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Abstract

The aim of this note is to give some observation on a standard proof
to deduce Axiom of Choice from Tychonoff’s Theorem.

In this note, we basically deal with the axioms ZF− of set theory, which
means the Zermelo–Fraenkel set theory ZF except the Axiom of Foundation

∀x(∃y(y ∈ x) → ∃y(y ∈ x ∧ ∃z(z ∈ x ∧ z ∈ y))) .

In this note, we say that a class K of sets is downward closed if, for any set
A ∈ K and any set B for which there exists an injective map B ↪→ A, it follows
that B ∈ K. Intuitively, this means that K is a class of cardinal numbers with
the property that |X| ≤ |Y | ∈ K implies |X| ∈ K. For example, the classes Set
of all sets, Finite of all finite sets, and Countable of all countable sets (i.e., sets
A for which |A| ≤ ℵ0) are downward closed classes of sets.

On the other hand, we say that a class T of topological spaces is a topological
property if, for any X ∈ T and any topological space Y which is homeomorphic
toX, it follows that Y ∈ T . Namely, we identify a topological property (in usual
sense) with the class of all topological spaces having the property. For example,
the classes Top of all topological spaces, T1 of all T1-spaces, and Hausdorff of all
Hausdorff spaces are topological properties. A member of a topological property
T is said to be a T -space.

In what follows, we assume that K is a downward closed class of sets and T
is a topological property. We define the following propositions:

AC(K) Let A be a family of non-empty sets with A ∈ K. Then there exists a
choice function for A, i.e., a map f :A →

∪
A satisfying that f(A) ∈ A

for every A ∈ A.

ACEq(K) The same as AC(K), except that all members of A are supposed to
have equal cardinality.

AMC Let A be a family of non-empty sets. Then there exists a “multiple choice
function” for A, i.e., a map f :A → 2

∪
A satisfying that for each A ∈ A,

f(A) is a finite non-empty subset of A.
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AMCEq The same as AMC, except that all members of A are supposed to have
equal cardinality.

T(T ,K) Let A be a family of compact T -spaces. Then any open cover W of
the product topological space

∏
A has a subcover W ′ with W ′ ∈ K.

THomeo(T ,K) The same as T(T ,K), except that all members of A are sup-
posed to be homeomorphic to each other.

For example, AC(Set) is the Axiom of Choice (AC), AC(Countable) is the Axiom
of Countable Choice (ACC), AMC is the Axiom of Multiple Choice (AMC), and
T(Top,Finite) is the Tychonoff’s Theorem. Note that AC(Finite) is a theorem of
ZF− (so is ACEq(Finite)); roughly speaking, a finite number of selections can be
unconditionally done simultaneously. Note also that all the above propositions
are consequences of AC in ZF−, since Tychonoff’s Theorem can be proven in
ZF− +AC (see Appendix below).

Now we describe a “pattern” of a proof (in ZF−) to deduce AC from “Tychonoff-
like” axioms, which is a slight modification of the standard proof to deduce AC
from the original Tychonoff’s Theorem:

Let A = (Ai)i∈Λ be a family of non-empty sets. First, choose
a set p which does not belong to any Ai (by Russell’s Paradox,
the union

∪
i∈Λ Ai does not contain all sets). Now we assume the

following:

(*) There exists a map which associates to each i ∈ Λ a topological
structure on Xi := Ai ∪{p} with the property that (I) each Xi

becomes a compact T -space, and (II) there exists a map which
associates to each i ∈ Λ an open neighborhood Ui of p in Xi

with Ui ̸= Xi.

We introduce a topological structure on each Xi as above. Now for
each i ∈ Λ, let Ũi denote the direct product of Ui and all Xj for

j ∈ Λ r {i}. Then W := (Ũi)i∈Λ is a family of open subsets of
X :=

∏
i∈Λ Xi.

Assuming the proposition AC(K), it follows that W does not

have a subfamily W ′ = (Ũi)i∈Λ′ with the property that Λ′ ∈ K and
W ′ is an open cover of X. Indeed, for such a subfamily W ′, AC(K)
implies that there exists an element g ∈

∏
i∈Λ′(Xi r Ui), and now

the element f ∈ X defined by f(i) = g(i) for i ∈ Λ′ and f(i) = p for
i ∈ Λr Λ′ does not belong to any member of W ′, a contradiction.

By the above argument, assuming the proposition T(T ,K) fur-
ther, it follows that W is not an open cover of X. Namely, there
exists an element f ∈ X that does not belong to any Ũi with i ∈ Λ.
This means that we have f(i) ̸∈ Ui, hence f(i) ̸= p, for each i ∈ Λ;
therefore f is an element of

∏
i∈Λ Ai. Hence AC holds.

By this argument, the combination of AC(K), T(T ,K) and a certain condition
ensuring the property (*) (if necessary) implies AC in ZF−. We consider some
special cases:
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• When T = Top, to ensure (*) it suffices to define the open sets of eachXi as
∅,Xi and {p}. Indeed, the condition (I) is satisfied, while the condition (II)
is also satisfied by defining Ui = {p}. As a result, AC(K) and T(Top,K)
imply AC. In particular, T(Top,Finite) (i.e., Tychonoff’s Theorem) implies
AC; and AC(Countable) (i.e., ACC) and T(Top,Countable) (“the product
of compact spaces is a Lindelöf space”) also imply AC. Note also that this
argument proves stronger results such as that Tychonoff’s Theorem for
topological spaces with precisely three open sets implies AC.

• When T = T1, to ensure (*) it suffices to first introduce the cofinite
topology on each Ai and then attach to Ai a point p as an isolated
point. Indeed, the cofinite topology is a compact T1 topology, there-
fore the condition (*) is satisfied by choosing Ui = {p} for (II) again.
As a result, AC(K) and T(T1,K) imply AC. In particular, T(T1,Finite)
(i.e., Tychonoff’s Theorem for T1-spaces) implies AC; and AC(Countable)
(i.e., ACC) and T(T1,Countable) (“the product of compact T1-spaces is
a Lindelöf space”) also imply AC. We emphasize that this definition of
topology on Xi is adopted for a proof of AC from Tychonoff’s Theorem
in several books, but in fact the argument shows a stronger property that
Tychonoff’s Theorem for T1-spaces implies AC (and, as mentioned above,
a simpler choice of trivial (or indiscrete) topology on Ai instead of cofinite
topology is enough to prove that Tychonoff’s Theorem implies AC).

• [Added: January 6, 2013] When T = T4 (The class of all T4-spaces),
in the same way as the above case T = Top, it suffices to define the open
sets of each Xi as ∅, Xi and {p} (note that this Xi has no pairs of non-
empty and disjoint closed subsets, therefore the condition for T4-spaces is
automatically satisfied). Here I would like to emphasize that, in contrast
to the case T = Top where the cofinite topology is also applicable in the
same way as the case T = T1, for the present case T = T4, the cofinite
topology is not applicable (since it is not T4), which would clarify the
significance of the discrete topology.

• On the other hand, when T = Hausdorff, a similar strategy to first intro-
duce a compact Hausdorff topology on each Ai and then attach an isolated
point p cannot succeed. Indeed, if it is possible, then Tychonoff’s Theo-
rem for Hausdorff spaces (i.e., T(Hausdorff,Finite)) could imply AC, but
this has been proven as impossible. For an alternative strategy, here we
introduce the discrete topology on each Ai, and then define Xi to be the
[Revised: January 6, 2013] Alexandroff extension [End of revision]
of Ai. In this case, the open neighborhoods of p in Xi are complements
in Xi of finite subsets of Ai. The problem is that there is yet no clue
to choose a distinguished open neighborhood of p in each Xi (except Xi

itself). Now we introduce an additional axiom AMC, which enables us
to choose a distinguished finite non-empty subset Bi of each Ai, hence
an open neighborhood Ui = Xi r Bi of p in each Xi, as desired. (Note
that AMC is known to be strictly weaker than AC in ZF−.) As a result,
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the combination of AMC, AC(K) and T(Hausdorff,K) implies AC in ZF−.
In particular, AMC and Tychonoff’s Theorem for Hausdorff spaces imply
AC; and AMC, ACC and “the product of compact Hausdorff spaces is a
Lindelöf space” also imply AC.

Moreover, we consider further relaxation of the assumptions in the above
argument. The key fact is the following:

Lemma 1. Let A be a family of non-empty sets. Then there exists a non-empty
set B satisfying that the sets A×B for A ∈ A have equal cardinality.

Proof. We define B := (
∪

A)<ω (ω denoting the least infinite ordinal number).
Let A ∈ A. Then for each element ξ = (a, (x0, x1, . . . , xn)) of A × B, define
f(ξ) = (x0, x1, . . . , xn, a) ∈ B. We show that f :A × B → B is injective.
If f((a, (x0, . . . , xn))) = f((a′, (x′

0, . . . , x
′
m))), then we have (x0, . . . , xn, a) =

(x′
0, . . . , x

′
m, a′), therefore n = m, a = a′ and xi = x′

i for every 0 ≤ i ≤ n.
Hence f is injective, therefore |A × B| ≤ |B|, while obviously |B| ≤ |A × B|
(since A is non-empty). Now Cantor–Bernstein–Schroeder Theorem implies that
|A×B| = |B| for every A ∈ A.

By using Lemma 1, we modify the above pattern of a proof to deduce AC
in the following manner:

1. For a family A = (Ai)i∈Λ of non-empty sets, first choose a non-empty set
B with the property that the sets A′

i := Ai × B ̸= ∅ for i ∈ Λ have equal
cardinality (by using Lemma 1).

2. Secondly, construct compact T -spaces Xi = A′
i ∪ {p} and open neighbor-

hoods Ui ( Xi of p in the same way as (*), with an additional requirement
that the Xi for i ∈ Λ are homeomorphic to each other.

3. By assuming AC(K) or some weakened variant, prove that W = (Ũi)i∈Λ

does not have a subfamily W ′ = (Ũi)i∈Λ′ with the property that Λ′ ∈ K
and W ′ is an open cover of X.

4. Finally, by assuming THomeo(T ,K), deduce that W is not an open cover
of X, yielding an element f of

∏
i∈Λ A′

i. Then we obtain an element of∏
i∈Λ Ai by taking the first component of each f(i), i ∈ Λ.

In the special cases that T = Top and T = T1 discussed above, the definitions
of topology on each Xi satisfy that, for each i, j ∈ Λ, the extension of a bijection
A′

i → A′
j to a map Xi → Xj defined by p 7→ p gives a homeomorphism Xi →

Xj . Moreover, since now Ui = {p}, the components of the direct product∏
i∈Λ′(Xi r Ui) =

∏
i∈Λ′ A′

i have equal cardinality. Hence, for the choice of T ,
the combination of weakened propositions ACEq(K) and THomeo(T ,K) also
implies AC. In particular, Tychonoff’s Theorem for homeomorphic T1 spaces
implies AC.

In contrast, for the other special case that T = Hausdorff, the modified
argument proves that AMCEq, AC(K) and THomeo(Hausdorff,K) imply AC,
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but not that AMCEq, ACEq(K) and THomeo(Hausdorff,K) imply AC. This is
because the finite subsets Bi of the sets A

′
i obtained by applying AMCEq are not

necessarily of the same size, therefore the direct product
∏

i∈Λ′(Xi rUi) in the
argument does not necessarily satisfy the hypothesis of ACEq(K). If AMCEq
is strengthened in such a way that each component of the direct product will
have a finite non-empty distinguished subset of equal size, then the strengthened
variant of AMCEq and two axioms ACEq(K) and THomeo(Hausdorff,K) imply
AC. I do not know whether or not the combination of AMCEq, ACEq(K) and
THomeo(Hausdorff,K) can imply AC in ZF−.

Appendix: Proof of Tychonoff’s Theorem from
Axiom of Choice

In this appendix, we show one of the standard proofs of Tychonoff’s Theorem
from Axiom of Choice, for the sake of clarifying that the proof indeed works in
ZF−. The proof is taken from Section 16 of [1].

First, we notice the following equivalent form of Axiom of Choice, called
Tukey’s Lemma. We prepare a terminology. We say that a family F of sets is
of finite character if, for any set A, we have A ∈ F if and only if every finite
subset of A belongs to F . Then the following fact is known:

Theorem 1 (see e.g., [2, Exercise 11 in Chapter I]). In ZF−, AC is equivalent to
the following proposition (Tukey’s Lemma): For any family F of finite character
and any A ∈ F , there exists a maximal member (with respect to inclusion) of F
containing A.

We start the proof of Tychonoff’s Theorem. Let X =
∏

i∈Λ Xi be the prod-
uct space of compact topological spaces Xi. It suffices to show that, for any
family F of subsets of X having finite intersection property, the intersection of
the family F := {A | A ∈ F} is non-empty (where A denotes the closure of A).
First, note that the collection of the families F satisfying the above condition is
of finite character, therefore by using Tukey’s Lemma, there exists a maximal
family subject to this condition that contains a given family. Hence we may
assume without loss of generality that a given family F itself is maximal.

For each i ∈ Λ, let Fi be the collection of the closures πi[A] in Xi of the
images πi[A] of all A ∈ F by the projection πi:X → Xi. Since F has fi-
nite intersection property, Fi also has finite intersection property (note that
πi[

∩n
k=1 Ak] ⊂

∩n
k=1 πi[Ak] ⊂

∩n
k=1 πi[Ak] for a finite number of Ak ∈ F).

Since Xi is compact, we have
∩
Fi ̸= ∅; choose (by using AC) an element

pi ∈
∩

Fi for each i ∈ Λ. We show that the element p = (pi)i∈Λ of X belongs to∩
F . This is equivalent to that each open neighborhood U of p in X intersects

with every A ∈ F . Moreover, it suffices to prove the claim for the case that U
belongs to the open basis of X, namely there exist a finite subset Λ′ of Λ and
an open neighborhood Ui of pi in Xi for each i ∈ Λ′ with the property that U
is the direct product of the Ui for i ∈ Λ′ and Xi for i ∈ Λr Λ′.
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For each i ∈ Λ′, let Wi denote the direct product of Ui and all Xj for
j ∈ Λ r {i}. Then we have U =

∩
i∈Λ′ Wi. Now for each A ∈ F , we have

pi ∈ Ui ∩ πi[A] by the choice of p, therefore Ui ∩ πi[A] ̸= ∅. By the definition of
Wi, this implies that Wi ∩ A ̸= ∅ for every A ∈ F . Now, since F is maximal,
we have the following properties:

• For a finite number of members Ak of F , we have
∩

k Ak ∈ F ; this is
because F ∪ {

∩
k Ak} has finite intersection property as well as F .

• For each i ∈ Λ′, F ∪{Wi} has finite intersection property; this is because,
for a finite number of members Ak of F , we have

∩
k Ak ∈ F by the above

argument, therefore Wi ∩
∩

k Ak ̸= ∅ as shown above.

Hence, since F is maximal, it follows that Wi ∈ F for every i ∈ Λ′. Now for each
A ∈ F , we have ∅ ̸= A∩

∩
i∈Λ′ Wi = A∩U by the finite intersection property of

F . Hence U intersects with every A ∈ F , as desired. This completes the proof.
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