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Self Introduction

Research interests: Combinatorial group theory
(Coxeter groups), then Cryptography (& Math)

Ph.D. thesis on the isomorphism problem for
Coxeter groups

Gave a talk at this conference series in 9 years
ago (Oct. 29, 2016)

“How to Apply Topology to Cryptology,
Hopefully”
When I was working at AIST
Some (many?) overlaps with today’s talk
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Advertising My Work in Math

Coxeter group
W = 〈S | s2 (∀s ∈ S), (st)m(s,t) (∀s 6= t ∈ S)〉

S: Coxeter generating set
Sometimes W has two (or more) non-conjugate
Coxeter generating sets S (with possibly
different m(s, t)’s)

E.g., W (A1 × A2) ' W (I2(6))
Def.: W is strongly rigid if S is unique up to
conjugation
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Advertising My Work in Math

[Charney–Davis 2000]: A (large?) topologically
defined class of strongly rigid Coxeter groups
[Howlett–Mühlherr–N. 2018]: Complete
(combinatorial) characterization of strongly rigid
Coxeter groups of finite ranks
[Mühlherr–N. 2021]: A (large) class of strongly
rigid Coxeter groups of infinite ranks
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A Quick Guide: What Is Cryptography?

Methods of ensuring that information
technology can be used as expected, even if
some people may try to obstruct such use

“Some people”: adversary (or attacker)
Examples: encryption (wants to keep data
secret), digital signature (wants to ensure that
messages are from a true sender)
Usually requiring secret information which
adversaries do not know

Some exception exists (e.g., cryptographic
hash functions)
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Relations between Math & Crypto
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Relations between Math & Crypto: Examples

Number theory: RSA cryptosystem
Algebraic geometry: elliptic curve crypto,
pairing-based crypto, isogeny-based crypto
(Noisy) linear algebra: code-based crypto,
lattice-based crypto
Graph theory: cryptographic hash functions
Gröbner basis: multivariate crypto
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Relations between Math & Crypto: Examples

(Not algebraic) geometry:

Shamir’s secret sharing (any two points
determine a unique line) [Shamir 1979]
Algebraic surface cryptosystem (difficulty of
section finding) [Akiyama–Goto–Miyake
2009]
Attempt of applying Finsler geometry to
crypto [Nagano–Anada 2023]
...

Topology: ??
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Crypto with Topology-Related Groups

Key exchange protocol using braid groups [Ko
et al. 2000]

cf. [Anshel–Anshel–Goldfeld 1999]
Most famous example of “group-based crypto”
But broken by [Myasnikov–Shpilrain–Ushakov
2005] etc.
See e.g., [Garber, arXiv:0711.3941] for a survey
on “braid group crypto”
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Zero-Knowledge Proofs: Introduction

Situation: A player P knows a solution of a
problem, and wants to convince a player V that
P certainly knows a solution

But V is so distrustful, needs a “proof”
And the solution is valuable, so P cannot
tell it to V

No way?
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Zero-Knowledge Proofs: Introduction

[Goldwasser–Micali–Rackoff 1985]: Such a
“proof without telling the solution”
(zero-knowledge proof, ZKP) is possible for a
class of problems

In fact, for any NP language
Intuitively, an NP language is a problem for
which validity check of a given solution is
easy

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 14/32



Zero-Knowledge Proofs: Introduction

[Goldwasser–Micali–Rackoff 1985]: Such a
“proof without telling the solution”
(zero-knowledge proof, ZKP) is possible for a
class of problems

In fact, for any NP language
Intuitively, an NP language is a problem for
which validity check of a given solution is
easy

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 14/32



Zero-Knowledge Proofs: Example

P ’s solution: an isomorphism ϕ between two
structures G0,G1 (e.g., graphs)
Protocol:

P tells V a new H isomorphic to G0
V tells P a random b ∈ {0, 1}
P tells V an isomorphism Gb → H (and V
checks if it is an isomorphism)
Repeat it until V is convinced
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Zero-Knowledge Proofs: Example

Soundness: A true P can always answer

Completeness: W.h.p., a fake P cannot always
answer
Zero-knowledge (informal): Only a single
isomorphism Gb → H gives no information on
the original ϕ

Can be stated and proved rigorously

You can try it with topological structures such
as manifolds, knots, etc.
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Card-Based Zero-Knowledge Proofs

A too distrustful V may even distrust the
computer on which the protocol is executed
A possible direction: Card-based ZKP

Card-based crypto [den Boer 1989]: Doing
crypto by physical cards with
open/face-down operations, permutations,
shuffle operations, etc.
Motivated by visible demonstration,
recreation, education (and more!)
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Example: Card-Based ZKP for Sudoku

Sudoku: A puzzle to put numbers 1, 2, . . . , 9 in
the cells on a 9 × 9 board to satisfy:

Each row has different numbers
Each column has different numbers
Each of the nine 3 × 3 sub-boards has
different numbers
Consistent with the initial (partial)
placement

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 18/32



Example: Card-Based ZKP for Sudoku

A ZKP protocol [Gradwohl et al. 2007] for
solution of Sudoku:

P puts face-down number cards on the board
(with consistency) by following the solution
V verifies one of the row, column, and
sub-board conditions by shuffling the 9 cards
and opening them
Repeat it until V is convinced

For true P , the opened cards are always a
permutation of 1, 2, . . . , 9 ( no information)
For fake P , it is revealed when V selects an
unsatisfied condition (with positive probability)
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Example: Card-Based ZKP for Sudoku

A ZKP protocol [Gradwohl et al. 2007] for
solution of Sudoku:

P puts face-down number cards on the board
(with consistency) by following the solution

V verifies one of the row, column, and
sub-board conditions by shuffling the 9 cards
and opening them
Repeat it until V is convinced

For true P , the opened cards are always a
permutation of 1, 2, . . . , 9 ( no information)
For fake P , it is revealed when V selects an
unsatisfied condition (with positive probability)

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 19/32



Example: Card-Based ZKP for Sudoku

A ZKP protocol [Gradwohl et al. 2007] for
solution of Sudoku:

P puts face-down number cards on the board
(with consistency) by following the solution
V verifies one of the row, column, and
sub-board conditions by shuffling the 9 cards
and opening them

Repeat it until V is convinced
For true P , the opened cards are always a
permutation of 1, 2, . . . , 9 ( no information)
For fake P , it is revealed when V selects an
unsatisfied condition (with positive probability)

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 19/32



Example: Card-Based ZKP for Sudoku

A ZKP protocol [Gradwohl et al. 2007] for
solution of Sudoku:

P puts face-down number cards on the board
(with consistency) by following the solution
V verifies one of the row, column, and
sub-board conditions by shuffling the 9 cards
and opening them
Repeat it until V is convinced

For true P , the opened cards are always a
permutation of 1, 2, . . . , 9 ( no information)
For fake P , it is revealed when V selects an
unsatisfied condition (with positive probability)

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 19/32



Example: Card-Based ZKP for Sudoku

A ZKP protocol [Gradwohl et al. 2007] for
solution of Sudoku:

P puts face-down number cards on the board
(with consistency) by following the solution
V verifies one of the row, column, and
sub-board conditions by shuffling the 9 cards
and opening them
Repeat it until V is convinced

For true P , the opened cards are always a
permutation of 1, 2, . . . , 9 ( no information)

For fake P , it is revealed when V selects an
unsatisfied condition (with positive probability)

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 19/32



Example: Card-Based ZKP for Sudoku

A ZKP protocol [Gradwohl et al. 2007] for
solution of Sudoku:

P puts face-down number cards on the board
(with consistency) by following the solution
V verifies one of the row, column, and
sub-board conditions by shuffling the 9 cards
and opening them
Repeat it until V is convinced

For true P , the opened cards are always a
permutation of 1, 2, . . . , 9 ( no information)
For fake P , it is revealed when V selects an
unsatisfied condition (with positive probability)

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 19/32



ZKP for Rubik’s Cube

ZKP for solutions of Rubik’s Cube is also
possible with

Computer (via the general feasibility result)
Cards [Kimura–Mizuki–Komano 2024 (in
Japanese)]
Rubik’s Cube itself [Kimura–Mizuki 2024 (in
Japanese)]
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ZKP for/by ??

Ordinary or “physical” ZKP for topology-related
problems?

E.g., solution of Teruaki puzzle1?
There are physical crypto using various tools:
cards (of various types/shapes), coins, balances,
polarizing plates, PEZs, etc.

Physical crypto using topology-related
objects, e.g., Möbius Kaleidocycles2?

1 https://w.atwiki.jp/kazushiahara/pages/32.html
2 https://www.kyushu-u.ac.jp/ja/researches/view/908
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Warm-Up: Diffie–Hellman Key Exchange

Encrypted communication using secret-key
encryption requires a secret key shared by the
sender and receiver in advance
How to securely share the secret key without
encryption?
The earliest solution: Diffie–Hellman (DH)
key exchange [Diffie–Hellman 1976]
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Warm-Up: Diffie–Hellman Key Exchange

Protocol between parties P1 and P2:
1 Choose a finite cyclic group G = 〈g〉 in public
2 Pi sends hi := gai to P3−i , while hiding ai ∈ Z
3 Given h3−i , Pi computes Ki := h3−i

ai

Getting a common (random) secret element:

K1 = (ga2)a1 = ga2a1 = ga1a2 = (ga1)a2 = K2

with no pre-shared secret
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Warm-Up: Diffie–Hellman Key Exchange

Public: G = 〈g〉 and hi ∈ G
Secret: ai with hi = gai

⇒ The discrete logarithm (DL) problem in G
must be computationally hard:

(DL) Given g , h, find an x with h = gx in G
DL over Z/nZ is easy, DL over Fp

× is fairly
hard, and DL over elliptic curve groups is much
harder

Even though the groups are isomorphic
Because elliptic curve groups have “less
structure” than other groups
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A New Viewpoint from Cryptography

(Mathematician: more structures, more happiness)
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Fully Homomorphic Encryption (FHE)

(over plaintext space F2 = {0, 1})

Decrypt : {ciphertexts} → {plaintexts}
∃ ãdd, m̃ult on ciphertexts s.t. Decrypt is
“ring-homomorphic”:

Decrypt(ãdd(c1, c2))
= Decrypt(c1) + Decrypt(c2)

Decrypt(m̃ult(c1, c2))
= Decrypt(c1) · Decrypt(c2)

“Homomorphic” computation over encrypted
data
First construction: [Gentry 2009]
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(Too) Simplified Example [van Dijk et al. 2010]

Choose prime p and integer N s.t. p |N
Encrypt(m) = pα + 2r + m mod N for m ∈ F2

Decrypt(c) = (c mod p) mod 2
It works iff r is “not too large”

ãdd = +, m̃ult = · in Z/NZ
But iteration of operations is limited (r grows)

“Bootstrapping” can reset the “noise” r
But very inefficient so far
Common to other FHE schemes
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Towards FHE without Bootstrapping

A (hopefully) possible strategy ([N. 2021], etc.):

1 “Embed” F2 into a finite (non-commutative)
group G

Operations of F2 realized by operations of G
2 Take a surjective group hom. π : G̃ → G with

some finite group G̃ s.t.:
Elements of ker(π) can be efficiently
sampled (with some public information)
π is hard-to-compute without secret key
π is easy-to-compute with secret key

Ciphertexts: elements of G̃ , Decrypt = π

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 29/32



Towards FHE without Bootstrapping

A (hopefully) possible strategy ([N. 2021], etc.):
1 “Embed” F2 into a finite (non-commutative)

group G
Operations of F2 realized by operations of G

2 Take a surjective group hom. π : G̃ → G with
some finite group G̃ s.t.:

Elements of ker(π) can be efficiently
sampled (with some public information)
π is hard-to-compute without secret key
π is easy-to-compute with secret key

Ciphertexts: elements of G̃ , Decrypt = π

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 29/32



Towards FHE without Bootstrapping

A (hopefully) possible strategy ([N. 2021], etc.):
1 “Embed” F2 into a finite (non-commutative)

group G
Operations of F2 realized by operations of G

2 Take a surjective group hom. π : G̃ → G with
some finite group G̃ s.t.:

Elements of ker(π) can be efficiently
sampled (with some public information)
π is hard-to-compute without secret key
π is easy-to-compute with secret key

Ciphertexts: elements of G̃ , Decrypt = π

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 29/32



Towards FHE without Bootstrapping

A (hopefully) possible strategy ([N. 2021], etc.):
1 “Embed” F2 into a finite (non-commutative)

group G
Operations of F2 realized by operations of G

2 Take a surjective group hom. π : G̃ → G with
some finite group G̃ s.t.:

Elements of ker(π) can be efficiently
sampled (with some public information)
π is hard-to-compute without secret key
π is easy-to-compute with secret key

Ciphertexts: elements of G̃ , Decrypt = π

(c) Koji Nuida December 5, 2025 (Future) Relationship between Topology and Crypto 29/32



Example of Embedding F2 ↪→ S6

[Guillot et al., arXiv:2510.21483]
0 7→ σ0 := id ∈ S6, 1 7→ σ1 := (15)(34)
add′(x , y) := xy
mult′(x , y) := a1xa1a2ya2a1xa1a2ya2 where
a1 := (12)(56), a2 := (35)

Written w.r.t. action from the right (i.e.,
left-side elements act firstly)

Then add′(σb1, σb2) = σb1+b2,
mult′(σb1, σb2) = σb1·b2
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A Recent Approach

It looks so difficult to find a suitable group hom.
π : G̃ → G

Approach by [Guillot et al., arXiv:2510.21483]:
Take some G̃
Take an ambient group G̃0 ⊇ G̃
Then publish a (non-confluent and
“pseudo-bounded”) rewriting system G for
group presentation of G̃0
Every computation (except for Decrypt) is
done over G , without explicit structure of G̃0
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Applications of Topology?

Open Problems:
Concrete construction (rather than rewriting
system) of a suitable group hom. G̃ → Sn
(n ≥ 5), associated to some topological object?
(Cf. elliptic curve groups for DH key exchange)
Embedding of F2 into other topology-related
objects?
(E.g., quandles from knot theory?)
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