ν(f + g) ≤ e−min{d,d′} = max{e−d, e−d′} = max{ν(f), ν(g)}. This

implies that the right-hand side of

ν

(
f1
g1

+
f2
g2

)
= ν

(
f1g2 + f2g1

g1g2

)
=

ν(f1g2 + f2g1)

ν(g1)ν(g2)

becomes

≤ max{ν(f1g2), ν(f2g1)}
ν(g1)ν(g2)

= max

{
ν(f1g2)

ν(g1)ν(g2)
,

ν(f2g1)

ν(g1)ν(g2)

}
= max

{
ν(f1)

ν(g1)
,
ν(f2)

ν(g2)

}
= max{ν(f1/g1), ν(f2/g2)} ,

therefore Condition 3 holds. Hence the claim holds.

By applying Proposition 2.1 to this valuation ν on K(t), we obtain the

valuation ν̂ on K̂(t). Now the set

k[[t]] := {F ∈ K̂(t) | ν̂(F ) ≤ 1}
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is a complete subring of the field K̂(t), hence in particular it is an integral

domain. We call the K[[t]] the (univariate) formal power series ring, and call

its elements formal power series.

In order to show that the formal power series are “limits of polynomials”,

we prepare the following lemma.

Lemma 2.2. Let X be a metric space, let (xn)n be a Cauchy sequence in

X, and let (y
(n)
m )m (for n ≥ 0) be sequences in X that uniformly converge to

xn (that is, for any ε > 0, there exists an N satisfying that for any n and

any m ≥ N we have d(y
(n)
m , xn) ≤ ε). Then (y

(n)
n )n is a Cauchy sequence

equivalent to (xn)n.

Proof. We show that the two sequences in the statement are equivalent. Let

ε > 0. By using the definition for (xn)n being a Cauchy sequence, with

parameter ε/2 > 0, it follows that there exists an N1 satisfying that for

any m,n ≥ N1 we have d(xm, xn) ≤ ε/2. On the other hand, by using the

definition for (y
(n)
m )m uniformly converging to xn, with parameter ε/2 > 0, it

follows that there exists an N2 satisfying that for any n and any m ≥ N2 we

have d(y
(n)
m , xn) ≤ ε/2; hence by setting n = m we have d(y

(m)
m , xm) ≤ ε/2.

These arguments imply that for any m,n ≥ max{N1, N2} we have

d(y(m)
m , xn) ≤ d(y(m)

m , xm) + d(xm, xn) ≤
ε

2
+

ε

2
= ε

(where we used the triangle inequality at the first inequality). This means

that (y
(n)
n )n is equivalent to (xn)n. Moreover, the property that (y

(n)
n )n is

a Cauchy sequence follows from the fact that any sequence equivalent to a

Cauchy sequence is also a Cauchy sequence. Hence the claim holds.

We note that the polynomial ring K[t] is a subring of K(t), therefore it

is also a subring of K̂(t).

Theorem 2.1. K[t] is a dense subring of K[[t]].
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Proof. The propertyK[t] ⊆ K[[t]] follows from the definition of the valuation

ν on K(t) and the fact that e−d ≤ 1 for any d ≥ 0.

Take any element of K[[t]] and the corresponding Cauchy sequence (hn)n

inK(t). We have lim
n→∞

ν(hn) ≤ 1 by the definition ofK[[t]]. As 1 is an isolated

point of the image of ν : K(t) → R≥0, we have ν(hn) ≤ 1 for any sufficiently

large n. We may assume without loss of generality that ν(hn) ≤ 1 for any n,

by replacing (hn)n with an appropriate equivalent sequence if necessary. Then

when expressing hn as an irreducible fraction of polynomials, the constant

term of the denominator is non-zero. Hence we can write hn = fn/(1 + tgn)

with fn, gn ∈ K[t].

Now let Fn,m := fn

m∑
k=0

(−tgn)
k. We show that the sequence (Fn,m)m

uniformly converges to hn. For any n,m, we have

Fn,m − hn =
fn

1 + tgn

(
(1 + tgn)

m∑
k=0

(−tgn)
k − 1

)
= hn · (1 + (−1)m(tgn)

m+1 − 1) = (−1)mhn · (tgn)m+1 ,

therefore we have

ν(Fn,m − hn) = ν(hn)ν(t)
m+1ν(gn)

m+1 ≤ 1 · e−m−1 · 1m+1 = e−m−1 .

The right-hand side is independent of n and converges to 0. Therefore

(Fn,m)m uniformly converges to hn.

Now by Lemma 2.2, the element of K[[t]] chosen firstly is also the limit

of Cauchy sequence (Fn,n)n. As each Fn,n is an element of K[t], it follows

that K[t] is dense in K[[t]]. Hence the claim holds.

When fn = an,0 + an,1t + · · · + an,dnt
dn ∈ K[t], the condition for (fn)n

being a Cauchy sequence is equivalent to that for any k ≥ 0, an,k is constant

for sufficiently large n’s (where we set an,k = 0 for k > dn). By writing the

“constant” as âk ∈ K and expressing the element of K[[t]] obtained as the

limit of (fn)n as
∑
n≥0

ânt
n, we obtain a “formal power series” that looks simi-

larly as in the previous arguments. We note that when (fn)n and (gn)n are
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equivalent Cauchy sequences, the elements âk obtained as above from those

sequences become equal to each other, therefore the expression
∑
n≥0

ânt
n of

a formal power series is uniquely determined. We also note that for any se-

quence (an)n, the sequence (fn)n with fn :=
n∑

k=0

akt
k is a Cauchy sequence,

therefore the formal power series
∑
n≥0

ant
n (i.e., the generating function of

(an)n) obtained as the limit of (fn)n always exists. Moreover, as the formal

power series are expressed as limits of polynomials, the addition, subtrac-

tion, and multiplication operations for polynomials are extended naturally

to formal power series.

By defining formal power series as above, several formal operations for

formal power series performed in the previous arguments can be justified.

For example:

• For the infinite product
∏
n≥1

(1−tn) appeared in Euler’s pentagonal num-

ber theorem, the sequence (fn)n with fn :=
n∏

k=1

(1− tk) forms a Cauchy

sequence with respect to the metric above (note that multiplying 1− tn

to a polynomial does not change the coefficients of the terms of degrees

less than n), therefore the formal power series
∏
n≥1

(1−tn) is well-defined

as the limit of (fn)n.

• For a polynomial of the form 1 − tf (f ∈ K[t]), the sequence (gn)n

defined by gn :=
n∑

k=0

(tf)k forms a Cauchy sequence. Let g ∈ K[[t]] be

its limit. Now as (1−tf)gn = 1−(tf)n+1 for each n, (1−tf)gn converges

to 1 in n ≥ ∞. Therefore we have (1−tf) ·g = 1 in K[[t]]. This implies

that 1 − tf is invertible in K[[t]], therefore as its inverse the rational

expression 1/(1− tf) is well-defined in K[[t]], and 1/(1− tf) is equal to

the element
∑
n≥0

(tf)n ∈ K[[t]] with the form of sum of geometric series.
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We note that for the case of two or more variables, we can also define

the formal power series ring K[[t1, . . . , tn]] recursively by applying the afore-

mentioned construction to the rational function field in variable tn over the

quotient field of the integral domain K[[t1, . . . , tn−1]] as the coefficient field.

From now on, we introduce some classes of sequences satisfying recurrence

relations with certain good properties and the corresponding classes of formal

power series, and investigate their relations. We refer to Chapter 6 of [6] for

more details. Here we focus on the case where K = C.

Definition 2.2. We say that an element f(x) of C[[x]] is algebraic if f(x)

is an algebraic element over the field C(x), that is, there exist d ≥ 1 and

P0, . . . , Pd ∈ C[x] satisfying

Pd(x)f(x)
d + · · ·+ P1(x)f(x) + P0(x) = 0 , Pd ̸= 0 .

The following property is deduced from a general theory on algebraic

elements over some field; we omit the proof here.

Proposition 2.3. The set of algebraic elements of C[[x]] is a subring of

C[[x]] containing C(x) ∩ C[[x]].

For example, the generating function 1/(1 − x − x2) of Fibonacci num-

bers and the generating function (1 −
√
1− 4x)/2x of Catalan numbers are

algebraic (where
√
1− 4x means a square root of 1 − 4x which was written

as F1/2(−4x) in the argument above).

We define the formal derivative for elements of C[[x]] by

(∑
n≥0

anx
n

)′

:=∑
n≥1

nanx
n−1. This satisfies the ordinary formulae for derivatives of addition

and multiplication: (f + g)′ = f ′ + g′ and (fg)′ = f ′g + fg′.

Definition 2.3. We say that an element f(x) of C[[x]] is differentially finite

(or shortly, D-finite) if the following holds as a linear spece over C(x):

dim spanC(x)

{(
d

dx

)k

f | k ≥ 0

}
< ∞ .
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We note that the condition above is equivalent to that for some d ≥ 0

and P0, . . . , Pd ∈ C[x] we have

Pd(x)f
(d)(x) + · · ·+ P1(x)f

′(x) + P0(x)f(x) = 0 , Pd ̸= 0 . (2)

Theorem 2.2. For f(x) =
∑
n≥0

anx
n ∈ C[[x]], the following conditions are

equivalent:

1. f is D-finite.

2. For some d ≥ 0 and P0, . . . , Pd, Q ∈ C[x] we have

Pd(x)f
(d)(x) + · · ·+ P1(x)f

′(x) + P0(x)f(x) = Q(x) , Pd ̸= 0 .

3. For some d ≥ 0 and P0, . . . , Pd ∈ C[x] (Pd ̸= 0) we have

P0(n)an + P1(n)an+1 + · · ·+ Pd(n)an+d = 0

for any n ≥ 0.

Proof. [1 ⇒ 3] Starting from Eq.(2), we write the maximum of degrees of

Pi’s as D and for each 0 ≤ k ≤ D, write the coefficient of xk in Pi as pi,k.

Then the coefficient of xn in the left-hand side of Eq.(2) is

d∑
i=0

D∑
j=0

pi,j · [coeff. of xn−j in f (i)]

=
d∑

i=0

D∑
j=0

pi,j · (n− j + i)(n− j + i− 1) · · · (n− j + 1)an−j+i ,

which is constantly equal to 0. Here we set ak := 0 when k < 0. Therefore,

by putting, for each −D ≤ k ≤ d,

Rk(n) :=
∑

0≤i≤d , 0≤j≤D
i−j=k

pi,j · (n− j + i)(n− j + i− 1) · · · (n− j + 1) ,
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it is a polynomial in n and satisfies that for any n ≥ 0 we have

d∑
k=−D

Rk(n)an+k = 0 .

Now as Pd ̸= 0, we have pd,j0 ̸= 0 for at least one j0. For this j0, Rd−j0(n) is

of the folowing form

pd,j0 · (n− j0+d) · · · (n− j0+1)+[polynomial in n of degree at most d− 1] ,

therefore Rd−j0 ̸= 0. This implies that at least one of Rk’s is non-zero,

therefore there exists a d′ with −D ≤ d′ ≤ d satisfying that for any n ≥ 0

we have
d′∑

k=−D

Rk(n)an+k = 0 , Rd′ ̸= 0 .

By putting R̂k(n) := Rk−D(n) for each 0 ≤ k ≤ d′+D and putting n := m+D

for each m ≥ 0, the relation above becomes

d′∑
k=−D

R̂k+D(m+D)am+k+D =
d′+D∑
k′=0

R̂k′(m+D)am+k′ = 0 .

This gives a relation in Condition 3, as the R̂k′(m+D)’s are polynomials in

m and R̂d′+D(m+D) is not the zero polynomial.

[3 ⇒ 2] For each 0 ≤ ℓ ≤ d, as (x+ℓ)(x+ℓ−1) · · · (x+ℓ−j+1) (j ≥ 0) is

a polynomial of degree j with the leading coefficient being 1, it follows that

any polynomial of degree at most D can be expressed as a linear combination

of such polynomials above over j = 0, . . . , D. Based on this, for the relation

in Condition 3, we write the maximum of degrees of the Pi’s as D and write

Pℓ(x) =
D∑
j=0

bℓ,j(x+ ℓ)(x+ ℓ− 1) · · · (x+ ℓ− j + 1) , bℓ,j ∈ C .

Moreover, we set

Q(x) :=
d∑

ℓ=0

D∑
j=0

bℓ,jx
j+d−ℓf (j)(x) .
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Now when m ≥ d+D, the coefficient of xm in Q(x) is

d∑
ℓ=0

D∑
j=0

bℓ,j · [coeff. of xm−j−d+ℓ in f (j)]

=
d∑

ℓ=0

D∑
j=0

bℓ,j · (m− d+ ℓ)(m− d+ ℓ− 1) · · · (m− d+ ℓ− j + 1)am−d+ℓ

=
d∑

ℓ=0

Pℓ(m− d)am−d+ℓ .

The right-hand side is equal to the left-hand side of the relation in Condition

3 with n = m− d, which is 0. Hence Q(x) is a polynomial of degree at most

d + D − 1. Moreover, as Pd ̸= 0, we have bd,j0 ̸= 0 for some j0. Now the

coefficient of f (j0)(x) in the right-hand side of the definition of Q(x) is

bd,j0x
j0 + [monomials in x of degrees at least j0 + 1] ,

which is not the zero polynomial. Hence by rearranging the defining equality

for Q(x) ∈ C[x], we obtain a relation as in Condition 2.

[2⇒ 1] By differentiating both sides of the relation in Condition 2 degQ+

1 times, the right-hand side becomes 0, while the left-hand side becomes

Rd+degQ(x)f
(d+degQ)(x)+ · · ·+R1(x)f

′(x)+R0(x)f(x) for some polynomials

R0, . . . , Rd+degQ. Combining this and the property Rd+degQ(x) = Pd(x) ̸= 0

yields a relation as in Eq.(2). Hence the claim holds.

By this theorem, the class of D-finite formal power series can be regarded

as the class of generating functions of sequences having recurrence relations

of the form of linear combination with coefficients being polynomials in n.

Similarly to the case of algebraic formal power series, the following prop-

erty holds.

Proposition 2.4. The set of D-finite elements of C[[x]] is a subring of C[[x]]
containing C(x) ∩ C[[x]].
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Proof. For the claim that the set in the statement contains C(x), it can be

deduced by setting d = 0 in Condition 2 of Theorem 2.2. For the remaining

claim, let f, g ∈ C[[x]] be D-finite elements. By definition, we can take

finite-dimensional C(x)-linear spaces Vf , Vg satisfying that all f (n)’s belong

to Vf , all g
(n)’s belong to Vg, and each of Vf and Vg is generated by some

finite subset of C[[x]]. Now for n ≥ 0, we have that (f ± g)(n) ∈ Vf + Vg

and Vf + Vg is finite-dimensional, therefore f ± g is also D-finite. On the

other hand, when {α1, . . . , αdf} ⊆ C[[x]] is a finite generating set of Vf and

{β1, . . . , βdg} ⊆ C[[x]] is a finite generating set of Vg, the C(x)-linear space

W generated by the elements αiβj (1 ≤ i ≤ df , 1 ≤ j ≤ dg) is also finite-

dimensional and satisfies that for any n,m ≥ 0 we have f (n)g(m) ∈ W . Now

for n ≥ 0, we have

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k) ∈ W .

Therefore fg is also D-finite. Hence the claim holds.

For those two classes (algebraic and D-finite ones), we have the following

relation.

Theorem 2.3. If f ∈ C[[x]] is algebraic, then f is D-finite.

Proof. We note that as f is algebraic, the field C(x, f) obtained by appending

f to C(x) is finite-dimensional over C(x). Take a relation as follows yielded

by the fact that f is algebraic,

Pdf
d + · · ·+ P1f + P0 = 0 , Pi ∈ C[x] , Pd ̸= 0

in a way that d is minimal. Differentiating both sides yields

d∑
i=0

P ′
if

i +

(
d∑

i=1

Pi · if i−1

)
· f ′ = 0 .

By the minimality of d, the coefficient of f ′ is non-zero, therefore by solving

this equation in f ′ we have f ′ ∈ C(x, f). Now if f (n) ∈ C(x, f), then the
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formula for derivative of fraction implies that f (n+1) can be written as a

rational expression of x, f , and f ′, therefore by the fact f ′ ∈ C(x, f) we

have f (n+1) ∈ C(x, f). By using it recursively, it follows that for any n ≥ 0,

f (n) belongs to the finite-dimensional C(x)-linear space C(x, f). Hence f is

D-finite and the claim holds.

By Theorem 2.3, for example, the generating function of Catalan numbers

is D-finite (which would be not obvious from the original definition of Catalan

numbers). We note that the converse of Theorem 2.3 does not hold (see

Chapter 6, Exercise 6.1 of [6]).

We show that if two sequences have D-finite generating functions, then

the component-wise product of those sequences also has a D-finite generating

function. For the purpose, we prepare some definitions and properties.

Definition 2.4. We define an equivalence relation ∼ over the set of C-valued
sequences by

(an)n ∼ (bn)n
def⇔ there exists an N satisfying that for any m ≥ N we have am = bm.

We call its equivalence class [an]n the germ involving (an)n.

Note that the component-wise addition and multiplication for sequences

naturally induce addition and multiplication for germs. It also holds that the

property “it has a D-finite generating function” for sequences is preserved by

this equivalence relation. Namely, we have the following result.

Proposition 2.5. Suppose that sequences (an)n and (bn)n are equivalent in

the sense above, and let f(x) and g(x) be generating functions of (an)n and

(bn)n, respectively. If f is D-finite, then g is also D-finite.

Proof. By the hypothesis, we can take a finite-dimensional C(x)-linear space
V involving all f (n)’s. Moreover, as (an)n ∼ (bn)n, we have g = f+P for some

polynomial P (x). Now for any n ≥ 0 we have g(n) = f (n) +P (n) ∈ V +C(x).
As V +C(x) is also finite-dimensional over C(x), it follows that g is D-finite.

Hence the claim holds.
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Lemma 2.3. For the generating function f(x) of a sequence (an)n, the fol-

lowing conditions are equivalent.

1. f is D-finite.

2. The set {[an+i]n | i ≥ 0} generates a finite-dimensional linear space

over C(n).

Proof. [1 ⇒ 2] Dividing the relation in Condition 3 of Theorem 2.2 by Pd

and rearranging it give a relation of the form

an+d = Q0(n)an +Q1(n)an+1 + · · ·+Qd−1(n)an+d−1 , Qi ∈ C(x) .

For any k ≥ 0, by substituting n + k to the n in the relation above, for any

n ≥ 0 we have

an+d+k = Q0(n+ k)an+k +Q1(n+ k)an+k+1 + · · ·+Qd−1(n+ k)an+k+d−1 .

By translating it to the case of germs, for any m ≥ d, [an+m]n can be written

as a linear combination of [an]n, [an+1]n, . . . , [an+m−1]n over C(n). By using

it recursively, it follows that any [an+m]n belongs to the finite-dimensional

C(x)-linear space generated by [an]n, [an+1]n, . . . , [an+d−1]n. Hence Condition

2 holds.

[2 ⇒ 1] By the hypothesis, there exist d ≥ 0 and P0, . . . , Pd ∈ C[x]
(Pd ̸= 0) for which the following relation for germs holds:

P0(n)[an]n + · · ·+ Pd(n)[an+d]n = [0] .

Therefore, we can take an N for which for any n ≥ N we have

P0(n)an + · · ·+ Pd(n)an+d = 0 .

By putting R(x) := x(x− 1) · · · (x−N + 1), for any n ≥ N we have

P0(n)R(n)an + · · ·+ Pd(n)R(n)an+d = 0 .

This relation also holds for 0 ≤ n ≤ N − 1, as now R(n) = 0. As PdR ̸= 0,

this means that Condition 3 in Theorem 2.2 is satisfied for (an)n. Hence f

is D-finite and the claim holds.
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Theorem 2.4. Let f(x) and g(x) be generating functions of sequences (an)n

and (bn)n, respectively, and let f∗g denote the generating function of sequence

(anbn)n. If f and g are D-finite, then f ∗ g is also D-finite.

Proof. Let Va and Vb be the C(x)-linear spaces generated by germs [an+i]n

(i ≥ 0) and germs [bn+i]n (i ≥ 0), respectively. They are both finite-

dimensional by Lemma 2.3. Let (α1, . . . , αda) and (β1, . . . , βdb) be bases of

Va and Vb, respectively. Then the C(x)-linear space W generated by the el-

ements αiβj (1 ≤ i ≤ da, 1 ≤ j ≤ db) is also finite-dimensional, and for any

i ≥ 0 we have [an+ibn+i]n = [an+i]n · [bn+i]n ∈ W . Hence by Lemma 2.3, f ∗ g
is also D-finite.

At the end of this section, we mention the following fact about the gener-

ating function of “diagonal part” of a multi-dimensional sequence. We omit

the proof of this fact. See Chapter 6, Exercise 6.61 of [6] for the former claim

and Chapter 6, Theorem 6.3.3 of [6] for the latter claim.

Theorem 2.5. For an n-variate formal power series

f(x1, . . . , xn) =
∑

k1,...,kn≥0

ak1,...,knx
k1
1 · · · xkn

n ∈ C[[x1, . . . , xn]]

we define diag(f)(x) :=
∑
k≥0

ak,...,kx
k. If this f is also an element of C(x1, . . . , xn),

then diag(f)(x) is D-finite. If moreover n = 2, then diag(f)(x) is algebraic.

Exercises

Problem 1. Here we write the Fibonacci numbers as (Fn)n, and we define

the Lucas number (Ln)n by L0 = 2, L1 = 1, and a recurrence relation

Ln+2 = Ln + Ln+1. Prove, by using generating functions, that the relation

Ln = 2Fn − Fn−1 (n ≥ 1) holds.

(Hint: It is now not necessary to determine the coefficients of generating

functions of Fibonacci and Lucas numbers; it is sufficient for our present

purpose to obtain their rational expressions.)
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Problem 2. For an integer n ≥ 1, we write the Young diagram of partition

(n, n) as Y . We consider to fill different numbers from 1 to 2n into the boxes

of Y , one per each box. We call such an arrangement a standard Young

tableau of shape Y if the following conditions hold.

• The numbers in each row is increasing from left to right.

• The numbers in each column is increasing from top to bottom.

Prove that the number of standard Young tableaux of shape Y is equal to

Cn, by constructing a bijection between the set of Dyck paths from (0, 0) to

(2n, 0) and the set of standard Young tableaux of shape Y .

Problem 3. For integer n ≥ 0, let an denote the number of ways of ex-

pressing (n, n) as a sum of vectors (1, 0), (0, 1), and (1, 1) that can be used

multiple times (where we distinguish the sums that only differ in the order

of vectors). Prove that its generating function
∑
n≥0

anx
n is algebraic.

(Hint: Apply the latter part of Theorem 2.5, by appropriately construct-

ing a two-dimensional sequence (bn,m)n,m in a way that its generating function

is a rational function and an = bn,n.)

Problem 4. For Catalan numbers Cn, let Dn := C2
n. Give a relation for

the sequence (Dn)n as in Condition 3 of Theorem 2.2.

(Comment: The generating function of Catalan numbers is D-finite as

mentioned above. Therefore the generating function of (Dn)n is also D-finite

by Theorem 2.4; hence the existence of such a relation as in the statement is

guaranteed.)
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3 Principle of Inclusion-Exclusion andMöbius

Inversion Formula

This section is based on Chapter 3 of Stanley’s book [5].

We say that an element σ ∈ Sn of the symmetric group of degree n is

a derangement if σ has no fixed points, i.e., for any a ∈ {1, . . . , n} we have

σ(a) ̸= a. Here we write the set of derangements on n letters as Dn. For

example, we set n = 3 and try to count the elements of D3. The total number

of elements of S3 is

3! ,

but this involves some elements to be excluded, i.e., ones fixing 1, ones fixing

2, and ones fixing 3. The number of each of them is 2! (as it is equal to the

number of permutations on 2 elements); simply substituting them yields

3!− 3 · 2! .

But now, for example, focusing on elements fixing both 1 and 2, the formula

above counts them 1− 2 = −1 time, which is too few. To cancel it, we add

the number 1! of such elements (equal to the number of permutations on 1

element). Doing similarly for elements fixing both 1 and 3 and for elements

fixing both 2 and 3, we have the count

3!− 3 · 2! + 3 · 1! .

However, now the elements fixing all of 1, 2, and 3 (permutations on 0 ele-

ment) are counted 1− 3 + 3 = 1 time; to cancel it, we have to subtract the

number 0! of such elements. As a result, we have

|D3| = 3!− 3 · 2! + 3 · 1!− 0! = 6− 3 · 2 + 3 · 1− 1 = 2

(indeed, we have D3 = {(123), (132)}).
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As a generalization of this argument, by adjusting the additions and sub-

tractions carefully, we have the formula

|Dn| = n!−
(
n

1

)
· (n− 1)! +

(
n

2

)
· (n− 2)!− · · ·+ (−1)n · 0!

=
n∑

k=0

(−1)k
n!

k!
= n! ·

n∑
k=0

(−1)k

k!
≈ n!

e
.

From now on, we explain a theory called Principle of Inclusion-Exclusion

that can formalize the part “adjusting the additions and subtractions care-

fully” above.

In general, the Principle of Inclusion-Exclusion is described by using

“Möbius functions” on partially ordered sets.

Definition 3.1. Let P be a set and let ⪯ be a binary relation on P . We say

that (P,⪯) (or simply, P ) is a partially ordered set (poset) if the following

conditions hold. We also call such ⪯ a partial order.

1. For any x ∈ P , we have x ⪯ x (reflexivity).

2. For any x, y ∈ P , if x ⪯ y and y ⪯ x then we have x = y (antisymme-

try).

3. For any x, y, z ∈ P , if x ⪯ y and y ⪯ z then we have x ⪯ z (transitiv-

ity).

If moreover the following condition holds:

• For any x, y ∈ P , we have x ⪯ y or y ⪯ x,

then we say that P is a totally ordered set and ⪯ is a total order.

From now on, when we use a symbol like ⪯ to express an order, we use

a symbol like x ≺ y to mean “x ⪯ y and x ̸= y”.
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Example 3.1. For elements x, y of a poset P , we say that y covers x and x is

covered by y if we have x ≺ y and there exists no z with x ≺ z ≺ y. A Hasse

diagram of P is given by regarding elements of P as points and, if y covers

x, then joining x and y by a line where y is placed above x. For example, the

set Z≥0 of non-negative integers forms a totally ordered set with the usual

large/small relation as the order, for which (a part of) a Hasse diagram is as

in the left part of Figure 4. (We note that by the transitivity, an element in

the diagram and some other element that can be reached from the original

element by following some upward lines have an order relation even if they

are not directly joined by a line.) Similarly, the set of all subsets of {1, 2, 3},
ordered by the inclusion relation ⊆, forms a poset with Hasse diagram as in

the middle part of Figure 4, and the set of Young diagrams, ordered by the

inclusion relation (where all Young diagrams are upper-left aligned), forms a

poset with (a part of) Hasse diagram as in the right part of Figure 4.

Figure 4: Examples of Hasse diagrams for posets

Definition 3.2. Let (P,⪯P ) and (Q,⪯Q) be posets, and let f : P → Q.

We say that f is order-preserving if for any x, y ∈ P with x ⪯P y we have

f(x) ⪯Q f(y). We say that f is an isomorphism if f is bijective and both
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f and f−1 are order-preserving. When such an isomorphism exists, we say

that P and Q are isomorphic and write P ≃ Q.

Definition 3.3. Let P be a poset. For x, y ∈ P with x ⪯ y, we define

[x, y]P := {z ∈ P | x ⪯ z ⪯ y} .

Under the notation, we say that P is locally finite if for any x, y ∈ P with

x ⪯ y, [x, y]P is always a finite set.

For any locally finite poset P , we define

I(P ) := {(x, y) ∈ P 2 | x ⪯ y} ,

and define the addition and multiplication on the set CI(P ) := {f : I(P ) → C}
as follows: for any f, g ∈ CI(P ) and (x, y) ∈ I(P ),

(f + g)(x, y) := f(x, y) + g(x, y) , (fg)(x, y) :=
∑
z ;

x⪯z⪯y

f(x, z)g(z, y) .

We define the scalar multiplication on CI(P ) as follows: for any f ∈ CI(P ),

α ∈ C, and (x, y) ∈ I(P ),

(α · f)(x, y) := αf(x, y) .

On the other hand, we define the addition, multiplication, and scalar mul-

tiplication on the set CP := {f : P → C} by (f + g)(x) := f(x) + g(x),

(fg)(x) := f(x)g(x), and (α · f)(x) := αf(x). Then it can be straightfor-

wardly checked that CP forms a C-algebra.

Proposition 3.1. Under those definitions, CI(P ) is a C-algebra. Let δ : I(P ) →
C be defined by

δ(x, y) =

{
1 (if x = y)

0 (otherwise).

Then δ is the multiplicative identity element of CI(P ). Moreover, if for any

f ∈ CP we define f̂ ∈ CI(P ) by f̂(x, y) := f(x)δ(x, y), the correspondence

f 7→ f̂ forms a homomorphism as C-algebras from CP to CI(P ).
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Proof. It is obvious by definition that CI(P ) forms a C-linear space.
The associativity for multiplication holds as follows:

((fg)h)(x, y) =
∑

x⪯z⪯y

(fg)(x, z) · h(z, y)

=
∑

x⪯w⪯z⪯y

f(x,w)g(w, z) · h(z, y)

=
∑

x⪯w⪯y

f(x,w) · (gh)(w, y) = (f(gh))(x, y) .

The distributive law (from the right) holds as follows:

((f + g)h)(x, y) =
∑

x⪯z⪯y

(f + g)(x, z) · h(z, y)

=
∑

x⪯z⪯y

(f(x, z) + g(x, z)) · h(z, y)

=
∑

x⪯z⪯y

(f(x, z)h(z, y) + g(x, z)h(z, y))

= (fh)(x, y) + (gh)(x, y) = (fh+ gh)(x, y) .

The case of the other side is similar.

For any f, g ∈ CI(P ), α ∈ C, and (x, y) ∈ I(P ), we have

(α · (fg))(x, y) = α(fg)(x, y)

= α
∑

x⪯z⪯y

f(x, z)g(x, y)

=
∑

x⪯z⪯y

(αf(x, z))g(x, y)

=
∑

x⪯z⪯y

(α · f)(x, z)g(x, y) = ((α · f)g)(x, y) ,

therefore we have α · (fg) = (α · f)g and it holds similarly that α · (fg) =
f(α · g). Summarizing, CI(P ) is a C-algebra. Moreover, as

(δf)(x, y) =
∑

x⪯z⪯y

δ(x, z)f(z, y) = 1 · f(x, y) = f(x, y) ,



FY2022 “Combinatorics” Lecture Note (Koji Nuida) 36

we have δf = f and similarly fδ = f . Therefore δ is the multiplicative

identity element of CI(P ).

For any f, g ∈ CP , α ∈ C, and (x, y) ∈ I(P ), we have

(f̂ + ĝ)(x, y) = f̂(x, y) + ĝ(x, y)

= f(x)δ(x, y) + g(x)δ(x, y)

= (f(x) + g(x))δ(x, y)

= (f + g)(x)δ(x, y) = f̂ + g(x, y) ,

(f̂ ĝ)(x, y) =
∑

x⪯z⪯y

f̂(x, z)ĝ(z, y)

=
∑

x⪯z⪯y

f(x)δ(x, z)g(z)δ(z, y)

= f(x)g(x)δ(x, y)

= (fg)(x)δ(x, y) = f̂ g(x, y) ,

(α · f̂)(x, y) = αf̂(x, y)

= αf(x)δ(x, y)

= (α · f)(x)δ(x, y) = α̂ · f(x, y) .

Therefore the correspondence f 7→ f̂ is a homomorphism of C-algebras.
Hence the claim holds.

From now on, we suppose that for any x ∈ P the set ∧x := {w ∈ P | w ⪯
x} is always finite. For any f ∈ CI(P ) and φ ∈ CP , we define φ ∗ f ∈ CP by

(φ ∗ f)(x) :=
∑
w⪯x

φ(w)f(w, x) .

Lemma 3.1. For any f, g ∈ CI(P ) and φ ∈ CP , we have φ∗(fg) = (φ∗f)∗g
and φ ∗ δ = φ.
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Proof. For any x ∈ P , we have

(φ ∗ (fg))(x) =
∑
w⪯x

φ(w)(fg)(w, x)

=
∑

w⪯z⪯x

φ(w)f(w, z)g(z, x)

=
∑
z⪯x

(φ ∗ f)(z)g(z, x) = ((φ ∗ f) ∗ g)(x) ,

(φ ∗ δ)(x) =
∑
w⪯x

φ(w)δ(w, x) = φ(x)δ(x, x) = φ(x) .

Hence the claim holds.

Definition 3.4. Let P be a locally finite poset. We define the Möbius func-

tion µ = µP ∈ CI(P ) on P recursively as follows: for x ∈ P define µ(x, x) := 1,

and for x ≺ y define µ(x, y) := −
∑
z ;

x≺z⪯y

µ(z, y).

From now on, let P be a locally finite poset.

Lemma 3.2. Let 1 ∈ CI(P ) be defined by 1(x, y) = 1 for any (x, y) ∈ I(P ).

Then we have 1µ = δ.

Proof. For any x ∈ P , we have

(1µ)(x, x) = 1(x, x)µ(x, x) = 1 = δ(x, x) .

For any x ≺ y, we have

(1µ)(x, y) =
∑

x⪯z⪯y

1(x, z)µ(z, y)

=
∑

x⪯z⪯y

µ(z, y)

= µ(x, y) +
∑

x≺z⪯y

µ(z, y) = 0 = δ(x, y) .

Hence the claim holds.
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Lemma 3.3. We have µ1 = δ.

Proof. The claim is equivalent to that for any (x, y) ∈ I(P ) we have
∑

x⪯z⪯y

µ(x, z) =

δ(x, y). We prove the latter property by mathematical induction with respect

to the number of edges in the longest upward path from x to y in a Hasse

diagram of P . When x = y, the claim holds as µ(x, x) = 1 = δ(x, x). From

now, we suppose that x ≺ y. By the recursive definition of µ, we have∑
x⪯z⪯y

µ(x, z) = 1+
∑

x≺z⪯y

µ(x, z) = 1−
∑

x≺z⪯y

∑
x≺w⪯z

µ(w, z) = 1−
∑

x≺w⪯y

∑
w⪯z⪯y

µ(w, z) .

By the induction hypothesis, for any w ∈ [x, y]P \{x} we have
∑

w⪯z⪯y

µ(w, z) =

δ(w, y). Therefore we have∑
x⪯z⪯y

µ(x, z) = 1−
∑

x≺w⪯y

δ(w, y) = 1− δ(y, y) = 1− 1 = 0 = δ(x, y) .

Hence the claim holds.

Theorem 3.1. For any f, g ∈ CP , the conditions g = f ∗ 1 and f = g ∗ µ
are equivalent. These properties are called Möbius inversion formula.

Proof. By Lemmas 3.2 and 3.3, µ is the inverse of 1 (from both sides).

Therefore, if g = f ∗ 1 then we have

g ∗ µ = (f ∗ 1) ∗ µ = f ∗ (1µ) = f ∗ δ = f ,

while if f = g ∗ µ then we have

f ∗ 1 = (g ∗ µ) ∗ 1 = g ∗ (µ1) = g ∗ δ = g .

Hence the claim holds.

As an application of Möbius inversion formula, we revisit the aforemen-

tioned example of derangements. For each T ⊆ {1, . . . , n}, we define

F(T ) := {σ ∈ Sn | σ(a) ̸= a ⇔ a ∈ T} , f(T ) := |F(T )| ,
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G(T ) := {σ ∈ Sn | σ(a) ̸= a ⇒ a ∈ T} , g(T ) := |G(T )| .

We have Dn = F({1, . . . , n}) by definition. Now G(T ) is the disjoint union

of F(U)’s over U ⊆ T , therefore we have g(T ) =
∑

U⊆T f(U). We consider

a poset P that is the set of subsets of {1, . . . , n} ordered by the inclusion

relation. Then the relation above becomes

g(T ) =
∑
U⊆T

f(U) =
∑
U⊆T

f(U)1(U, T ) = (f ∗ 1)(T ) ,

therefore g = f ∗ 1. Now Möbius inversion formula implies that f = g ∗ µP ,

in particular

|Dn| = f({1, . . . , n}) =
∑

U⊆{1,...,n}

g(U)µP (U, {1, . . . , n}) .

Moreover, the Möbius function in this case is determined as follows.

Proposition 3.2. For the P above, we have µP (I, J) = (−1)|J |−|I|.

Proof. We use mathematical induction with respect to |J | − |I|. The case

I = J is obvious by definition. For the case I ⊊ J , we have

µP (I, J) = −
∑

I⊊K⊆J

µP (K, J) = −
∑

I⊊K⊆J

(−1)|J |−|K|

(here we used the induction hypothesis)

= −
|J |−|I|∑
k=1

(
|J | − |I|

k

)
(−1)|J |−(|I|+k)

= (−1)|J |−|I| −
|J |−|I|∑
k=0

(
|J | − |I|

k

)
(−1)|J |−|I|−k

= (−1)|J |−|I| − (1− 1)|J |−|I| = (−1)|J |−|I| ,

therefore the claim holds in this case. Hence the claim holds.
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Substituting this result into the relation above implies

|Dn| =
∑

U⊆{1,...,n}

(−1)n−|U |g(U) .

Moreover, as G(U) is the set of permutations fixing any point not belonging

to U , we have g(U) = |U |!. Summarizing, we have

|Dn| =
∑

U⊆{1,...,n}

(−1)n−|U ||U |! =
∑
k≥0

(−1)n−k

(
n

k

)
k!

=
∑
k≥0

(−1)n−k n!

(n− k)!
=
∑
k≥0

(−1)k
n!

k!
,

which is the fact mentioned above.

As another example, let P be the set of positive integers, and define the

order relation in a way that for any a, b ∈ P we have a ⪯ b if and only if

a | b (i.e., a divides b). Then P forms a poset. Now the Möbius function is

determined as follows.

Proposition 3.3. For the P above, consider a prime factorization b/a =

pe11 · · · peℓℓ (where the pi’s are distinct primes and ei > 0). If all the ei’s are

1, then we have µP (a, b) = (−1)ℓ; otherwise we have µP (a, b) = 0.

Proof. We use mathematical induction with respect to e1 + · · · + eℓ. When

the ei’s are all 1, we define a map f from the set P({1, . . . , ℓ}) of subsets

of {1, . . . , ℓ} to [a, b]P by f({i1, . . . , ik}) := api1 · · · pik . Then this f is an

isomorphism. By definition, the value of µP (a, b) depends solely on the order

structure of [a, b]P . Therefore the Möbius function on P({1, . . . , ℓ}) studied
above implies that µP (a, b) = (−1)ℓ.

On the other hand, when some ei is at least 2, by definition we have

µP (a, b) = −
∑
c ̸=a ;
a|c , c|b

µP (c, b) .

Now the induction hypothesis implies that when b/c has a square divisor we

have µP (c, a) = 0. Therefore the parameter c in the sum above essentially
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varies over the c’s for which b/c is square-free (note that b/a has a square

divisor by the current assumption). This implies that

µP (a, b) = −
∑
c ;

bp−1
1 ···p−1

ℓ |c , c|b

µP (c, b) = −
∑

c∈[bp−1
1 ···p−1

ℓ ,b]P

µP (c, b) = 0 .

Hence the claim holds.

For functions f and g in positive integer n, the condition that g(n) =∑
d|n f(d) always holds is equivalent to g = f ∗ 1. Now Möbius inversion

formula implies that f = g ∗ µP and hence f(n) =
∑

d|n g(d)µP (d, n). This

is nothing but the Möbius inversion formula in elementary number theory.

Exercises

Problem 1. Let P = {1, 2, . . . , 10}, and define a partial order on P in a

way that a ⪯ b if and only if a divides b. Draw a Hasse diagram of P .

Problem 2. Give an example of posets P,Q and a map f : P → Q for

which f is bijective and order-preserving but is not an isomorphism.

(Comment: For example, for the case of groups, if f : G → H is a bijective

homomorphism, then f is always an isomorphism. This problem says that a

similar property does not hold for the case of posets.)

Problem 3. Let P,Q be posets and f : P → Q be a bijective order-

preserving map. Prove that if moreover the order on P is a total order,

then f is an isomorphism.

Problem 4. Let P be the set of Young diagrams with at most 3 boxes,

ordered by the inclusion relation. Determine the value of µP (∅, Y ) for every

Y ∈ P .
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4 Ordered Sets and Lattices

This section is based on Chapter 3 of [5].

In the area of combinatorics (or discrete mathematics), posets themselves

have also been a research topic, where several notions, subclasses consisting

of special kinds of posets, etc. are studied.

Definition 4.1. Let P be a poset and let S be its subset. By restricting the

order relation of P to S, S also forms a poset. This poset is called a partially

ordered subset (subposet) of P . Moreover:

• We say that x ∈ P is an upper bound of S if for any y ∈ S we have

x ⪰ y. Similarly, we say that x ∈ P is a lower bound of S if for any

y ∈ S we have x ⪯ y.

• We say that x ∈ S is maximal in S if for any y ∈ S with y ⪰ x we have

y = x. Similarly, we say that x ∈ S is minimal in S if for any y ∈ S

with y ⪯ x we have y = x.

• We say that x ∈ S is maximum in S if x itself is an upper bound of

S. Similarly, we say that x ∈ S is minimum in S if x itself is a lower

bound of S.

When P has a maximum element (respectively, minimum element), we some-

times write this element as maxP , 1, or 1P (respectively, minP , 0, or 0P ).

Example 4.1. We consider the set P = {1, 2, . . . , 10} ordered by divisibility

relation, i.e., a ⪯ b ⇔ a | b. The only upper bound of S1 = {2, 3} is 6,

and the only lower bound of S1 is 1. Upper bounds of S2 = {4, 6} do not

exist, and the only lower bounds of S2 are 1 and 2. The maximal elements

of P are 6, 7, 8, 9, 10, and the maximum element of P does not exist. The

minimum element of P is 1, and the only minimal element of P is also 1 (see

the exercises).
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Definition 4.2. Let P be a poset and let S ⊆ P . If the set of the upper

bounds of S in P has the minimum element, then we call it the join of

S, denoted by
∨

S,
∨

x∈S x, etc. In the case where the S is a finite set

{x1, . . . , xn}, we also write the join of S as x1 ∨ · · · ∨ xn. On the other hand,

if the set of the lower bounds of S in P has the maximum element, then we

call it the meet of S, denoted by
∧

S,
∧

x∈S x, etc. In the case where the S

is a finite set {x1, . . . , xn}, we also write the meet of S as x1 ∧ · · · ∧ xn.

Example 4.2. Let P be the set of finite (possibly empty) strings over letters

a, b, c, and we define the order relation for w, v ∈ P in a way that w ⪯ v if and

only if w appears as a consecutive substring in v. For example, aba ⪯ cabab

and abb ̸⪯ acbb. Now for w = ab and v = bc, the common lower bounds for w

and v are the empty string (denoted here by ∅) and b; as ∅ ⪯ b, the meet of

w and v is w ∧ v = b. On the other hand, the set of common upper bounds

for w and v does not have the minimum element, therefore the join w ∨ v of

w and v does not exist.

Definition 4.3. Let P be a poset. We say that P is a lattice if any finite

non-empty subset of P has the join and the meet. We say that P is a complete

lattice if any non-empty subset of P has the join and the meet.

We note that by definition, any finite lattice is a complete lattice.

Example 4.3. • Any totally ordered set is a lattice.

• The set, say P , of the subgroups of a group G ordered by inclusion

relation (i.e., H1 ⪯ H2 ⇔ H1 ⊆ H2) is a complete lattice. Here the

meet of all Hλ ∈ P (λ ∈ Λ) is
⋂

λ∈ΛHλ, and their join is the subgroup

of G generated by
⋃

λ∈ΛHλ.

• The set of positive integers Z>0 ordered by divisibility relation forms a

lattice. Here the join of a1, . . . , an ∈ Z>0 is their least common multiple,

and their meet is their greatest common divisor. On the other hand,
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any non-empty subset of Z>0 has the meet (see the exercises), while Z>0

is not a complete lattice. Indeed, the subset S = {p ∈ Z>0 | p is prime}
does not have the join.

Proposition 4.1. Let L be a non-empty complete lattice. Then L has the

maximum element and the minimum element.

Proof. As L is a complete lattice and L ̸= ∅, the L itself has its join and meet.

The former is the maximum element of L, and the latter is the minimum

element of L.

Proposition 4.2. Let P be a poset satisfying the condition “any x, y ∈ P

have their join x ∨ y”. Then any finite non-empty subset of P has the join.

An analogous property also holds when switching the large/small relations

(concerning the meet instead of the join). In particular, if any two elements

of P have their join and meet, then P is a lattice.

Proof. It suffices to prove the claim for the join. For the case of singletons,

we have obviously
∨
{x} = x. From now, we prove that for any x ∈ P

and any finite non-empty subset S ⊆ P , the join
∨
(S ∪ {x}) exists and is

equal to (
∨

S)∨ x, by mathematical induction with respect to |S|. The case
of S being a singleton {y} is obvious by the hypothesis of the proposition.

From now, we suppose that |S| ≥ 2. The join
∨
S exists by the induction

hypothesis. Now a := (
∨

S) ∨ x is an upper bound of x, and it is an upper

bound of an upper bound
∨

S of S, hence it is an upper bound of S as well.

Therefore, a is an upper bound of S∪{x}. On the other hand, for any upper

bound b of S∪{x}, we have b ⪰ x, and as b is an upper bound of S, it follows

from the definition of
∨

S that b ⪰
∨
S. Hence we have b ⪰ (

∨
S) ∨ x = a.

Therefore a is the minimum upper bound of S ∪ {x}, meaning that a is the

join of S ∪ {x}. Hence the current claim holds for any S. This implies the

original claim.

We explain a more efficient computation of the Möbius function µP of

a poset P when P is a lattice. For a finite lattice L, let A(L) denote the
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C-linear space with basis L, and define the multiplication over A(L) as C-
algebra by xy := x ∧ y (x, y ∈ L). The multiplicative identity element of

A(L) is the maximum element 1L of L. For any x ∈ L, we define

ζx :=
∑
y⪯x

µL(y, x)y ∈ A(L) .

Lemma 4.1. In this setting, for any x ∈ L we have x =
∑

y⪯x ζy.

Proof. For any z ∈ L, by writing as πz the projection that maps each element

of A(L) to its coefficient of z, we have πz(ζx) =
∑

y⪯x µL(y, x)πz(y). Let

fz, gz : L → C with fz(x) := πz(ζx) and gz(x) := πz(x). Then the equality

above means the relation fz = gz ∗ µL in CL. Now Möbius inversion formula

implies that gz = fz ∗ 1, therefore

πz(x) = gz(x) =
∑
y⪯x

1(y, x)fz(y) =
∑
y⪯x

πz(ζy) .

Hence we have x =
∑

y⪯x ζy and the claim holds.

By Lemma 4.1, the ζx’s form a generating set of A(L) as C-linear space.
Moreover, by comparing the numbers of elements, it also follows that the ζx’s

form a basis of A(L) as C-linear space.

Lemma 4.2. If we define a C-linear map θ from A(L) to the direct sum of

|L| copies of C (where the canonical basis elements of the latter are denoted

by x̂, x ∈ L) by θ(ζx) := x̂ (x ∈ L), then θ is an isomorphism of C-algebras.
In particular, for x, y ∈ L, we have

ζxζy =

{
ζx (if x = y)

0 (if x ̸= y).

Proof. The latter part of the claim is deduced from the former part and the

definition of θ. It is obvious by definition that θ is an isomorphism of C-
linear spaces, therefore it suffices to show that θ preserves the multiplication.
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For the purpose, it also suffices to show that for any x, y ∈ L we have

θ(x)θ(y) = θ(x ∧ y). Now we have

θ(x)θ(y) = θ

(∑
z⪯x

ζz

)
θ

(∑
w⪯y

ζw

)

=

(∑
z⪯x

ẑ

)(∑
w⪯y

ŵ

)
=

∑
z⪯x ,w⪯y

ẑŵ

=
∑

z ; z⪯x , z⪯y

ẑ

=
∑

z⪯x∧y

ẑ = θ

( ∑
z⪯x∧y

ζz

)
= θ(x ∧ y) ,

therefore the claim holds.

For a poset P with maximum element 1P , we say that an element of P is

a coatom of P if it is covered by 1P . Similarly, for a poset P with minimum

element 0P , we say that an element of P is an atom of P if it covers 0P .

Theorem 4.1. Let L be a finite lattice, and let A∗ denote the set of the

coatoms of L. For any non-negative integer k, put

Nk :=
∣∣∣{S ⊆ A∗ : |S| = k ,

∧
S = 0L

}∣∣∣ .

Then we have µL(0L, 1L) =
∑
k≥0

(−1)kNk.

Proof. For any x ∈ A∗, the following holds in A(L):

1L − x =
∑
y⪯1L

ζy −
∑
y⪯x

ζy =
∑

y , y ̸⪯x

ζy .

Therefore we have ∏
x∈A∗

(1L − x) =
∏
x∈A∗

∑
y ̸⪯x

ζy .
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When expanding the right-hand side into a linear combination of the ζy’s by

using Lemma 4.2, the terms not vanishing are the terms of ζy’s satisfying

that for any x ∈ A∗ we have y ̸⪯ x. By the definition of A∗, the only such y

is y = 1L; therefore we have∏
x∈A∗

(1L − x) = ζ1L =
∑
z∈L

µL(z, 1L)z .

By comparing the coefficients of 0L in both sides, it follows that∑
k≥0

(−1)kNk = µL(0L, 1L) .

Hence the claim holds.

Several subclasses of lattices satisfying certain additional conditions have

been studied. Here we explain an example among them.

Definition 4.4. We say that a lattice L is a distributive lattice if the distribu-

tive law holds; that is, for any x, y, z ∈ L we have x∨(y∧z) = (x∨y)∧(x∨z)

and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Remark 4.1. We note that for any elements x, y, z of a lattice L, we always

have x ∨ (y ∧ z) ⪯ (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) ⪰ (x ∧ y) ∨ (x ∧ z).

Therefore, among the conditions for distributive lattices, it suffices to verify

that x ∨ (y ∧ z) ⪰ (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) ⪯ (x ∧ y) ∨ (x ∧ z).

Example 4.4. • The power set P(S) of a given set S, ordered by the

inclusion relation, forms a distributive lattice. Indeed, the join and

the meet in P(S) correspond to the set union and the set intersection,

respectively, and the condition for a distributive lattice is now nothing

but the distributive law for set union and set intersection.

• Let P be a poset. For a subset I ⊆ P , we say that I is an order ideal

of P if for any x, y ∈ P , the conditions x ∈ I and y ⪯ x imply that

y ∈ I. We define

J(P ) := {I ⊆ P | I is an order ideal of P} .
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Then (J(P ),⊆) is a distributive lattice. Indeed, for any I1, I2 ∈ J(P ),

we have I1 ∩ I2 ∈ J(P ) and I1 ∪ I2 ∈ J(P ), therefore I1 ∧ I2 = I1 ∩ I2

and I1 ∨ I2 = I1 ∪ I2; hence J(P ) is a lattice. Now the condition for a

distributive lattice is deduced from the properties of set inclusion.

• The lattice, say L, consisting of the subgroups of a given group G is

in general not a distributive lattice. To see this, we consider G = S3

and its subgroups H1 = ⟨(12)⟩, H2 = ⟨(13)⟩, and H3 = ⟨(23)⟩. Now

we have H2 ∧H3 = {id} and hence H1 ∨ (H2 ∧H3) = H1 ∨ {id} = H1.

On the other hand, we have H1 ∨ H2 = H1 ∨ H3 = S3 and hence

(H1∨H2)∧(H1∨H3) = S3∧S3 = S3. This means that H1∨(H2∧H3) ̸=
(H1 ∨H2) ∧ (H1 ∨H3), therefore L is not distributive.

The following characterization is known for distributive lattices.

Theorem 4.2. Let L be a finite distributive lattice. Then there exists a

unique poset P , up to isomorphism, satisfying L ≃ J(P ).

Proof. First, we show the existence of such a P . We say that an element x

of L is join-irreducible if there exist no y, z ∈ L with y, z ≺ x and y ∨ z = x.

Put

P := {x ∈ L | x is join-irreducible}

and define maps f : L → J(P ) and g : J(P ) → L by

f(x) := P ∩ ∧x , g(I) :=
∨

I ,

where we set ∧x := {y ∈ L | y ⪯ x}. For any x, y ∈ L with x ⪯ y, we

have ∧x ⊆ ∧y, therefore f(x) ⊆ f(y). This means that f is order-preserving.

Similarly, for any I1, I2 ∈ J(P ) with I1 ⊆ I2, we have
∨
I1 ⪯

∨
I2, therefore

g(I1) ⪯ g(I2). This means that g is order-preserving as well.

We show that g(f(x)) = x for any x ∈ L, by using mathematical induction

with respect to the maximum number of edges involved in an upward path

from 0L to x in a Hasse diagram of L, denoted by ρ(x). When x ∈ P
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(including the case of ρ(x) = 0 or equivalently x = 0L), as x is the maximum

element of f(x) by the definition of f , it follows that g(f(x)) = x. From

now, we consider the other case where x ̸∈ P . By the definition of P , there

are y, z ∈ L with y, z ≺ x and y ∨ z = x. Then we have ρ(x) > ρ(y)

and ρ(x) > ρ(z), therefore the induction hypothesis implies that g(f(y)) =

y or equivalently y =
∨
(P ∩ ∧y), and that g(f(z)) = z or equivalently

z =
∨
(P ∩ ∧z). Now as y ≺ x, we have P ∩ ∧y ⊆ P ∩ ∧x, therefore∨

(P ∩∧y) ⪯
∨
(P ∩∧x); and similarly, we also have

∨
(P ∩∧z) ⪯

∨
(P ∩∧x).

Moreover, as x is an upper bound of P ∩∧x, we have
∨
(P ∩∧x) ⪯ x. These

arguments imply

x = y ∨ z =
(∨

(P ∩ ∧y)
)
∨
(∨

(P ∩ ∧z)
)
⪯
∨

(P ∩ ∧x) ⪯ x ,

therefore we have x =
∨
(P ∩ ∧x) = g(f(x)). Hence we have g(f(x)) = x for

any x ∈ L.

We show, conversely, that f(g(I)) = I for any I ∈ J(P ). When x ∈ I

(⊆ P ), we have x ⪯ g(I) and hence x ∈ ∧g(I), therefore x ∈ f(g(I)). Hence

we have I ⊆ f(g(I)). Conversely, when x ∈ f(g(I)), the definitions of f and

g imply that x ⪯
∨

I. As L is a distributive lattice, we have x = x∧ (
∨
I) =∨

y∈I(x ∧ y). Now the fact x ∈ P implies that x is join-irreducible, therefore

it follows that there exists a y ∈ I satisfying that x ∧ y = x, hence x ⪯ y.

As I is an order ideal, it follows that x ∈ I. Hence we have f(g(I)) ⊆ I.

Summarizing, we have f(g(I)) = I. By these results, f and g are the inverses

of each other, therefore f is an isomorphism from L to J(P ). Hence the

existence of a P as in the statement is proved.

From now, we show the uniqueness of such a P . For the purpose, we show

that for any finite poset Q and any I ∈ J(Q), I is join-irreducible in J(Q)

if and only if I = ∧x for a unique x ∈ Q. When the latter condition holds,

for any K1, K2 ∈ J(Q) with K1 ∪K2 = I, as x ∈ I, we have x ∈ Ki for at

least one i. Now as Ki is an order ideal, we have I = ∧x ⊆ Ki; while the fact

K1 ∪K2 = I implies that I ⊇ Ki. Hence we have Ki = I. This implies that

I is join-irreducible.
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Conversely, suppose that the former condition holds. As I is a finite order

ideal, we have I =
⋃

y∈I ;maximal ∧y. For each such y, we have ∧y ∈ J(Q).

Now as I is join-irreducible, it follows that we have I = ∧y for some maximal

element y of I. On the other hand, if some z ∈ Q also satisfies that I = ∧z,

then we have y ∈ I = ∧z and hence y ⪯ z, and similarly we also have

z ⪯ y; therefore z = y. Hence the latter condition holds. Therefore the

equivalence mentioned above is proved. Consequently, we can construct a

map from the set of join-irreducible elements of J(Q), denoted by L(J(Q)),

to Q by associating to I = ∧x the element x ∈ Q; this is an isomorphism

from L(J(Q)) to Q.

Now suppose that for posets P1 and P2 we have L ≃ J(P1) ≃ J(P2). Then

the J(Pi)’s are finite, and the ∧x’s with x ∈ Pi are distinct elements of J(Pi).

Hence we have |Pi| < ∞. Now as the join-irreducible property is preserved

by isomorphisms, the aforementioned isomorphism L(J(Pi)) ≃ Pi implies

that P1 ≃ L(J(P1)) ≃ L(J(P2)) ≃ P2. Hence the P as in the statement is

unique up to isomorphism. This completes the proof.

Exercises

Problem 1. Let P be a poset.

1. Prove that if x ∈ P is a maximum element of P , then x is a unique

maximal element of P .

2. Suppose that P is finite. Prove that if x ∈ P is a unique maximal

element of P , then x is a maximum element of P .

3. When P is infinite, the property “if x ∈ P is a unique maximal element

of P , then x is a maximum element of P” does not hold in general.

Prove this fact by giving an example of such a P .

(Comment: The analogous properties also hold when switching the sides of

the order relation.)
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Problem 2. In the setting of Example 4.2, prove that the elements w = ab

and v = bc of P do not have the join w ∨ v.

Problem 3. Suppose that a poset P is locally finite, has the minimum

element 0P , and satisfies that any finite non-empty subset of P has the join.

Prove that any non-empty subset of P has the join.

Problem 4. Prove that for any elements x, y, z of a lattice L, we have

x ∨ (y ∧ z) ⪯ (x ∨ y) ∧ (x ∨ z).

(Comment: We can also prove that x∧(y∨z) ⪰ (x∧y)∨(x∧z) similarly.)
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5 Well-Order and Mathematical Induction

This section is based on Chapter 1 of the book [4].

In the principle of mathematical induction, the properties of large/small

relations on the set of non-negative integers are significantly relevant. By

abstracting the properties, we are led to the following definition.

Definition 5.1. For a poset (P,⪯), we say that P is a well-ordered set and ⪯
is a well-order if any non-empty subset of P has the minimum element. When

P is a well-ordered set, for any x ∈ P , we define precP (x) := {y ∈ P | y ≺ x}
and call it the initial segment of P by x.

Lemma 5.1. Any well-order is a total order.

Proof. For any well-ordered set P and x, y ∈ P , by definition, {x, y} has the

minimum element, say z. When z = x, the definition of z implies that x ⪯ y.

Similarly, when z = y we have y ⪯ x. Hence we have either x ⪯ y or y ⪯ x,

therefore P is a totally ordered set, as desired.

The following property can be seen as “mathematical induction on well-

ordered sets”.

Theorem 5.1. Let P be a non-empty well-ordered set, and let φ be some

proposition for an element of P . If both “φ is true for minP” and “for any

x ∈ P \ {minP}, if φ is always true on precP (x), then φ is also true for x”

hold, then φ is always true on P .

Proof. It suffices to deduce a contradiction by assuming that φ is false for

some element of P . By this assumption, {x ∈ P | φ(x) is false} is a non-

empty subset of P , therefore it has the minimum element, say a. Now the

former condition in the statement implies that a ̸= minP , and the definition

of a implies that φ is always true on precP (a). Therefore, the latter condition

in the statement implies that φ is true for a as well, a contradiction. Hence

the claim holds.
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The set Z≥0 of non-negative integers is a well-ordered set. By applying

Theorem 5.1 to the Z≥0, we can deduce the usual mathematical induction

(or its variant, so-called course-of-values induction). Moreover, the fact that

Z≥0 is a well-ordered set also implies the following property.

Theorem 5.2 (Pigeonhole Principle). Let n > m ≥ 1 be integers. Then any

map f : {1, . . . , n} → {1, . . . ,m} is not injective.

Proof. Assume for the contrary that some m does not satisfy the claim.

Take the smallest such m, and suppose that a map f in the statement is

injective. It holds obviously that m > 1. As f is injective, |f−1[m]| is

either 0 or 1. If |f−1[m]| = 0, then f : {1, . . . , n} → {1, . . . ,m − 1} is also

injective, contradicting the minimality of m. Hence we must have |f−1[m]| =
1. By writing the unique element of f−1[m] as a, there exists a bijection

g : {1, . . . , n−1} → {1, . . . , n}\{a}. Now f ◦g : {1, . . . , n−1} → {1, . . . ,m−
1} is also injective, contradicting the minimality of m. Hence the claim

holds.

In order to show important properties of well-orders, we prepare some

properties.

Lemma 5.2. For any well-ordered sets (P,⪯P ) and (Q,⪯Q), any isomor-

phism f : P → Q, and any x ∈ P , we have f(precP (x)) = precQ(f(x)).

Proof. As f is order-preserving, we have f(precP (x)) ⊆ precQ(f(x)). Sim-

ilarly, as f−1 is order-preserving, we have f−1(precQ(f(x))) ⊆ precP (x)

and hence precQ(f(x)) ⊆ f(precP (x)). Therefore we have f(precP (x)) =

precQ(f(x)) and the claim holds.

Lemma 5.3. For any well-ordered set (P,⪯) and any x ∈ P , we have P ̸≃
precP (x).

Proof. Assume for the contrary that an isomorphism f : precP (x) → P exists.

To show that S := {y ∈ precP (x) | f(y) ̸= y} is empty, assume for the
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contrary that S is non-empty. Take the minimum element y of S. Then

f |precP (y) has to be an identity map, and the restriction of f to precP (x) \
precP (y) is an isomorphism onto P \precP (y). This isomorphism has to map

the minimum element y of precP (x) \ precP (y) to the minimum element y of

P \ precP (y), therefore f(y) = y. This contradicts the fact y ∈ S; therefore

we have S = ∅. This implies that for any y ∈ precP (x) we have f(y) = y,

therefore there is no y ∈ precP (x) with f(y) = x ∈ P , contradicting the fact

that f is surjective. Hence the claim holds.

Lemma 5.4. For any well-ordered sets (P,⪯P ) and (Q,⪯Q), an isomor-

phism from P to Q is unique if it exists.

Proof. Let f, g : P → Q be isomorphisms. Assume for the contrary that

there is some x ∈ P with f(x) ̸= g(x). For the minimum such x, we have

f |precP (x) = g|precP (x). By writing its image as X, both f and g are isomor-

phisms from P \ precP (x) onto Q \ X. As x is the minimum element of

P \precP (x), both f(x) and g(x) have to be the minimum element of Q \X,

contradicting the choice of x. Hence we have f = g and the claim holds.

The following property is remarkable for well-ordered sets.

Theorem 5.3. Let (P,⪯P ) and (Q,⪯Q) be well-ordered sets. Then precisely

one of the following conditions holds:

1. P ≃ Q.

2. There exists an x ∈ P with precP (x) ≃ Q.

3. There exists an y ∈ Q with P ≃ precQ(y).

Proof. First, we show that any two conditions in the claim do not hold at

once. Suppose that Condition 1 holds. If Condition 2 also holds, then we have

P ≃ precP (x), contradicting Lemma 5.3. The case where Condition 3 instead

holds is similarly contradictory. Hence Condition 1 cannot be consistent
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with the other conditions. On the other hand, assume for the contrary that

Conditions 2 and 3 hold. By choosing an isomorphism f : P → precQ(y),

Lemma 5.2 implies that f(precP (x)) = precprecQ(y)(f(x)) = precQ(f(x)).

Now the composition of it and the isomorphism in Condition 2 yields an

isomorphism Q → precQ(f(x)), contradicting Lemma 5.3. Hence any two

conditions in the claim do not hold at once.

Our remaining task is to show that at least one of the conditions in the

claim holds. Let F denote the set of isomorphisms from a subset precP (a)∪
{a} ⊆ P with some a ∈ P to a subset precQ(b) ∪ {b} ⊆ Q with some b ∈ Q.

Let X ⊆ P be the union of the domains of maps in F . We are going to

define a map F : X → Q in a way that if a ∈ X belongs to the domain of

f ∈ F then F (a) := f(a). Assume for the contrary that there is some a ∈ X

that belongs to the domains of both f, g ∈ F and satisfies that f(a) ̸= g(a).

Take the minimum such a and the corresponding f, g. By the definition of

F , the domain of any of f and g includes precP (a) ∪ {a}. By Lemma 5.2

we have f(precP (a)) = precQ(f(a)) and g(precP (a)) = precQ(g(a)), while

the definition of a implies that f and g coincide on precP (a); therefore we

have precQ(f(a)) = precQ(g(a)) and hence f(a) = g(a). This contradicts the

choice of a. Therefore, if a ∈ X belongs to the domains of both f, g ∈ F ,

then we have f(a) = g(a). This means that such a map F is well-defined.

We note that by the definition of F , for any x, y ∈ X, there is an f ∈ F
whose domain involves both x, y (indeed, it suffices to take any f ∈ F whose

domain involves the maximum among x and y). For any x, y ∈ X with

x ≺P y, by taking an f ∈ F whose domain involves x, y, the fact that f

is an isomorphism implies that F (x) = f(x) ≺Q f(y) = F (y). Hence F

is order-preserving and injective. Put Y := F (X). For any x, y ∈ X with

F (x) ≺Q F (y), by taking an f ∈ F whose domain involves x, y, we have

f(x) = F (x) ≺Q F (y) = f(y); as f is an isomorphism, we have x ≺P y.

Hence F is an isomorphism from X onto Y .

As both the domain and the range of an element of F are order ideals,
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the sets X and Y being their unions, respectively, are order ideals as well.

Therefore, if X ̸= P then the element x := min(P \ X) satisfies that X =

precP (x), and similarly, if Y ̸= Q then the element y := min(Q \ Y ) satisfies

that Y = precQ(y). This implies that some of the conditions in the claim

holds when X = P or Y = Q. Hence our task is reduced to deduce a

contradiction by assuming that X ̸= P and Y ̸= Q. By expressing as

X = precP (x) and Y = precQ(y) as above, we can extend the map F to

an isomorphism F : X ∪ {x} → Y ∪ {y} by defining F (x) := y. Now we

have F ∈ F by definition, contradicting the fact x ̸∈ X. This completes the

proof.

The usual mathematical induction consists of “n-th steps” for finite num-

bers n; we want to extend it to handle the cases of infinite numbers n as

well. For the purpose, we introduce the notion of ordinal numbers. In the

following argument, when we are focusing on ordinal numbers, we suppose

that every element of any set is also a set. That is, for any two elements

x, y of some set, we can deduce that x = y by showing “a ∈ x if and only if

a ∈ y”.

Definition 5.2. We say that a set x is transitive if for any y ∈ x and any

z ∈ y we have z ∈ x (or equivalently, for any y ∈ x we have y ⊆ x). We say

that a set α is an ordinal number if the following conditions hold:

1. α is transitive.

2. If β ∈ α, then we have β ̸∈ β.

3. The relation ⪯α on α, defined in a way that β ⪯α γ if and only if either

β = γ or β ∈ γ, is a well-order.

We write the collection (class) of all ordinal numbers as ON.

It is known that ON itself is not a set (if we treat ON as a set, then a

contradiction occurs). This fact is named Burali-Forti paradox. We note also

that by Condition 2 above, for any ordinal number α we have α ̸∈ α.
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Example 5.1. By defining ⌜n⌝ for each non-negative integer n in such a way

that ⌜0⌝ := ∅, ⌜1⌝ := {⌜0⌝}, ⌜2⌝ := {⌜0⌝, ⌜1⌝}, ⌜3⌝ := {⌜0⌝, ⌜1⌝, ⌜2⌝}, . . . ,
it follows that they are ordinal numbers. We call them finite ordinal numbers.

(From now on, we identify a non-negative integer n with ⌜n⌝.) On the other

hand, ω := {⌜n⌝ | n ∈ Z≥0} and ω ∪{ω} are also ordinal numbers. They are

examples of infinite ordinal numbers.

From now on, we explain several properties of ordinal numbers.

Proposition 5.1. If α is an ordinal number and β ∈ α, then β is also an

ordinal number and we have precα(β) = β.

Proof. For the latter part of the claim, if γ ∈ precα(β) then we have γ ≺α β,

therefore γ ∈ β. Hence we have precα(β) ⊆ β. Conversely, for any γ ∈ β, the

hypothesis β ∈ α and the transitivity of α imply that γ ∈ α; as γ ∈ β, we

have γ ≺α β, therefore γ ∈ precα(β). Hence we have β ⊆ precα(β), therefore

precα(β) = β.

For the former part of the claim, the latter part of the claim implies

that β is a subset of α; hence β is also a well-ordered set, and the property

“γ ∈ β implies γ ̸∈ γ” is inherited from α. On the other hand, suppose that

δ ∈ γ ∈ β. Then the hypothesis β ∈ α and the transitivity of α imply that

γ ∈ α and moreover that δ ∈ α. Now we have δ ≺α γ ≺α β and hence

δ ≺α β, therefore δ ∈ β. This implies that β is also transitive, therefore β is

also an ordinal number. Hence the claim holds.

Proposition 5.2. For any ordinal numbers α, β, if α and β are isomorphic

as well-ordered sets, then α = β.

Proof. Take an isomorphism f : α → β. Assume for the contrary that S :=

{γ ∈ α | f(γ) ̸= γ} is non-empty. Let γ be the minimum element of S.

For any δ ∈ γ, the fact γ ∈ α and the transitivity of α imply that δ ∈ α.

Therefore we have δ ≺α γ, and by the definition of γ we have f(δ) = δ. As

f is order-preserving, the fact δ ∈ γ implies that δ = f(δ) ∈ f(γ). Hence we

have γ ⊆ f(γ).
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For any δ ∈ f(γ), the fact f(γ) ∈ β and the transitivity of β imply that

δ ∈ β. By putting η := f−1(δ) ∈ α, we have f(η) = δ ∈ f(γ); as f is an

isomorphism, we have η ∈ γ, therefore η ∈ precα(γ). Hence by the definition

of γ, we have f(η) = η and δ = f(η) = η ∈ γ. Hence we have f(γ) ⊆ γ,

therefore f(γ) = γ. This contradicts the fact γ ∈ S.

The argument above implies that S = ∅, that is, for any γ ∈ α we have

f(γ) = γ. Now for any γ ∈ α, we have γ = f(γ) ∈ β. Therefore we have α ⊆
β. On the other hand, for any γ ∈ β, we have γ = f(f−1(γ)) = f−1(γ) ∈ α.

Therefore we have β ⊆ α. Hence we have α = β and the claim holds.

Theorem 5.4. For any ordinal numbers α, β, precisely one of α = β, α ∈ β,

and β ∈ α holds.

Proof. First, as α ̸∈ α, if α = β then we have α ̸∈ β and β ̸∈ α. On the

other hand, if both α ∈ β and β ∈ α hold, then the transitivity of α implies

that α ∈ α, contradicting the fact above. Hence two conditions in the claim

do not hold at once.

By Theorem 5.3, one of the following conditions holds: α ≃ β; there is a

γ ∈ α with precα(γ) ≃ β; and there is a γ ∈ β with α ≃ precβ(γ). In the first

case, Proposition 5.2 implies that α = β. In the second case, Proposition 5.1

implies that γ is an ordinal number and precα(γ) = γ. Therefore Proposition

5.2 implies that γ = β and β ∈ α. In the third case, we similarly have α ∈ β.

Hence the claim holds.

Theorem 5.5. Let S be a set consisting of ordinal numbers, and for α, β ∈ S,

we define α ≤ β if and only if either α = β or α ∈ β. Then (S,≤) is a well-

ordered set.

Proof. First, we show that (S,≤) is a poset. The reflexivity follows immedi-

ately by definition. For the antisymmetry, it suffices to deduce a contradic-

tion by assuming that α ≤ β, β ≤ α, and α ̸= β. Now the definition of ≤
implies that α ∈ β and β ∈ α, contradicting Theorem 5.4, as desired. For the

transitivity, we suppose that α ≤ β and β ≤ γ and show that α ≤ γ. This is



FY2022 “Combinatorics” Lecture Note (Koji Nuida) 59

obvious when α = β or β = γ; we consider the other case where α ̸= β and

β ̸= γ. Now the definition of ≤ implies that α ∈ β and β ∈ γ, therefore the

transitivity of γ implies that α ∈ γ and α ≤ γ, as desired. Hence (S,≤) is a

poset.

The remaining task is to show that if ∅ ≠ T ⊆ S, then T has the minimum

element with respect to ≤. Take an element α ∈ T . If the α is the minimum

element of T then the claim holds; we suppose that we are not in this case.

Now X := {β ∈ T | α ̸≤ β} is non-empty. Moreover, for any β ∈ X, we

have α ̸= β and α ̸∈ β, therefore by Theorem 5.4 we have β ∈ α. Hence we

have X ⊆ α. As α is a well-ordered set, X has the minimum element, say γ.

If both δ ∈ T and γ ̸≤ δ were satisfied, then as γ is the minimum element

of X, we would have δ ̸∈ X and hence α ≤ δ. On the other hand, the fact

γ ∈ X ⊆ α implies that γ ≤ α. Now the transitivity of ≤ would imply that

γ ≤ δ, a contradiction. Hence for any δ ∈ T we have γ ≤ δ, therefore γ is

the minimum element of T , as desired. Hence the claim holds.

Remark 5.1. An argument similar to Theorem 5.5 implies that any non-

empty collection of ordinal numbers involves its minimum element.

In the following argument, we suppose that the well-order ≤ as in Theo-

rem 5.5 is defined for ordinal numbers.

By using ordinal numbers, we can formalize an argument like “mathe-

matical induction of infinite length”, formally called transfinite induction or

transfinite recursion. Here we omit the precise formulation of transfinite in-

duction as it is too technical; we instead explain a proof of Zorn’s Lemma

from the Axiom of Choice as an example of transfinite induction. For the

purpose, we give the following definitions.

Definition 5.3. Let α be an ordinal number. We say that α is a successor

ordinal if α has the maximum element as ordered set. We say that α is a

limit ordinal if α ̸= 0 and α is not a successor ordinal.
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We note that when α is a successor ordinal and β = maxα, β is the

maximum ordinal number less than α.

Theorem 5.6 (Zorn’s Lemma). Let P be a non-empty poset. If any totally

ordered subset of P has an upper bound in P , then P has a maximal element.

Proof. First of all, by applying the Axiom of Choice to the family of all

non-empty subsets of P , we can take a map ι with domain being the set of

non-empty subsets of P , for which we always have ι(S) ∈ S.

Assume for the contrary that P does not have a maximal element. For

each ordinal number α, we recursively define an element xα of P satisfying

the condition “β < α implies xβ ≺ xα” in the following manner. For α = 0

we define x0 := ι(P ). We consider the case where α ̸= 0, and suppose that

the xβ’s have been defined for ordinal numbers β less than α.

• When α is a successor ordinal, let β denote the maximum element of α.

By the assumption on P , xβ ∈ P is not a maximal element, therefore

S := {y ∈ P | xβ ≺ y} is non-empty. We define xα := ι(S). Now we

have xβ ≺ xα by definition, while for any ordinal number γ less than

β, the condition xγ ≺ xβ implies that xγ ≺ xα. Hence the condition

above is satisfied by the xα.

• When α is a limit ordinal, by putting C := {xβ | β < α}, the condition
above implies that C is a totally ordered subset of P . By the hypothesis,

S := {y ∈ P | y is an upper bound of C} is non-empty. We define

xα := ι(S). Now let β < α. Then we have xβ ⪯ xα. Moreover, as α

is a limit ordinal, β is not the maximum ordinal number less than α,

implying that there is an ordinal number γ with β < γ < α. Now we

have xβ ≺ xγ ⪯ xα, therefore xβ ≺ xα. Hence the condition above is

satisfied by the xα.

By the argument, an element xα satisfying the condition above is defined for

every ordinal number α (intuitively, if there were an α for which xα is not
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defined, then we could take the minimum such α, but for this α the element

xα should be defined by the argument above, a contradiction). Owing to

the condition above, those xα’s are all distinct. This implies (intuitively;

we omit a formal argument here) that “the collection of all ordinal numbers

corresponding to some element of the set P via the rule above” forms a set,

which is nothing but the ON itself, contradicting the Burali-Forti paradox.

Hence the claim holds.

A standard argument using Zorn’s Lemma implies the following property.

Theorem 5.7 (Well-Ordering Theorem). Any set becomes a well-ordered set

with respect to some order relation.

Based on Well-Ordering Theorem and the notion of ordinal numbers, we

can give a (set-theoretic) definition of cardinalities of sets.

Theorem 5.8. Let X be a set. Then there exist an ordinal number α and

a bijection X → α. We call the minimum such ordinal number α the cardi-

nality of X, denoted by |X|.

Proof. By Well-Ordering Theorem, we may suppose without loss of gener-

ality that X is a well-ordered set. By Theorem 5.3, any ordinal number

satisfies one of the conditions in Theorem 5.3 with X. Now for each x ∈ X,

Proposition 5.2 implies that there is at most one ordinal number α with

precX(x) ≃ α. Based on this fact, we (again intuitively) define S to be “the

set of ordinal numbers corresponding to elements of X in the way above”.

Then, as ON itself is not a set by the Burali-Forti paradox, it follows that

S is not equal to ON, therefore there is an ordinal number α not belonging

to S. For this α, among the conditions in Theorem 5.3, either “X ≃ α” or

“there is a β ∈ α with X ≃ precα(β) = β” holds (where the last equality

follows from Proposition 5.1). In any case, there is a bijection from X to an

ordinal number α or β. Hence the claim holds.
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Exercises

Problem 1. Let (P,⪯P ) and (Q,⪯Q) be well-ordered sets. We define a

relation ⪯ on the disjoint union P ⊔Q of P and Q in a way that it coincides

with ⪯P and ⪯Q on P and Q, respectively, and for any x ∈ P and y ∈ Q we

have x ⪯ y. Prove that this ⪯ is a well-order.

Problem 2. Let (P,⪯P ) and (Q,⪯Q) be well-ordered sets. We define a

relation ⪯ on the direct product P ×Q of P and Q in a way that (x1, x2) ⪯
(y1, y2) if and only if either x2 ≺ y2 or “x2 = y2 and x1 ⪯ y1”. Prove that

this ⪯ is a well-order.

(Comment: Such an order is called a lexicographic order.)

Problem 3. Let α, β be ordinal numbers. Prove that α ∈ β if and only if

α ⊊ β.

Problem 4. Prove the Burali-Forti paradox.

(Hint: Observe that if ON is a set, then ON itself becomes an ordinal

number.)

Problem 5. Prove Well-Ordering Theorem (by using Zorn’s Lemma).
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6 Graph Theory

In this and the following sections, the descriptions about graph theory are

based on the books [2] and [3].

Graphs are a tool of representing situations where certain objects are

“joined/not joined” to each other.

Definition 6.1. An undirected graph is defined as a triplet (V,E, ι) of two

sets V , E and a map ι : E → {{x, y} | x, y ∈ V }.

When expressing an undirected graph, we often omit the symbol ι and

simply write (V,E). Moreover, we sometimes call an undirected graph simply

a graph. When V and E are finite sets, we say that the undirected graph

(V,E, ι) is finite.

For an undirected graph G = (V,E, ι), we call V the vertex set of G, and

call E the edge set of G. Any element of V and E is called a vertex and

an edge of G, respectively. When we want to emphasize that an edge of G

is an edge of an undirected graph, we sometimes call it an undirected edge.

Intuitively, when vertices x, y and an edge e of G satisfy that ι(e) = {x, y},
this e can be regarded as a line, without direction, joining the points x and

y. Those x and y are called the endpoints of e; in this case, we say that x

and y are adjacent to the edge e. The number of edges to which a vertex

x of G is adjacent is called the degree of x and is denoted by deg(x). Any

edge e with |ι(e)| = 1, that is, any edge e whose two endpoints are equal, is

called a loop. When two edges e1, e2 satisfy that ι(e1) = ι(e2), we say that e1

and e2 are parallel, e1 and e2 are multiple edges, etc. The left part of Figure

5 shows an example of an undirected graph having 5 vertices and 9 edges,

where e1 is a loop (ι(e1) = {x, x} = {x}) and e2 and e3 are parallel edges

(ι(e2) = ι(e3) = {y, z}). We say that a graph is simple if it has no loops

nor multiple edges. For a simple undirected graph, the map ι is injective

and consequently, an edge e can be identified with a subset ι(e) of V . In the

following, we often perform such identification without mentioning.
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Figure 5: Example of an undirected graph and its subgraphs

Let G = (V,E, ι) be an undirected graph. We say that a graph is a

subgraph of G if it is expressed as a form (V ′, E ′, ι|E′) where V ′ is some subset

of V and E ′ is some subset of E ′. If moreover this subgraph satisfies that

E ′ = {e ∈ E | ι(e) ⊆ V ′}, we say that this subgraph is an induced subgraph.

Induced subgraphs are sometimes called full subgraphs. For example, the

middle part of Figure 5 is an induced subgraph of the graph in the left part

of Figure 5. On the other hand, the right part of Figure 5 is a subgraph of

the graph in the left part of Figure 5, but is not an induced subgraph.

Let G = (V,E, ι) be an undirected graph. A path in G is defined as a

sequence v0e1v1e2 · · · vn−1envn (n ≥ 0) satisfying that for each index i, we

have vi ∈ V , ei ∈ E, and ι(ei) = {vi−1, vi}. This path is also expressed by

e1e2 · · · en. Intuitively, this path is formed by visiting vertices v0, v1, . . . , vn

in this order, by passing edges e1, e2, . . . , en. When such a path satisfies that

vn = v0, we call the path a closed path or a circuit. For example, in the

graph at the left part of Figure 5, P1 := ye4ve5w and P2 := ye2ze3ye4ve4y

are paths, and P3 := ve5we6xe7v and P4 := ve7xe8ze3ye9xe6we5v are closed

paths. For a path v0e1v1e2 · · · vn−1envn, when the vertices vi involved are all

distinct, we say that this path is simple. On the other hand, for a closed path

v0e1v1e2 · · · vn−1envn, when the vertices vi involved are all distinct except for

the pair vn = v0, we say that this closed path is simple. In the example

above, the path P1 and the closed path P3 are simple, while the path P2 and

the closed path P4 are not simple. We note that in a simple graph, an edge
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is uniquely determined (if it exists) by the endpoints; in this case, we often

write a path v0e1v1e2 · · · vn−1envn more simply as v0v1 · · · vn−1vn.

For an undirected graph G, we define a relation x ∼ y for its vertices x, y

to be the existence of a path from x to y. Then this ∼ forms an equivalence

relation on the vertex set of G. For each of its equivalence class V ′, the

induced subgraph of G with vertex set V ′ is called a connected component

of G. When G has at most one connected component, we say that G is

connected.

For an undirected graph G, we say that G is a forest if G has no simple

closed path of positive length (the number of edges involved). A tree is

defined as a connected forest. The graph in the left part of Figure 6 is

connected but not a forest. The graph in the middle part of Figure 6 is a

forest but not connected (having 2 connected components). The graph in

the right part of Figure 6 is a connected forest, i.e., a tree. We note that

any forest is a simple graph. For a subgraph G′ of G, we say that G′ is a

spanning tree of G if G′ is a tree and the vertex set of G′ is the whole vertex

set of G. For example, the graph in the right part of Figure 6 is a spanning

tree of the graph in the left part of Figure 6.

Figure 6: Examples of connected graphs and forests

In contrast to undirected graphs, we also consider situations where each

edge of a graph has “direction”.

Definition 6.2. A directed graph is defined as a triplet (V,E, ι) of two sets

V , E and a map ι : E → V × V .
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Similarly to the case of undirected graphs, for a directed graph, we often

omit the symbol ι and write (V,E). We say that a directed graph is finite if

its vertex set V and its edge set E are both finite.

Intuitively, when vertices x, y ∈ V and a directed edge e ∈ E (or simply,

an edge) of G satisfy that ι(e) = (x, y), the edge e can be regarded as a line

joining points x and y and having direction from x to y. When ι(e) = (x, y),

we call x and y the source and the terminal of the edge e, denoted by s(e) and

t(e), respectively. For a vertex x of G, the number of edges e with s(e) = x

is called the out-degree of x, and the number of edges e with t(e) = x is

called the in-degree of x. We say that an edge e is a loop if s(e) = t(e).

For any edges e1, e2 with ι(e1) = ι(e2), we say that e1 and e2 are parallel,

or multiple edges. Any directed graph with no loops nor multiple edges is

called simple. For any simple directed graph, ι is injective and consequently,

an edge e can be identified with the pair ι(e) of vertices. In the following,

we sometimes perform such identification without mentioning. For example,

a Hasse diagram of a poset, where each edge is endowed with direction from

bottom to top, is a simple directed graph. The notion of subgraphs of a

directed graph is defined similarly to the case of undirected graphs.

Let G = (V,E, ι) be a directed graph. A directed path (or simply, a path)

in G is defined as a sequence v0e1v1e2 · · · vn−1envn (n ≥ 0) satisfying that for

each index i, we have vi ∈ V , ei ∈ E, and ι(ei) = (vi−1, vi). We also write

this path as e1e2 · · · en. When such a path satisfies that vn = v0, we call the

path a (directed) closed path or a (directed) circuit. The notions of simple

paths and simple closed paths are defined similarly to the case of undirected

graphs. Again, similarly to the case of undirected graphs, in a simple directed

graph, we often write such a path as above more simply as v0v1 · · · vn−1vn.

We say that G is strongly connected if for any vertices x, y ∈ V of G, there

exists a directed path from x to y.

Definition 6.3. Let G = (V,E, ι) be a finite simple undirected graph.

• We say that G is a bipartite graph if there exists a partition V = A⊔B
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of V satisfying that any edge of G joins some vertex in A and some

vertex in B.

• We say that U ⊆ V is a vertex cover of G if for any edge e of G we

have ι(e) ∩ U ̸= ∅.

• We say that M ⊆ E is a matching of G if for any distinct elements

e1, e2 of M we have ι(e1) ∩ ι(e2) = ∅. If moreover
⋃
e∈M

ι(e) = V holds,

then we say that this matching M is perfect.

The following property holds for the sizes of vertex covers and matchings

in a bipartite graph. Such a kind of theorems are sometimes categorized as

“min-max” theorems.

Theorem 6.1. For any finite bibartite graph G = (V,E), we have

min{|U | : U is a vertex cover of G} = max{|M | : M is a matching of G} .

Proof. First, for any vertex cover U and any matchingM , by the definition of

vertex covers, for any e ∈ M we have ι(e)∩U ̸= ∅. By taking an element from

this intersection, we obtain a map f : M → U . Moreover, the definitions of

matchings and the map f imply that f is injective. Hence we have |M | ≤ |U |.
As this inequality holds for any U and M , the right-hand side of the claim is

less than or equal to the left-hand side. Hence our task is reduced to showing

that the left-hand side of the claim is less than or equal to the right-hand

side.

Let M be a matching of G with the largest number of elements. Let

V = A ⊔ B be a partition as in the definition of bipartite graphs. Now we

define B′ to be the set of all vertices v2k+1 ∈ B for which a non-backtracking

path (i.e., ei ̸= ei−1) as in the following exists:

(*) v0e1v1 · · · e2k+1v2k+1, where v0 ∈ A is not adjacent to any edge

in M , and e2i ∈ M for any integer i.
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We define A′ to be the set of all vertices in A that is an endpoint of an edge

in M not adjacent to any vertex in B′. In the following, we show that A′∪B′

is a vertex cover of G and satisfies that |A′ ∪B′| = |M |. Once this is proved,

the left-hand side of the claim will be less than or equal to |A′ ∪ B′| = |M |,
hence the claim will follow.

For the purpose, we show the following claim.

Claim. Any vertex in B′ is adjacent to some edge in M .

Proof of Claim. Assume for the contrary that x ∈ B′ is not ad-

jacent to any edge in M . By the definition of B′, there is a path

v0e1v1 · · · e2k+1v2k+1 as in Condition (*) with v2k+1 = x. Now

the assumption above and Condition (*) imply that each of v0

and v2k+1 is not adjacent to any edge in M . Moreover, by the

definition of matchings, for any i, each of v2i−1 and v2i is not ad-

jacent to any edge in M except for e2i. In particular, it follows

that e1, e3, . . . , e2k+1 ̸∈ M and that v0, . . . , v2k+1 are all distinct

vertices. By these conditions, the set M ′ obtained from M by re-

moving e2, e4, . . . , e2k and adding e1, e3, . . . , e2k+1 becomes again

a matching of G. As |M ′| = |M | + 1, this contradicts the maxi-

mality of M . Hence the current claim holds.

For each edge e in M , when ι(e)∩B′ ̸= ∅, we define g(e) to be its unique

element (note that as G is a bipartite graph and B′ ⊆ B, e does not join no

two vertices in B′). On the other hand, when ι(e) ∩ B′ = ∅, the endpoint

of e that belongs to A (which is uniquely determined, as G is a bipartite

graph) also belongs to A′ by the definition of A′; we define g(e) to be this

vertex. For this map g : M → A′ ∪ B′, as M is a matching, it follows that

g is injective; while the definition of A′ and the claim above imply that g is

surjective. Hence g is bijective, therefore |A′ ∪ B′| = |M |. Now our task is

reduced to showing that A′ ∪B′ is a vertex cover of G.
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For the purpose, we assume for the contrary that there is an edge e

joining a ∈ A \ A′ and b ∈ B \ B′. As b ̸∈ B′, the path aeb fails Condition

(*), therefore a is adjacent to an edge in M , say e′. Let ι(e′) = {a, b′}
(b′ ∈ B). Then the fact a ̸∈ A′ implies that b′ ∈ B′. Therefore there is a

path v0e1 · · · e2k+1v2k+1 with v2k+1 = b′ satisfying Condition (*). Now the

concatenation of the path followed by another path b′e′aeb is also a path

satisfying Condition (*), contradicting the fact b ̸∈ B′. Hence the claim of

this theorem holds.

We explain a theorem on the condition for existence of perfect matchings

in a finite bipartite graph (precisely, such a theorem is deduced by applying

the following theorem to the special case |A| = |B|).

Theorem 6.2 (Hall’s Marriage Theorem). Let G be a finite bipartite graph

and let V = A ⊔ B be the corresponding partition. Then the followings are

equivalent:

1. There exists a matching M of G for which any vertex in A is adjacent

to some edge in M .

2. For any subset S of A, when writing the set of vertices joined by an

edge to a vertex in S as N(S), we have |N(S)| ≥ |S|.

Proof. [1 ⇒ 2] For each v ∈ S, Condition 1 implies that there is an edge e

in M for which one of the endpoints is v, and such an e is unique by the

definition of matchings. We define f(v) to be the vertex of this e other than

v. Then f is a map from S to N(S), and f is injective by the definition of

matchings. Hence we have |S| ≤ |N(S)|, as desired.
[2 ⇒ 1] By the definition of bipartite graphs, a matching M of G with the

largest number of elements has at most |A| elements. It suffices to show that

|M | = |A|; assume for the contrary that |M | < |A|. By Theorem 6.1, there is

a vertex cover U of G with |U | < |A|. Put A′ := U∩A and B′ := U∩B. Then

as |U | = |A′|+ |B′| < |A|, we have |B′| < |A\A′|. On the other hand, as U is
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a vertex cover, we have N(A \A′) ⊆ B′ and consequently |N(A \A′)| ≤ |B′|.
Therefore we have |N(A \ A′)| < |A \ A′|, contradicting Condition 2. Hence

the claim holds.

Definition 6.4. We call any pair (T, r) of a tree T and its vertex r a rooted

tree, and call the r its root.

For a given rooted tree, its vertex set is naturally endowed with a partial

order. The detail is as follows.

Lemma 6.1. For any two vertices x, y of a tree T , there exists a unique

simple path between x and y.

Proof. First, as T is connected by definition, there is a path between x and

y, and any such path of the shortest length is simple. Now the remaining

task is to deduce a contradiction by assuming that there are distinct simple

paths P1 := z0z1 · · · zn and P2 := w0w1 · · ·wm (z0 = w0 = x, zn = wm = y)

between x and y. We moreover assume by symmetry that n ≤ m.

As z0 = w0, there is the largest index k with zk = wk. Note that P1 ̸= P2,

and as P2 is simple, for any i < m we have wi ̸= y. Therefore we have

k < n ≤ m, while the definition of k implies that zk+1 ̸= wk+1. Put v :=

zk = wk and take a pair of non-negative integers (ℓ1, ℓ2) ̸= (0, 0) satisfying

zk+ℓ1 = wk+ℓ2 in a way that ℓ1+ ℓ2 is minimum (note that such a pair indeed

exists, as zn = wm). Put u := zk+ℓ1 = wk+ℓ2 . Then both zkzk+1 · · · zk+ℓ1

and wkwk+1 · · ·wk+ℓ2 are simple paths from v to u, and by the minimality of

ℓ1 + ℓ2, both paths do not have a common vertex except for the initial point

v and the end point u. Therefore vzk+1 · · · zk+ℓ1−1uwk+ℓ2−1 · · ·wk+1v forms a

simple closed path in T , contradicting the fact that T is a tree. Hence the

claim holds.

Proposition 6.1. Let (T, r) be a rooted tree. For two vertices x, y of T , we

write the simple path in T from x to y as Px,y. Define a relation x ⪯ y for

vertices x, y as “Pr,y involves x”. Then ⪯ is a partial order on the vertex set

V (T ) of T .
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Proof. For reflexivity: Pr,x involves x by definition, therefore x ⪯ x.

For antisymmetry: Suppose that x ⪯ y and y ⪯ x. As x ⪯ y, Pr,y involves

x, and the part P ′ of Pr,y from r to x becomes Pr,x. As y ⪯ x, this Pr,x = P ′

involves y, which holds only when x = y. Hence x = y.

For transitivity: Suppose that x ⪯ y and y ⪯ z. As y ⪯ z, Pr,z involves

y, and the part of Pr,z from r to y becomes Pr,y. As x ⪯ y, this Pr,y involves

x, therefore the original Pr,z involves x as well. Hence x ⪯ z. Therefore the

claim holds.

Definition 6.5. Let G be a simple undirected graph. We say that G is a

complete graph if any two vertices of G is joined by some edge. We write the

complete graph with n vertices as Kn.

The number of spanning trees in a complete graph is determined as fol-

lows.

Theorem 6.3. For n ≥ 2, the number of spanning trees in Kn is nn−2.

From now on, we give a bijective proof for Theorem 6.3. Let T [V ]

be the set of all spanning trees in a complete graph with vertex set V =

{a1, . . . , an} ⊆ Z (n ≥ 2), and for each T ∈ T [V ], let v(T ) be the first

(with respect to the ordering of Z) leaf vertex (i.e., vertex of degree 1) of

T . On the other hand, for any s = (s1, . . . , sn−2) ∈ V n−2, let wV (s) be the

first element of V \ {s1, . . . , sn−2}. Now we define maps fV : T [V ] → V n−2

and gV : V n−2 → T [V ] recursively for n ≥ 2 as follows (note that when

n = 2, as the only element of T [V ] is the complete graph on V itself and the

only element of V n−2 is the empty sequence, the desired correspondence is

automatically determined):

• When T ∈ T [V ], we define s1(T ) to be the unique vertex in V adjacent

to v(T ) in T , and define fV (T ) to be the composition of s1(T ) followed

by the sequence fV \{v(T )}(T \ {v(T )}). Here, for any graph G and

any subset S of its vertex set V (G), we write G \ S to mean the graph
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obtained fromG by removing S, or more precisely, its induced subgraph

with vertex set V (G) \ S.

• When s = (s1, . . . , sn−2) ∈ V n−2, we define gV (s) to be the tree

obtained from the tree gV \{wV (s)}(s2, . . . , sn−2) by adding a new ver-

tex wV (s) and joining it to vertex s1. (Note that we have wV (s) ̸∈
{s1, . . . , sn−2} and hence s1 ∈ V \ {wV (s)}.)

Once we show that both fV ◦ gV and gV ◦ fV are identity maps, it will follow

that fV is a bijection and consequently, we will have |T [V ]| = |V n−2| = nn−2

and hence the claim of Theorem 6.3 will hold. The current claim is obvious

when n = 2; from now on, we suppose that the current claim holds for smaller

n’s and prove the current claim when n ≥ 3.

Lemma 6.2. In the setting above, if T ∈ T [V ] and fV (T ) = (s1, . . . , sn−2),

then {s1, . . . , sn−2} coincides with the set of vertices of degree at least 2 in

T , and we have v(T ) = wV (fV (T )).

Proof. If some si is a leaf vertex of T , then by the definition of fV , by

focusing on the tree, say T ′, at the step of appending si to fV (T ), the leaf

vertex v(T ′) of T ′ was adjacent to si. Now as si has degree at most 1 in T ′,

the connectedness of trees implies that T ′ should be the graph consisting of

an edge joining si and v(T ′) only. On the other hand, the definition of fV

implies that T ′ should have at least 3 vertices. This is a contradiction. Hence

all the si’s have degrees at least 2.

Conversely, let v be any vertex of T with degree at least 2, and let u1, u2

be distinct vertices adjacent to v. Then during the process of removing the

leaf vertices of the tree in the recursive construction of fV , as the number of

vertices becomes finally 2, at least one of u1 and u2 must be removed (if both

u1 and u2 remain not removed, then v does not become a leaf vertex and hence

is not removed yet, yielding at least 3 remaining vertices). Moreover, for the

tree, say T ′, at the step of removing ui (i ∈ {1, 2}), we have v(T ′) = ui,

therefore the vertex v that is adjacent to ui is appended to the sequence
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fV (T ). Hence v appears in the sequence fV (T ). This implies the former part

of the claim. The latter part of the claim follows from the former part of the

claim and the definitions of v(T ) and wV (s).

Lemma 6.3. In the setting above, for any s = (s1, . . . , sn−2) ∈ V n−2, we

have v(gV (s)) = wV (s).

Proof. Let X be the set of all leaf vertices of gV (s), and let Y be the set of

all leaf vertices of gV \{wV (s)}(s2, . . . , sn−2). By the recursive construction of

gV , we have

X = {wV (s)} ⊔ (Y \ {s1}) .

Now the current assumption implies that

fV \{wV (s)}(gV \{wV (s)}(s2, . . . , sn−2)) = {s2, . . . , sn−2} ,

therefore Lemma 6.2 implies that

Y = (V \ {wV (s)}) \ {s2, . . . , sn−2} .

Consequently, if u ∈ Y \ {s1}, then u is an element of V \ {s1, . . . , sn−2}
different from wV (s), therefore the definition of wV (s) implies that wV (s) < u.

Hence we have v(gV (s)) = wV (s) and the claim holds.

Let T ∈ T [V ] and fV (T ) = (s1, . . . , sn−2). By definition, gV (fV (T )) is the

graph obtained from gV \{w}(s2, . . . , sn−2), where w = wV (fV (T )), by adding

the first element w of V \ {s1, . . . , sn−2} as a new vertex joined to the vertex

s1. By Lemma 6.2 we have w = v(T ), and the recursive construction of fV

and the current assumption imply that

gV \{w}(s2, . . . , sn−2) = gV \{w}(fV \{w}(T \ {w})) = T \ {w} = T \ {v(T )} .

This implies that gV (fV (T )) is the graph obtained from T \{v(T )} by adding

a new vertex v(T ) joined to the vertex s1, which coincides with T itself by

the construction of fV . Hence we have gV (fV (T )) = T . Therefore we have

gV ◦ fV = id.
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Conversely, let s = (s1, . . . , sn−2) ∈ V n−2 and T := gV (s). Let s′1 denote

the unique vertex of T adjacent to v(T ). Then by definition, fV (T ) is the

composition of s′1 followed by the sequence fV \{v(T )}(T \ {v(T )}). Lemma

6.3 implies that v(T ) = wV (s), and the construction of gV implies that

s′1 = s1 and gV (s) \ {wV (s)} = gV \{wV (s)}(s2, . . . , sn−2). This and the current

assumption imply that

fV \{v(T )}(gV (s)\{v(T )}) = fV \{wV (s)}(gV \{wV (s)}(s2, . . . , sn−2)) = (s2, . . . , sn−2) ,

therefore

fV (gV (s)) = fV (T ) = (s′1, s2, . . . , sn−2) = (s1, s2, . . . , sn−2) = s .

Hence we have fV ◦ gV = id. This completes the proof of Theorem 6.3.

Exercises

Problem 1. Prove that if a finite undirected graph G = (V,E) has no

loops, then we have
∑
v∈V

deg(v) = 2|E|.

(Hint: Use a counting argument.)

Problem 2. Prove that any finite tree with at least 2 vertices has a vertex

of degree 1.

(Comment: A counterexample exists for the case of infinite trees. For

example, consider the graph with the integers as vertices and the edges joining

consecutive integers.)

Problem 3. For any finite tree G = (V,E) with non-empty vertex set,

prove that |E| = |V | − 1.

(Hint: Use the previous problem and mathematical induction.)

Problem 4. Prove that any connected undirected graph with non-empty

vertex set has a spanning tree.

(Hint: For the case of infinite vertex set, use Zorn’s Lemma.)
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7 Ramsey Theory

Definition 7.1. For a simple undirected graph G = (V,E), its complement

graph G = (V ′, E ′) is defined by V ′ := V and

E ′ := {{x, y} | x, y ∈ V, x ̸= y, {x, y} ̸∈ E} .

For example, the complement graph Kr of the complete graph Kr with r

vertices is the graph with r vertices and no edges.

Definition 7.2. For any finite undirected graph, we say that its induced

subgraph is a clique if it is of the form Kr for some r, and an independent

set if it is of the form Kr for some r.

In graph theory, a kind of theorems like “any sufficiently large graph has

a certain special substructure” have been well studied. We explain some

examples of them.

Theorem 7.1. Let r ≥ 2 be an integer. Then any simple undirected graph

G = (V,E) with at least 22r−3 vertices has either a clique with r vertices or

an independent set with r vertices.

Proof. It suffices to prove the claim for the case |V | = 22r−3. We set V1 := V ,

I, J := ∅, and take some v1 ∈ V1. For i = 2, . . . , 2r − 2, we choose Vi ⊆ Vi−1

with |Vi| = 22r−2−i and vi ∈ Vi recursively, while updating the sets I and

J , in the following manner (we note that for the case i = 1 we also have

|V1| = 22r−2−1 and v1 ∈ V1):

• We note that there are 22r−2−(i−1) − 1 vertices in Vi−1 other than vi−1,

therefore one of the followings holds.

– At least 22r−3−(i−1) = 22r−2−i vertices in Vi−1 are adjacent to vi−1.

– At least 22r−3−(i−1) = 22r−2−i vertices in Vi−1 are not adjacent to

vi−1.



FY2022 “Combinatorics” Lecture Note (Koji Nuida) 76

In the former case, we let Vi consist of any 22r−2−i vertices in Vi−1

adjacent to vi−1, append i−1 to I, and take some vi ∈ Vi. In the latter

case, we let Vi consist of any 22r−2−i vertices in Vi−1 not adjacent to

vi−1, append i− 1 to J , and take some vi ∈ Vi.

By the construction, we have I ∪J = {1, . . . , 2r−3} and I ∩J = ∅, therefore
either |I| ≥ r − 1 or |J | ≥ r − 1 holds. When |I| ≥ r − 1, any r vertices

chosen from {vi | i ∈ I}∪{v2r−2} form a clique of size r. On the other hand,

when |J | ≥ r − 1, any r vertices chosen from {vi | i ∈ J} ∪ {v2r−2} form an

independent set of size r. Hence the claim holds.

Definition 7.3. Let r ≥ 2 be an integer. We define R(r) to be the minimum

n satisfying “any simple undirected graph with n vertices has either a clique

of size r or an independent set of size r”, and call it the Ramsey number.

By Theorem 7.1, the Ramsey number R(r) is well-defined as a finite value,

and we have R(r) ≤ 22r−3. For example, for r = 3 we have R(3) ≤ 23 = 8

(see also the exercise below).

We give a lower bound of the Ramsey number by using a probabilistic

argument as follows. We define a random variable G(n, p) over simple undi-

rected graphs with a given set of n vertices in a way that for any two distinct

vertices x, y, they are joined by an edge with probability p independently.

Lemma 7.1. For any n ≥ k ≥ 2, the G(n, p) above satisfies

p1 := Pr[G(n, p) has an independent set of size k] ≤
(
n

k

)
(1− p)(

k
2) ,

p2 := Pr[G(n, p) has a clique of size k] ≤
(
n

k

)
p(

k
2) .

Proof. Let V be the vertex set of G(n, p). For any S ⊆ V , no two vertices in

S are joined by an edge with probability (1− p)(
|S|
2 ), and every two vertices

are joined by an edge with probability p(
|S|
2 ). This implies that

p1 ≤
∑

S⊆V ; |S|=k

Pr[S forms an independent set] =
∑

S⊆V ; |S|=k

(1−p)(
k
2) =

(
n

k

)
(1−p)(

k
2) ,
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p2 ≤
∑

S⊆V ; |S|=k

Pr[S forms a clique] =
∑

S⊆V ; |S|=k

p(
k
2) =

(
n

k

)
p(

k
2) .

Hence the claim holds.

Theorem 7.2. For any r ≥ 3, we have R(r) > 2r/2.

Proof. When r = 3, it is known that R(3) = 6 (see the exercise below),

therefore R(3) > 23/2. From now on, we let r ≥ 4. When n ≤ 2r/2, Lemma

7.1 implies that

Pr[G(n, 1/2) has a clique of size r]

≤
(
n

r

)(
1

2

)(r2)
=

n(n− 1) · · · (n− r + 1)

r!
2−r(r−1)/2

<
nr

2r
2−r(r−1)/2

(here we used the fact r! > 2r implied by r ≥ 4)

≤ (2r/2)r

2r(r−1)/2+r
=

2r
2/2

2r2/2+r/2
=

1

2r/2
<

1

2
,

and we similarly have Pr[G(n, 1/2) has an independent set of size r] < 1/2.

This implies that the probability that G(n, 1/2) has a clique of size r or an

independent set of size r is less than 1/2+1/2 = 1, therefore the probability

that G(n, 1/2) has no cliques of size r nor independent sets of size r is positive.
Hence, when n ≤ 2r/2, there is a simple undirected graph with n vertices

having no cliques of size r nor independent sets of size r. Therefore we have

R(r) > 2r/2 and the claim holds.

We explain another proposition of the form “any sufficiently large graph

has a certain special substructure”. We define a complete bipartite graph

Kn,m to be a bipartite graph with partition of vertex set V = A⊔B satisfying

that |A| = n, |B| = m, and any vertex in A and any vertex in B are joined

by an edge.
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Proposition 7.1. Let r ≥ 2 be an integer. Then there exists an integer N

satisfying the following: Any simple connected undirected graph G = (V,E)

with at least N vertices has an induced subgraph of one of the following forms;

Kr, K1,r, or a simple path Pr of length r (i.e., having r edges).

Proof. We first consider the case where some vertex v of G has degree at least

R(r). As the induced subgraph G′ of G consisting of the vertices adjacent to

v has at least R(r) vertices, the definition of R(r) implies that G′ has either

Kr or Kr as its induced subgraph. In the former case, the Kr satisfies the

claim; while in the latter case, the induced subgraph obtained by gathering

the Kr and v forms the graph K1,r as in the claim. Hence the claim holds in

this case.

From now on, we consider the remaining case where every vertex of G has

degree at most R(r) − 1. Starting from some vertex v and a set V0 := {v},
we define sets Vi (1 ≤ i ≤ r − 1) recursively by

Vi :=

{
u ∈ V \

⋃
j<i

Vj | u is adjacent to some vertex in Vi−1

}
.

Now the aforementioned condition for the degrees implies that |Vi| ≤ (R(r)−
1)|Vi−1|, therefore we have |Vi| ≤ (R(r)− 1)i. Hence we have∣∣∣∣∣

r−1⋃
i=0

Vi

∣∣∣∣∣ ≤
r−1∑
i=0

(R(r)− 1)i .

By writing the right-hand side (independent of G) as M , whenever |V | ≥
M + 1, there is a u ∈ V not belonging to any of Vi. As G is connected,

there is a simple path P from u and v, and the choice of u implies that P

has length at least r. Now the first r + 1 vertices of P forms an induced

subgraph Pr as in the claim. Hence the claim holds.

Exercises

Problem 1. For the Ramsey number, prove that R(3) = 6.
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8 Adjacency Matrices of Graphs

In this section, we let G = (V,E) be a finite simple undirected graph.

Definition 8.1. Suppose that the elements of V are enumerated as {v1, . . . , vn}.
We define the adjacency matrix of the graph G, denoted by A = A(G) =

(aij)
n
i,j=1, by

aij :=

{
1 (if {vi, vj} ∈ E) ,

0 (otherwise) .

An example of the adjacency matrix of a graph is shown in Figure 7. We

note that by definition, the adjacency matrix A is a symmetric matrix and

the sum of the components in the i-th row of A is equal to the degree deg(vi)

of vi.

A =


0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
1 1 0 0 0



Figure 7: Example of the adjacency matrix of a graph

As the original graph can be fully recovered from its adjacency matrix,

any information on a graph could in principle be deduced from its adjacency

matrix (but, of course, such information is not always deduced efficiently).

For example, we have the following property.

Proposition 8.1. Let A be the adjacency matrix of G. Then the (i, j)-entry

of Ak coincides with the number of paths of length k in G from vi to vj.

Proof. By the definition of multiplication of matrices, the (i, j)-entry of Ak
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can be expressed as ∑
ℓ0,ℓ1,...,ℓk
ℓ0=i , ℓk=j

aℓ0,ℓ1aℓ1,ℓ2 · · · aℓk−1,ℓk .

The term aℓ0,ℓ1aℓ1,ℓ2 · · · aℓk−1,ℓk in this sum is equal to 1 if all of {vℓ0 , vℓ1},
{vℓ1 , vℓ2}, . . . , {vℓk−1

, vℓk} are edges, or equivalently vℓ0vℓ1 · · · vℓk−1
vℓk is a path;

and it is 0 otherwise. Therefore, by concerning the conditions vℓ0 = vi and

vℓk = vj in the sum, it follows that the sum above is equal to the number of

paths of length k from vi to vj. Hence the claim holds.

Corollary 8.1. Let A be the adjacency matrix of G. Then the (i, i)-entry of

A2 is equal to deg(vi).

Proof. As G is a simple graph, any path of length 2 from vi to vi is of the

form viuvi with u being a vertex adjacent to vi. This and Proposition 8.1

imply the claim.

Definition 8.2. In the setting of Definition 8.1, let D denote the n × n

matrix with the diagonal entries being deg(v1), . . . , deg(vn) and the other

entries being 0. Then we call D − A the Laplacian matrix of G.

Proposition 8.2. We enumerate the edges of G as E = {e1, . . . , em} and

associate some direction to each edge; that is, for each edge, we let some of

the two endpoints be “the source” and the other endpoint be “the terminal”.

Moreover, we define an n×m matrix B = (Bij)i,j by

bij =


1 (if vi is the source of ej)

−1 (if vi is the terminal of ej)

0 (otherwise) .

Then we have BBT = D−A. In particular, D−A is a positive-semidefinite

symmetric matrix.
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Proof. First, the (i, i)-entry of BBT can be expressed as∑
j

bijbij =
∑
j

bij
2 .

For each term in the sum, if vi is an endpoint of ej then we have bij
2 = 1

(regardless of the direction of the edge), and otherwise we have bij
2 = 0.

Therefore, the sum involves the same number of terms 1 as the number of

the edges adjacent to vi, resulting in the sum being deg(vi). As G is a simple

graph, the diagonal entries of A are all 0, therefore the sum above is equal

to the (i, i)-entry of D − A.

Secondly, when i ̸= j, the (i, j)-entry of BBT can be expressed as∑
k

bikbjk .

For each term in the sum, if ek is an edge from vi to vj then we have bikbjk =

1·(−1) = −1; if ek is an edge from vj to vi then we have bikbjk = (−1)·1 = −1;

and otherwise we have bikbjk = 0. Now as G is a simple graph, the sum above

becomes −1 if vi and vj are adjacent to each other, and otherwise it becomes

0. This value is equal to the (i, j)-entry of D−A. Hence the claim holds.

The following holds for the number of spanning trees in a graph.

Theorem 8.1 (Kirchhoff’s Matrix-Tree Theorem). The (i, i)-cofactor of the

Laplacian matrix D−A of G is equal to the number of spanning trees in G.

Proof. First we note that, when re-ordering the vertices by moving vi to the

last, the (n, n)-cofactor of the resulting Laplacian matrix coincides with the

(i, i)-cofactor of the original Laplacian matrix. Therefore, we may assume

without loss of generality that i = n.

We writeD−A = BBT as in Proposition 8.2. Let B′ = (bij)1≤i≤n−1 , 1≤j≤m

be the matrix obtained from B by removing the last row. Then the (n, n)-

cofactor of D − A can be expressed as det(B′B′T). As the (i, j)-entry of
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B′B′T is
m∑
k=1

bikbjk, the (n, n)-cofactor of D − A is given by

∑
σ∈Sn−1

sgn(σ)
∑

k1,...,kn−1∈{1,...,m}

b1,k1bσ(1),k1b2,k2bσ(2),k2 · · · bn−1,kn−1bσ(n−1),kn−1

=
∑

k1,...,kn−1∈{1,...,m}

∑
σ∈Sn−1

sgn(σ)b1,k1bσ(1),k1b2,k2bσ(2),k2 · · · bn−1,kn−1bσ(n−1),kn−1 .

(3)

We write the term b1,k1bσ(1),k1b2,k2bσ(2),k2 · · · bn−1,kn−1bσ(n−1),kn−1 as Pσ. Note

that Pσ becomes ±1 when for every i ∈ {1, . . . , n − 1}, each of vi and vσ(i)

is an endpoint of eki ; otherwise Pσ becomes 0. In the following, we focus on

the case where Pσ ̸= 0.

We suppose that i ̸= j and ki = kj. If eki is not an edge joining vi

and vj, then we have Pσ = 0. In the following, we consider the other case

where eki is an edge joining vi and vj. In this case, Pσ ̸= 0 holds only when

σ(i) ∈ {i, j} and σ(j) ∈ {i, j}, or equivalently either (σ(i), σ(j)) = (i, j)

or (σ(i), σ(j)) = (j, i). Now the σ’s satisfying the former condition and the

σ’s satisfying the latter condition are in one-to-one correspondence via the

rule σ 7→ (i, j)σ. Moreover, as bi,kibi,kibj,kibj,ki = bi,kibj,kibj,kibi,ki , we have

P(i,j)σ = Pσ. This and the fact sgn((i, j)σ) = −sgn(σ) imply that in the sum∑
σ∈Sn−1

sgn(σ)Pσ, the term corresponding to σ and the term corresponding

to (i, j)σ are cancelled with each other; therefore the sum above becomes

0. Consequently, in the right-hand side of Eq.(3), the inner sum becomes 0

unless the ki’s are all distinct. In the following, we focus on the remaining

case where the ki’s are all distinct.

We suppose that i1, i2, . . . , iℓ are all distinct and the edges eki1 , eki2 , . . . , ekiℓ
in this order form a simple closed path (in particular ℓ ≥ 3). Here the or-

dering of the edges in the simple closed path is chosen in a way that the

endpoint vi1 of eki1 is also an endpoint of ekiℓ (rather than eki2 ). Now it can

be recursively shown that for j = ℓ − 1, . . . , 2, 1, vij is a common endpoint

of ekij and ekij+1
. Therefore the simple closed path above is of the form
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vi1eki1vi2eki2 · · · viℓekiℓvi1 . Put

P ′
σ := bi1,ki1 bσ(i1),ki1 bi2,ki2 bσ(i2),ki2 · · · biℓ,kiℓ bσ(iℓ),kiℓ , P

′′
σ := Pσ/P

′
σ .

We note that for each j, vσ(ij) is also an endpoint of ekij . In particular, we

have σ(i1) ∈ {i1, i2}. Now:

• When σ(i1) = i1, we show recursively for j = ℓ, ℓ−1, . . . , 2 that σ(ij) =

ij. For the case j = ℓ, the fact that vσ(iℓ) is an endpoint of ekiℓ implies

that σ(iℓ) ∈ {iℓ, i1}, therefore the fact σ(iℓ) ̸= σ(i1) = i1 implies that

σ(iℓ) = iℓ, as desired. Moreover, assuming that this claim holds for

j + 1 and the previous steps, the fact that vσ(ij) is an endpoint of ekij
implies that σ(ij) ∈ {ij, ij+1}, therefore the fact σ(ij) ̸= σ(ij+1) = ij+1

implies that σ(ij) = ij, as desired.

• When σ(i1) = i2, we show recursively for j = 1, 2, . . . , ℓ that σ(ij) =

ij+1 (where we put iℓ+1 := i1). This claim holds immediately for j = 1.

Moreover, assuming that this claim holds for j − 1 and the previous

steps, the fact that vσ(ij) is an endpoint of ekij implies that σ(ij) ∈
{ij, ij+1}, therefore the fact σ(ij) ̸= σ(ij−1) = ij implies that σ(ij) =

ij+1, as desired.

By putting τ := (i1, i2, . . . , iℓ) ∈ Sn, the former σ’s and the latter σ’s are in

one-to-one correspondence via the rule σ 7→ τσ, and we have P ′′
σ = P ′′

τσ. Now

for the former σ, we have P ′
σ = bi1,ki1

2 · bi2,ki2
2 · · · biℓ,kiℓ

2 = 1; while for the

latter τσ, we have

P ′
τσ = (bi1,ki1 bi2,ki1 ) · (bi2,ki2 bi3,ki2 ) · · · (biℓ,kiℓ bi1,kiℓ )

= (−1) · (−1) · · · (−1) = (−1)ℓ

and sgn(τσ) = sgn(τ)sgn(σ) = (−1)ℓ−1sgn(σ). Consequently, in the sum∑
σ∈Sn−1

sgn(σ)Pσ, the term corresponding to σ and the term corresponding to

τσ are cancelled with each other, therefore the sum becomes 0.
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Let G be the set of the sequences (k1, . . . , kn−1) with distinct components

satisfying that the subgraphG′ := (V, {ek1 , . . . , ekn−1}) does not have a simple

closed path. Then the argument above implies that the right-hand side of

Eq.(3) becomes ∑
(k1,...,kn−1)∈G

∑
σ∈Sn−1

sgn(σ)Pσ . (4)

As |V | = n, the condition that G′ has no simple closed paths is equivalent

to that G′ is a spanning tree of G. Now when G′ is a spanning tree of G, for

each v ∈ V \ {vn}, let φ(v) denote the last edge of the unique simple path

in G′ from vn to v. If (k1, . . . , kn−1) ∈ G and Pσ ̸= 0, we show that for any

1 ≤ i ≤ n − 1 we have eki = φ(vi) and σ(i) = i, by mathematical induction

on the length of the simple path in G′ from vn to vi.

• When vi is adjacent to vn in G′, suppose that ekj = φ(vi) is the edge

joining vi and vn. Then the property Pσ ̸= 0 implies that vj has to be

an endpoint of ekj ; as vj ̸= vn, we have vj = vi, therefore we have j = i

and eki = φ(vi). Moreover, the property Pσ ̸= 0 also implies that vσ(i)

has to be an endpoint of eki as well; as vσ(i) ̸= vn, we have vσ(i) = vi

and σ(i) = i.

• In the other case, suppose that vj is the vertex, right before vi, of the

simple path in G′ from vn to vi. Then the induction hypothesis implies

that ekj = φ(vj) and σ(j) = j. By writing φ(vi) = ekℓ , it follows that

ekℓ is the edge joining vi and vj. Now the property Pσ ̸= 0 implies

that vℓ is an endpoint of ekℓ , which is either vi or vj; while, as vi ̸= vj,

we have ekℓ = φ(vi) ̸= φ(vj) = ekj , therefore ℓ ̸= j. This implies

that vℓ = vi and ℓ = i, therefore we have φ(vi) = eki . Moreover, the

property Pσ ̸= 0 also implies that vσ(i) is an endpoint of eki as well,

which is either vi or vj; while as i ̸= j, we have σ(i) ̸= σ(j) = j. This

implies that vσ(i) = vi and σ(i) = i.

Consequently, for any fixed spanning tree G′, the pair of (k1, . . . , kn−1) and σ

satisfying Pσ ̸= 0 is uniquely determined by the conditions that for any i we
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have φ(vi) = eki and σ(i) = i. Moreover, as now we have σ = id, it follows

that sgn(σ)Pσ = b1,k1
2 · · · bn−1,kn−1

2 = 1. Summarizing, the value of Eq.(4) is

equal to the sum of the same number of 1’s as the number of spanning trees

G′ in G, which is also equal to the number of spanning trees in G. Hence the

claim holds.

Example 8.1. We already explained as Theorem 6.3 that for any n ≥ 2, the

number of spanning trees in G = Kn is nn−2. Here we verify this fact again,

by using Theorem 8.1. The Laplacian matrix of Kn is given by
n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

 (a square matrix of size n) ,

and its (1, 1)-cofactor is given by

det


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

 (a square matrix of size n− 1) .

By applying elementary row transformations “subtract the second row from

the third to (n − 1)-th rows” and “add n − 1 multiple of the second row to

the first row” to the matrix above, its determinant becomes

det



0 n2 − 2n −n −n · · · −n
−1 n− 1 −1 −1 · · · −1
0 −n n 0 · · · 0
0 −n 0 n · · · 0
...

...
. . .

...
0 −n 0 0 · · · n


= det


n2 − 2n −n −n · · · −n
−n n 0 · · · 0
−n 0 n · · · 0
...

. . .
...

−n 0 0 · · · n


(a square matrix of size n−2). Moreover, by adding the second to (n−2)-th

rows to the first row, the determinant above becomes (by using n2 − 2n −
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(n− 3)n = n)

det


n 0 0 · · · 0
−n n 0 · · · 0
−n 0 n · · · 0
...

. . .
...

−n 0 0 · · · n

 = nn−2

(where we used the property that the last matrix is a lower triangular matrix).

Hence the claim holds.

We say that a graph is a d-regular graph if every vertex has the constant

degree d.

Definition 8.3. For any subset S ⊆ V , let ∂S denote the set of all edges

joining some vertex in S and some vertex in V \ S. We call

h(G) := min

{
|∂S|
|S|

: S ⊆ V , 0 < |S| ≤ 1

2
|V |
}

the expansion constant ofG. Moreover, we say that a family (Gi = (Vi, Ei))i≥1

of d-regular graphs (with common d) is an expander family if lim
n→∞

|Vn| = ∞
and there is a positive lower bound of {h(Gn) | n = 1, 2, . . . }.

We explain some relations between the expansion constant and the adja-

cency matrix of a graph.

Definition 8.4. For the adjacency matrix A of G, we define λk = λk(G) to

be the k-th largest eigenvalues of A (counting multiplicity) and call it the

k-th eigenvalue of G. We also call λ1(G)− λ2(G) the spectral gap of G.

We note that the k-th eigenvalue λk of a graph G is independent of the

ordering over the vertices of G. Indeed, any permutation of vertices changes

the adjacency matrix A to P−1AP (where P is some permutation matrix),

which preserves the eigenvalues.

Lemma 8.1. Let G be a d-regular graph. Then we have λ1(G) = d.
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Proof. First, as G is d-regular, it follows that A1⃗ = d⃗1 where 1⃗ denotes

the vector with all components being 1, therefore d is an eigenvalue of G.

On the other hand, the fact that G is d-regular also implies that D = dI

(where I is the identity matrix), while Proposition 8.2 implies that D − A

is a positive-semidefinite symmetric matrix. Therefore all the eigenvalues of

dI − A are non-negative real numbers, while d − λ1(G) is an eigenvalue of

dI−A; therefore we have d−λ1(G) ≥ 0 and hence d ≤ λ1(G) ≤ d. Therefore

the claim holds.

The following fact is known about relations between the expander con-

stant and the spectral gap of a graph; we omit the proof here.

Theorem 8.2 (Allon–Milman). If G is a d-regular graph (hence λ1(G) = d),

then we have
d− λ2(G)

2
≤ h(G) ≤

√
2d(d− λ2(G)) .

For any connected graph G, the diameter diam(G) of G is defined to be

the maximum length of the shortest path between two vertices of G. The

following fact is known; we omit the proof here.

Theorem 8.3 (Nilli). If G is a connected d-regular graph with diam(G) ≥
2m+ 2 ≥ 4, then we have

λ2(G) > 2
√
d− 1− 2

√
d− 1− 1

m
.

For any d-regular graph G, we define

λ(G) := max{|λj(G)| : λj(G) ̸= ±d} .

It is known (though we omit the proof here) that for any connected d-regular

graph G, if G is a bipartite graph with at least 3 vertices, then we have

λ(G) = λ2(G); while if G is not a bipartite graph, then for any 2 ≤ i ≤ n

(where n is the number of vertices of G) we have |λi(G)| < d, therefore

λ(G) = max{|λ2(G)|, |λn(G)|}. In particular, we have λ(G) ≥ λ2(G) in any
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case. Based on Theorem 8.3, G is called a Ramanujan graph when λ(G) takes

“almost the smallest possible” value. More precisely, we have the following

definition.

Definition 8.5. Let G be a connected d-regular graph. We say that G is a

Ramanujan graph if λ(G) ≤ 2
√
d− 1.

At the end of this section, we explain about a relation between random

walks on a graph and the spectral gap of the graph. Let G be a connected

d-regular graph with n vertices that is not a bipartite graph. In a random

walk on G, we start from some vertex of G, and repeat the steps where we

move to one of the vertices of G adjacent to the current vertex, with equal

probabilities (probability 1/d). We discuss about the limit distribution and

the speed of convergence of the random walk. We enumerate the vertices

of G as v1, . . . , vn and start from the vertex v1. First we note that during

the first k steps, any path of length k starting from v1 arises with equal

probabilities. By Proposition 8.1, the number of paths of length k from v1

to vj coincides with the (1, j)-entry of Ak, which is expressed as e1
TAkej

where ei denotes the i-th coordinate vector. Consequently, by writing the

n-dimensional vector with all components being 1 as 1⃗, the total number of

paths of length k starting from v1 becomes e1
TAk1⃗. As G is d-regular, this

value is equal to e1
T · dk1⃗ = dk. Therefore, the probability that we arrive at

vj in the k-th step, denoted by pj = p
⟨k⟩
j , is

pj =
e1

TAkej
dk

.

Now as A is a real symmetric matrix, we can diagonalize it by an or-

thogonal matrix. That is, there is an orthonormal basis (u1, . . . , un) of

Rn satisfying that for any i we have Aui = λi(G)ui. Then we can write

A =
n∑

i=1

λi(G)ui · ui
T, therefore we have Ak =

n∑
i=1

λi(G)kui · ui
T and hence

e1
TAkej =

n∑
i=1

λi(G)k · e1Tui · ui
Tej .
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As G is d-regular, we have λ1(G) = d and we can set u1 = n−1/21⃗. Therefore

we have

e1
TAkej =

dk

n
+

n∑
i=2

λi(G)k · e1Tui · ui
Tej .

Hence we have ∣∣∣∣pj − 1

n

∣∣∣∣ ≤ n∑
i=2

|λi(G)k|
dk

· |e1Tui| · |ui
Tej| .

By Cauchy–Schwarz Inequality, the right-hand side becomes

≤
n∑

i=2

|λi(G)|k

dk
· ||e1|| · ||ui|| · ||ui|| · ||ej|| =

n∑
i=2

|λi(G)|k

dk
.

Moreover, asG is not a bipartite graph, the property mentioned above implies

that for any 2 ≤ i ≤ n we have |λi(G)| ≤ max{|λ2(G)|, |λn(G)|} = λ(G).

Hence we have ∣∣∣∣pj − 1

n

∣∣∣∣ ≤ (n− 1) ·
(
λ(G)

d

)k

,

therefore the fact 0 ≤ λ(G) < d implies that lim
k→∞

pj =
1

n
. Summarizing,

it follows that the limit distribution of this random walk is the uniform

distribution over the vertex set of G, and the evaluation above shows that

the speed of convergence to the uniform distribution becomes more rapid as

λ(G) becomes smaller (that is, the spectral gap becomes larger).

As seen above, graphs with smaller λ(G) yield random walks with more

rapid convergence to the limit distribution. From such a viewpoint, Ramanu-

jan graphs are well studied from not only purely graph-theoretic motivations

but also the importance in applications. For example, it is known that Ra-

manujan graphs can be constructed by using a certain special kind of elliptic

curves (supersingular elliptic curves) and some maps between them called

isogenies, and the random walks on those Ramanujan graphs are applied to

constructions of cryptographic hash functions. See [1] for the details.
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Exercises

Problem 1. For the graph in Figure 7, write down the Laplacian matrix,

and verify by using Theorem 8.1 that the graph has 3 spanning trees in total.

Moreover, write down all the spanning trees of the graph.

Problem 2. Calculate the number of spanning trees in a complete bipartite

graph Kn,m.
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