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Abstract

It has been known that the centralizer Zy, (W;) of a parabolic subgroup W; of a Coxeter
group W is a split extension of a naturally defined reflection subgroup by a subgroup defined
by a 2-cell complex ). In this paper, we study the structure of Zy (Wj) further and
show that, if I has no irreducible components of type A, with 2 < n < oo, then every
element of finite irreducible components of the inner factor is fixed by a natural action of
the fundamental group of ). This property has an application to the isomorphism problem
in Coxeter groups.

1 Introduction

A pair (W, S) of a group W and its (possibly infinite) generating set S is called a Cozeter system
if W admits the following presentation

W = (S| (st)™*) =1 for all 5,t € S with m(s,t) < o0) ,

where m: (s,t) — m(s,t) € {1,2,...} U {oo} is a symmetric mapping in s,t € S with the
property that we have m(s,t) = 1 if and only if s = ¢. A group W is called a Coxeter group
if (W, S) is a Coxeter system for some S C W. Since Coxeter systems and some associated
objects, such as root systems, appear frequently in various topics of mathematics, algebraic or
combinatorial properties of Coxeter systems and those associated objects have been investigated
very well, forming a long history and establishing many beautiful theories (see e.g., [5] and
references therein). For example, it has been well known that, given an arbitrary Coxeter
system (W, S), the mapping m by which the above group presentation defines the same group
W is uniquely determined.

In recent decades, not only the properties of a Coxeter group W associated to a specific
generating set S, but also the group-theoretic properties of an arbitrary Coxeter group W itself
have been studied well. One of the recent main topics in the study of group-theoretic properties
of Coxeter groups is the isomorphism problem, that is, the problem of determining which of the
Coxeter groups are isomorphic to each other as abstract groups. In other words, the problem
is to investigate the possible “types” of generating sets S for a given Coxeter group W. For
example, it has been known that for a Coxeter group W in certain classes, the set of reflections
SW = {wsw™! | w € W and s € S} associated to any possible generating set S of W (as
a Coxeter group) is equal to each other and independent of the choice of S (see e.g., [1]). A
Coxeter group W having this property is called reflection independent. A simplest nontrivial
example of a Coxeter group which is not reflection independent is Weyl group of type Go (or
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the finite Coxeter group of type I2(6)) with two simple reflections s,¢, which admits another
generating set {s, ststs, (st)3} of type A1 x Ay involving an element (st)? that is not a reflection
with respect to the original generating set. One of the main branches of the isomorphism
problem in Coxeter groups is to determine the possibilities of a group isomorphism between two
Coxeter groups which preserves the sets of reflections (with respect to some specified generating
sets). Such an isomorphism is called reflection-preserving.

In a recent study by the author of this paper, it is revealed that some properties of the
centralizers Zy (r) of reflections r in a Coxeter group W (with respect to a generating set S)
can be applied to the study of reflection independent Coxeter groups and reflection-preserving
isomorphisms. An outline of the idea is as follows. First, by a general result on the structures
of the centralizers of parabolic subgroups [7] or the normalizers of parabolic subgroups [2] in
Coxeter groups applied to the case of a single reflection, we have a decomposition Zy (r) =
(ry x (WL xY,), where W= denotes the subgroup generated by all the reflections except r
itself that commute with r, and Y, is a subgroup isomorphic to the fundamental group of a
certain graph associated to (W, S). The above-mentioned general results also give a canonical
presentation of W+ as a Coxeter group. Then the unique maximal reflection subgroup (i.e.,
subgroup generated by reflections) of Zyy(r) is (r) x W+". Now suppose that W=" has no finite
irreducible components. In this case, the maximal reflection subgroup of Zy (r) has only one
finite irreducible component, that is (r). Now it can be shown that, if the image f(r) of r by a
group isomorphism f from W to another Coxeter group W’ is not a reflection with respect to
a generating set of W/, then the finite irreducible components of the unique maximal reflection
subgroup of the centralizer of f(r) in W’ have more elements than (r), which is a contradiction.
Hence, in such a case of r, the image of r by any group isomorphism from W to another Coxeter
group is always a reflection. See the author’s preprint [6] for more detailed arguments.

As we have seen in the previous paragraph, it is worthy to look for a class of Coxeter groups
W for which the above subgroup W+ of the centralizer Zyy (r) of each reflection 7 has no finite
irreducible components. The aim of this paper is to establish a tool for finding Coxeter groups
having the desired property. The main theorem (in a special case) of this paper can be stated
as follows:

Main Theorem (in a special case). Let r € W be a reflection, and let s,
be a generator of W' (as a Coxeter group) which belongs to a finite irreducible
component of W7, Then s, commutes with every element of Y;.. (See the previous
paragraph for the notations.)

By virtue of this result, to show that W= has no finite irreducible components, it suffices to
find (by using the general structural results in [7] or [2]) for each generator s., of W-" an element
of Y, that does not commute with s,. A detailed argument along this strategy is given in the
preprint [6].

In fact, the main theorem (Theorem [L]) of this paper is not only proven for the above-
mentioned case of single reflection 7, but also generalized to the case of centralizers Zy (W) of
parabolic subgroups W generated by some subsets I C S, with the property that I has no irre-
ducible components of type A,, with 2 < n < co. (We notice that there exists a counterexample
when the assumption on I is removed; see Section [ for details.) In the generalized statement,
the group W= is replaced naturally with the subgroup of W generated by all the reflections
except those in I that commute with every element of I, while the group Y, is replaced with a
subgroup of W isomorphic to the fundamental group of a certain 2-cell complex defined in [7].
We emphasize that, although the general structures of these subgroups of Zy (W7) have been
described in [7] (or [2]), the main theorem of this paper is still far from being trivial; moreover,
to the author’s best knowledge, no other results on the structures of the centralizers Zy (W7)



which is in a significantly general form and involves much detailed information than those given
in the general structural results [2] [7] have been known in the literature.

The paper is organized as follows. In Section 2 we summarize some fundamental prop-
erties and definitions for Coxeter groups. In Section B, we summarize some properties of the
centralizers of parabolic subgroups relevant to our argument in the following sections, which
have been shown in some preceding works (mainly in [7]). In Section [ we give the statement
of the main theorem of this paper (Theorem [.]), and give a remark on its application to the
isomorphism problem in Coxeter groups (also mentioned in a paragraph above). The proof of
the main theorem is divided into two main steps: First, Section Bl presents some auxiliary results
which do not require the assumption, put in the main theorem, on the subset I of S that I has
no irreducible components of type A, with 2 < n < oco. Then, based on the results in Section
Bl Section [B] deals with the special case as in the main theorem that I has no such irreducible
components, and completes the proof of the main theorem. The proof of the main theorem
makes use of the list of positive roots given in Section 2] several times. Finally, in Section [ we
describe in detail a counterexample of our main theorem when the assumption that I has no
irreducible components of type A, with 2 < n < oo is removed.
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2 Coxeter groups

The basics of Coxeter groups summarized here are found in [5] unless otherwise noticed. For
some omitted definitions, see also [5] or the author’s preceding paper [7].

2.1 Basic notions

A pair (W, S) of a group W and its (possibly infinite) generating set S is called a Cozeter
system, and W is called a Cozeter group, if W admits the following presentation

W = (5] (st)™*") =1 for all 5,t € S with m(s,t) < o0) ,

where m: (s,t) — m(s,t) € {1,2,...} U {oo} is a symmetric mapping in s,t € S with the
property that we have m(s,t) = 1 if and only if s = t. Let I' denote the Cozeter graph of
(W, S), which is a simple undirected graph with vertex set S in which two vertices s,t € S are
joined by an edge with label m(s,t) if and only if m(s,t) > 3 (by usual convention, the label is
omitted when m(s,t) = 3; see Figure [[] below for example). If I is connected, then (W,S) is
called irreducible. Let ¢ denote the length function of (W, S). For w,u € W, we say that u is a
right divisor of w if £(w) = £(wu~') + £(u). For each subset I C S, the subgroup W; := (I) of
W generated by [ is called a parabolic subgroup of W. Let I'; denote the Coxeter graph of the
Coxeter system (W7, 1).

For two subsets I, J C S, we say that I is adjacent to J if an element of I is joined by an
edge with an element of J in the Coxeter graph I'. We say that I is apart from J if INJ =)
and I is not adjacent to J. For the terminologies, we often abbreviate a set {s} with a single
element of S to s for simplicity.



2.2 Root systems and reflection subgroups

Let V denote the geometric representation space of (W, S), which is an R-linear space equipped
with a basis Il = {a; | s € S} and a W-invariant symmetric bilinear form (, ) determined by

(s, o) = {—cos(ﬂ/m(s,t)) if m(s,t) < oo ;
) -1 if m(s,t) = o0 ,

where W acts faithfully on V by s-v = v —2(as, v)as for s € S and v € V. Then the root system
® = W - II consists of unit vectors with respect to the bilinear form (, ), and ® is the disjoint
union of &t := ® N R>oll and &~ := —P* where R>ll signifies the set of nonnegative linear
combinations of elements of II. Elements of ®, ®T, and ®~ are called roots, positive roots, and
negative roots, respectively. For a subset ¥ C ® and an element w € W, define

U =0NeT, U =0Nd, Vw:={yecT" |w-yed} .

It is well known that the length ¢(w) of w is equal to |®[w]]|.

For an element v = ) __¢ csas of V, define the support Suppv of v to be the set of all s € S
with ¢; # 0. For a subset ¥ of ®, define the support Supp ¥ of ¥ to be the union of Supp~y
over all v € V. For each I C S, define

II; ::{045\SGI}QH,V]::spanHIQV,CI)[ =0oNV; .

It is well known that ®; coincides with the root system Wi - II; of (W, I). We notice the
following well-known fact:

Lemma 2.1. The support of any root v € ® is irreducible.

Proof. Note that v € &7 = Wy - Il;, where I = Supp~y. On the other hand, it follows by
induction on the length of w that, for any w € Wy and s € I, the support of w - o is contained
in the irreducible component of I containing s. Hence the claim follows. U

For a root v = w-ag € @, let s, := wsw™! be the reflection along 7, which acts on V by
sy v =v—2(y,v)y for v € V. For any subset ¥ C ®, let W (¥) denote the reflection subgroup
of W generated by {s, | v € ¥}. It was shown by Deodhar [3] and by Dyer [4] that W (V) is a
Coxeter group. To determine their generating set S(¥) for W (), let II(¥) denote the set of
all “simple roots” v € (W (¥) - ¥)" in the “root system” W (¥) - ¥ of W (¥), that is, all the
for which any expression v = Y., ¢;3; with ¢; > 0 and 8; € (W (V) - ¥)" satisfies that ; = v
for every index i. Then the set S(¥) is given by

S(T) = {s, | y € (W)} .

We call TI(V) the simple system of (W (W), S(¥)). Note that the “root system” W (¥) - ¥ and
the simple system II(¥) for (W (W), S(¥)) have several properties that are similar to the usual
root systems ® and simple systems II for (W, S); see e.g., Theorem 2.3 of [7] for the detail. In
particular, we have the following result:

Theorem 2.2 (e.g., [7, Theorem 2.3]). Let ¥ C &, and let ly be the length function of
(W(®),S(¥)). Then for w € W(¥) and v € (W(U) - ¥)F, we have ly(wsy) < ly(w) if
and only if w-vy € &~



We say that a subset ¥ C &V is a root basis if for each pair 3,7 € ¥, we have

(B,7) = —cos(m/m) if sgs, has order m < oo ;
(B,y) < -1 if sgs, has infinite order.

For example, it follows from Theorem 23] below that the simple system II(¥) of (W (¥), S(¥))
is a root basis for any ¥ C ®. For two root bases ¥, ¥y C &1, we say that a mapping from
Uy = II(¥;) to Uy = II(¥y) is an isomorphism if it induces an isomorphism from S(¥;) to
S(W2). We show some properties of root bases:

Theorem 2.3 ([4, Theorem 4.4]). Let ¥ C ®*. Then we have I(V) = ¥ if and only if ¥ is a
root basis.

Proposition 2.4 ([7, Corollary 2.6]). Let ¥ C ®* be a root basis with |W (¥)| < co. Then ¥
is a basis of a positive definite subspace of V' with respect to the bilinear form (, ).

Proposition 2.5 ([7, Proposition 2.7]). Let ¥ C ®* be a root basis with |W(¥)| < oo, and
U = span V. Then there exist an element w € W and a subset I C S satisfying that |Wr| < oo
and w- (UN®1) = ®F. Moreover, the action of this w maps U N1I into I1;.

2.3 Finite parabolic subgroups

We say that a subset I C S is of finite type if |W;| < oo. The finite irreducible Coxeter groups
have been classified as summarized in [5, Chapter 2]. Here we determine a labelling ry, 72, ..., 7,
(where n = |I]) of elements of an irreducible subset I C S of each finite type in the following
manner, where the values m(r;,7;) not listed here are equal to 2 (see Figure [):

Type A, (1 <n<o0): m(ri,riv1) =3 (1 <i<n-—1);

Type B, (2<n <o0): m(ri,rit1) =3 (1 <i<n-—2)and m(rp_1,m,) = 4;
Type D,, (4 <n <o00): m(ry,rig1) = m(rp—2,m) =3 (1 <i<n—2);

Type E, (n=06,7,8): m(ri,r3) =m(ra,m4) = m(ri,riy1) =3 3 <i<n-—1);
Type Fy: m(ry,re) = m(rs,rq) = 3 and m(rq,r3) = 4;

Type H, (n=3,4): m(ri,r2) =5 and m(r;,riv1) =3 2<i<n-—1);

Type Ix(m) (5 <m < o0): m(ry,ra) = m.

We call the above labelling 71, ..., r, the standard labelling of I.

Let wp(I) denote the (unique) longest element of a finite parabolic subgroup Wy. It is well
known that wq(I)? = 1 and wo(I) - II; = —II;. Now let I be irreducible of finite type. If I is of
type A, (n > 2), Dy (k odd), Eg or I3(m) (m odd), then the automorphism of the Coxeter graph
I'; of W; induced by (the conjugation action of) wg(I) is the unique nontrivial automorphism
of T';. Otherwise, wg([I) lies in the center Z(W7y) of W and the induced automorphism of I'; is
trivial, in which case we say that I is of (—1)-type. Moreover, if W7 is finite but not irreducible,
then wo(I) = wo(l1) - - - wo(Ix) where the I; are the irreducible components of 1.
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Figure 1: Coxeter graphs of the finite irreducible Coxeter groups (here we write i instead of 7;
for each vertex)

3 Known properties of the centralizers

This section summarizes some known properties (mainly proven in [7]) of the centralizers
Zw (W7r) of parabolic subgroups W in Coxeter groups W, especially those relevant to the
argument in this paper.

First, we fix an abstract index set A with |[A| = |I|, and define S®) to be the set of all
injective mappings z: A — S. For z € S®) and A € A, we put z) = x(A); thus x may be
regarded as a duplicate-free “A-tuple” () = (x))rea of elements of S. For each z € S| let
[x] denote the image of the mapping z; [z] = {z) | A € A}. In the following argument, we fix
an element ;7 € SW with [z7] = I. We define

Cory={weW | ay, =w-ay, for every A € A} for z,y € S® .
Note that C,, - Cy . C C, . and C’gc,y*1 =Cy for z,y,2 € SA) Now we define
wx Yy = x) for x,y € S(A),w €Cpyand A€ A,

therefore we have w - oy = auyes for any w € Cp and s € [y]. (This * can be interpreted as the
conjugation action of elements of C, , to the elements of [y].) Moreover, we define

wxy =z for z,y € SW and w € Cry

(this * can be interpreted as the diagonal action on the A-tuples). We define C; = Cy, 4,
therefore we have
Cr={weW|w- as;=a,forevery se I} ,

which is a normal subgroup of Zy (Wr).

To describe generators of C, we introduce some notations. For subsets J, K C S, let Jog
denote the set of elements of JU K that belongs to the same connected component of I' i as
an element of K. Now for z € S and s € S \ [z] for which [z] is of finite type, there exists
a unique y € S® for which the element

wy := wo([z]~s)wo([z]~s \ {s})
belongs to Cy . In this case, we define
p(x,s) =y,

therefore p(x,s) = wj * x in the above notations. We have the following result:



Proposition 3.1 (see [7, Theorem 3.5(iii)]). Let z,y € S and w € C.,. Then there
are a finite sequence zy = Y, 21,...,%n—1,2n = 2 of elements of SN and a finite sequence
50,515 -« -5 Sn—1 of elements of S satisfying that s; & [z, [#i]~s; s of finite type and p(z;,s;) =
zit1 for each index 0 < i <mn —1, and we have w = w; wj}wzg

n—1
n—1

For subsets J, K C S, define
O =y e ®; | (v,0,) =0 for every s € K}, Wi¥ .= W (oK)

(see Section for notations). Then (W#+¥, R7X) is a Coxeter system with root system &+
and simple system I/ where

RIE = §(o+5) TTME .= T1( 1K)

(see [T, Section 3.1]). In the notations, the symbol J will be omitted when J = S; hence we

have
WH =W = ({s, [y € M} .

On the other hand, we define
Viy = {w € Cpy | w- (@W)F C &F} for 2,y € SV .

Note that Y, = {w € Cy, | (®HF)F = w . (@+W) T} (see [T, Section 3.1]). Note also that
Yoy Y, CY,. and nyy—l =Y, forz,y,z € SA) . Now we define Y; = Y., z;, therefore we
have

Vi={wel | (@) =w- (@)t} .
We have the following results:

Proposition 3.2 (see [7, Lemma 4.1]). For z € S®) and s € S\ [z], the three conditions are
equivalent:

1. [x]~s is of finite type, and ¢(x,s) = x;
2. [x]~s is of finite type, and O+ [w?] # 0;

L[]
5. ol L #0.

If these three conditions are satisfied, then we have & [w?] = (@ﬁ;gf}{s}ﬁ = {y(z,s)} for a

unique positive Toot Y(z,s) satisfying s.(z.s) = W;-

Proposition 3.3. Let z,y € SO,

1. (See [, Theorem 4.6(i)(iv)].) The group Cy . admits a semidirect product decomposition
Cro = WL 5 Y, . Moreover, if w € Y, then the conjugation action by w defines an
isomorphism u — wuw~' of Cozeter systems from (WU, RW) to (W=l Rl=]),

2. (See [T, Theorem 4.6(ii)].) Letw € Yy ,. Then there are a finite sequence 2o =y, 21, ..., Zn—1,2%n =

z of elements of S®) and a finite sequence s, s1, ..., 5n_1 of elements of S satisfying that
S

Ziv1 # i, 8i € (2], [Zil~s; 15 of finite type and wii € Y., ., for each index 0 <i <n —1,
n—1
n—1

S
and we have w = wz, ") -+ - wilw.

3. (See [7, Theorem 4.13].) The generating set R of W= consists of elements of the
form wsv(y,s)w_l satisfying that y € SN, w € Yy and ¥(y, s) is a positive root as in the
statement of Proposition (hence [y]~s is of finite type and p(y,s) =y).



Proposition 3.4 (see [7, Proposition 4.8]). For any x € SN, the group Yy 2 is torsion-free.

For the structure of the entire centralizer Zy (Wy), a general result (Theorem 5.2 of [7])
implies the following proposition in a special case (a proof of the proposition from Theorem
5.2 of [7] is straightforward by noticing the fact that, under the hypothesis of the following
proposition, the group A defined in the last paragraph before Theorem 5.2 of [7] is trivial and
hence the group B used in Theorem 5.2 of [7] coincides with Y7):

Proposition 3.5 (see [7, Theorem 5.2]). If every irreducible component of I of finite type is of
(—1)-type (see Section[Z3 for the terminology), then we have Zy (Wi) = Z(Wy) x (W x Y7).

We also present an auxiliary result, which will be used later:

Lemma 3.6 (see [7, Lemma 3.2]). Let w € W and J, K C S, and suppose that w-11; CII and
w-Tg C . Then JNK =), the set Joi is of finite type, and wo(Jp)wo(Jur ~ K) is a
right divisor of w (see Section [Z] for the terminology).

4 Main results

In this section, we state the main results of this paper, and give some relevant remarks. The
proof will be given in the following sections.

The main results deal with the relations between the “finite part” of the reflection subgroup
W1 and the subgroup Y7 of the centralizer Zy (Wy). In general, for any Coxeter group W, the
product of the finite irreducible components of W is called the finite part of W; here we write
it as Wey,. Then, since W/ is a Coxeter group (with generating set R’ and simple system IT7)
as mentioned in Section B, W has its own finite part Wg,.

To state the main theorem, we introduce a terminology: We say that a subset I of S is
Asq-free if I has no irreducible components of type A, with 2 < n < oo. Then the main
theorem of this paper is stated as follows:

Theorem 4.1. Let I be an As1-free subset of S (see above for the terminology). Then for each
v e I with Sy € We,, we have w -y = v for every w € Y;. Hence each element of the
subgroup Y7 of Zy (W) commutes with every element of Wt g,

Among the several cases for the subset I of S covered by Theorem [ we emphasize the
following important special case:

Corollary 4.2. Let I C S. If every irreducible component of I of finite type is of (—1)-type
(see Section 2.3 for the terminology), then we have

Zw (W) = Z(Wp) x WHa, x (WH e x Y7)

where W1i¢ denotes the product of the infinite irreducible components of W! (hence WHT =
WJJﬁn X Wl[inf)-

Proof. Note that the assumption on I in Theorem [A.1] is now satisfied. In this situation,
Proposition implies that Zy (Wr) = Z(W) x (W % Y7). Now by Theorem BT} both
Y7 and W, ¢ centralize W1 fin, therefore the latter factor of Zy (W;) decomposes further as
W g, x (WH e x 7). O

We notice that the conclusion of Theorem [4.1] will not generally hold when we remove the
As1-freeness assumption on I. A counterexample will be given in Section [7



Here we give a remark on an application of the main results to a study of the isomorphism
problem in Coxeter groups. An important branch in the research on the isomorphism problem
in Coxeter groups is to investigate, for two Coxeter systems (W,S), (W’,S’) and a group
isomorphism f: W — W’  the possibilities of “shapes” of the images f(r) € W’ by f of
reflections r € W (with respect to the generating set S); for example, whether f(r) is always a
reflection in W’ (with respect to S’) or not. Now if € S, then Corollary f21and Proposition 3.4]
imply that the unique maximal reflection subgroup of the centralizer of r in W is (r) x W}
which has finite part (r) x WHrlg,. Moreover, the property of W, shown in Theorem
A1l can imply that the factor WL} g, becomes “frequently” almost trivial. In such a case, the
finite part of the unique maximal reflection subgroup of the centralizer of f(r) in W' should be
very small, which can be shown to be impossible if f(r) is too far from being a reflection. Thus
the possibilities of the shape of f(r) in W’ can be restricted by using Theorem E1l See [6] for a
detailed study along this direction. The author hope that such an argument can be generalized
to the case that r is not a reflection but an involution of “type” which is Asi-free (in a certain
appropriate sense).

5 Proof of Theorem [4.1: General properties

In this and the next sections, we give a proof of Theorem 1l First, this section gives some
preliminary results that hold for an arbitrary I C S (not necessarily A~ -free; see Section [ for
the terminology). Then the next section will focus on the case that I is Asq-free as in Theorem
[41] and complete the proof of Theorem .11

5.1 Decompositions of elements of Y, ,

It is mentioned in Proposition B.3|[2) that each element v € Y., with y,z € S@) admits a
kind of decomposition into elements of some Y. Here we introduce a generalization of such
decompositions, which will play an important role below. We give a definition:

Definition 5.1. Let u € Y, , with y,2 € SW) . We say that an expression D := w,_1 -+ wiwy
of u is a semi-standard decomposition of u with respect to a subset J of S if there exist y® =
y (D) € SW for 0 <i < m, t0) =tO(D) e Sfor 0 <i<n—1and JO = JOD) C S for
0 <i<mn,with y© =y, y = 2 and JO = J, satisfying the following conditions for each
index 0 <71<n-—1:

e We have t® ¢ [y®]u J® and @ is adjacent to [y].

e The subset K@ = KO(D) := ([y®D]uJ®)_, of S is of finite type (see Section [ for the
notation).

e We have w; = wz((?) S = wo (K )wo (K@ < {tO}).
e We have w; € Yy(i+1),y(i) and wj - I ;) = Iyt

We call the above subset K® of S the support of w;. We call a component w; of D a wide
transformation if its support K intersects with J® ~ [y(’)]; otherwise, we call w; a narrow
o =t M that D =
0 g = Wy Moreover, we say tha =
Wn_1++-wWiwg 18 a standard decomposition of u if D is a semi-standard decomposition of u and
l(u) = Z?:_& ¢(wj). The integer n is called the length of D and is denoted by £(D).

transformation, in which case we have w; = w



Ezample 5.2. We give an example of a semi-standard decomposition. Let (W, S) be a Coxeter
system of type D7, with standard labelling r1,...,r7 of elements of S given in Section 2.3 We
put n := 4, and define the objects y, () and J@ as in Table[I] where we abbreviate each r; to
i for simplicity. In this case, the subsets K of S introduced in Definition [5.1] are determined
as in the last row of Table Il We have

wo = U)O({leT277°37T477°5})w0({7°17T277°377"5}) = Tor3rarsrirersry
wi = wo({rs, ra, 75,76} )wo({rs, ra,75}) = r3rarsre ,
wy = wo({ra,rs, 76,77} )wo({ra, 5,76 }) = rersrarersry

(

w3 = Wo {7“3,7’4,7“5,7’6})’(00({7’4,7’5,7’6}) =Tersrars .

Let u denote the element w3wawiwg of W. Then it can be shown that v € Y, , where y := y(o) =

(ri,7ma,7r3) and z = y™ = (rs,74,73), and the expression D = w3wowiwp is a semi-standard
decomposition of u of length 4 with respect to J := JO = {rs}. Moreover, D is in fact a
standard decomposition of u (which is the same as the one obtained by using Proposition (5.3l
below). Among the four component w;, the first one wy is a wide transformation and the other
three w1, wo, w3 are narrow transformations.

Table 1: The data for the example of semi-standard decompositions

L 4 [ 3 [ 2 [ 1 | 0 |
yD I (5,4,3) | (6,5,4) (4,5,6) (3,4,5) (1,2,3)
(0 — 3 7 6 4
J(f’ {1} {1} {1} {1} {5}
KO — 1{3,4,56} | {4,56,7} | {3,4,5.6} | {1,2,3,4,5}

The next proposition shows existence of standard decompositions:

Proposition 5.3. Letu € Y, , withy,z € S@) and let J C S satisfying that w-11; C II. Then
there exists a standard decomposition of u with respect to J.

Proof. We proceed the proof by induction on ¢(u). For the case £(u) = 0, i.e., u = 1, the empty
expression satisfies the conditions for a standard decomposition of u. From now, we consider
the case £(u) > 0. Then there is an clement t = t(0) € § satisfying that u - a; € ®~. Since
u€Y,,and u-T; CI C &F, we have t € [y]UJ and oy ¢ &L, therefore ¢ is adjacent to [y].
Now by Lemma B8, K = K© := ([y] UJ)~; is of finite type and wy := w; ; is a right divisor of
u (see Section 2.1] for the terminology). By the definition of w; 7 in Definition B.I] there exist
unique y( € S@) and JU) C S satisfying that y) = wg xy (see Section [ for the notation)
and wq - IT; = II ;). Moreover, since wy is a right divisor of u, it follows that ®[w] C ®[u] (see
e.g., Lemma 2.2 of [7]), therefore & [wo] C ®LW[u] = § and wy € Yy, Put ' = uwy™.
Then we have v’ € Y, ), u' -1 ;0) C I and £(u') = £(u) — £(wo) < £(u) (note that wy # 1).
Hence the concatenation of wy to a standard decomposition of v’ € Y, ,m with respect to J)
obtained by the induction hypothesis gives a desired standard decomposition of wu. U

We present some properties of (semi-)standard decompositions. First, we have the following:

Lemma 5.4. For any semi-standard decomposition wy,_1 - - - wiwg of an element of W, for each
0 <i<n-—1, there exists an element of HK(i)\{t(i)} which is not fized by w;.
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Proof. Assume contrary that w; fixes Iy (1} pointwise. Then by applying Proposition

to the pair of [y]UJ® and t( instead of the pair of [z] and s, it follows that there exists a root
1K@ L@

Y € ((pK(i) { })+ ‘ ' ‘ :

coincides with w;). By the definition of the support K @ of w;, K® is apart from [y(z)] < K@)

therefore this root v also belongs to (@l[y(z)})f Hence we have @l[y(z)][wi] # (), contradicting

the property w; € Y (i+1) ) in Definition BTl Hence Lemma [5.4] holds. O

with w; -y € &~ (note that, in this case, the element w? in Proposition

For a semi-standard decomposition D = wy, - -wiwg of u € Y, 4, let 0 < iy <ig < -+ < i <
n be the indices ¢ with the property that [y(”l)(D)] = [y (D)] and JE)(D) = J(Z)( ). Then
we define the simplification D of D to be the expression wy - -+ Wi, * - Wy, - Wy, - - wo obtained
from D = wy, - - - wiwp by removing all terms w;; with 1 < j < k. Let u denote the element of

W expressed by the product D. The following lemma is straightforward to prove:

Lemma 5.5. In the above setting, let o denote the mapping from {0,1,...,n—k} to {0,1,...,n}
satisfying that D = Wo(n—k) " Wo()Wo(0)- Then we have u € Yz, for some z € S@) with
[3] = [2]; ﬁ is a semi-standard decomposition of T with respect to J© (D) = JO(D); we have

Jn= k“( D) = JO)(D): and for each 0 < j < n — k, we have [y (D)] = [yU))(D)],
[y(a+1)( N =1y 0(] +)(D)], JU(D) = JC@) (D) and J(]+1)( ) = JE@+H) (D).

Ezxample 5.6. For the case of Example [£.2], the simplification D of the standard decomposition
D = wswowiwg of u is obtained by removing the third component wy, therefore D = wswiwy.
We have

O(D) = (r1,79,73), yV (D) =y (D) = (r3,74,75)

Y
Y2 (D) = (ra,rs,76) , y*(D) = (rg,ra,75) = 2 .

Now since wg is the inverse of wq, the semi-standard decomposition D of 4 is not a standard
decomposition of u.

Moreover, we have the following result:

Lemma 5.7. Let D = w, - -wiwg be a semi-standard decomposition of an element u € W.
Let r € [y(o)], and suppose that the support of each w; is apart from r. Moreover, let s € JO),
s € JY and suppose that ux s = s'. Then we have r € [y("+1)], uxr =1 andu €Y, ,,
where z and = are elements of SW) obtained from y© and y™tV by replacing r with s and
with s', respectively.

Proof. We use induction on n > 0. Put D' = w,_1---wiwo, and let v’ € Y ) 4o be the

element expressed by the product D’. Let s’ := v/ xs € J™. By the induction hypothesis,
we have r € [y™], «' *r = r and v’ € Y.n ., where 2 is the element of S@) obtained from
y(”) by replacing r with s”. Now, since the support K () of w, is apart from r € [y(”)], it
follows that r € [y™*V] and w, * r = r, therefore u * = wyu' ¥ 7 = 7. On the other hand,
we have 2/ = w, * 2 by the construction of 2’ and z”. Moreover, by the definition of w,,
the set K™ is apart from ([y™] U J™) K™ therefore K™ is also apart from the subset
([z"1u ) O KM of ([y™]uJ™) < K™, Since [y™]n K™ C [2"]n K™, it follows that
H-L="] [wn] = (I);-([(Z;:;]QK( )[ o] C @ [(yn() NNk ™ )[ n] = (I)i[y(n)}[wn] = () (note that w, € Yy("+1),y("))’
therefore we have w,, € Y,/ ,». Hence we have u = wpu' € Y. ., concluding the proof.
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5.2 Reduction to a special case

Here we give a reduction of our proof of Theorem [£.1] to a special case where the possibility of
the subset I C S is restricted in a certain manner.

First, for J C S, let +(J) denote temporarily the union of the irreducible components of J
that are not of finite type, and let 7(J) denote temporarily the set of elements of S that are
not apart from ¢(J) (hence JN7(J) = ¢(J)). For example, when (W, S) is given by the Coxeter
graph in Figure 2 (where we abbreviate each r; € S to i) and J = {r1,73,7r4,75,76} (indicated
in Figure 2 by the black vertices), we have «(J) = {ri,r5,7¢} and ©(J) = {ri,r2,75,76,77},
therefore J NZ(J) = {r1,rs5,76} = ¢(J) as mentioned above. Now we have the following:

1 2 3 4
5 6 7 8

Figure 2: An example for the notations «(.J) and 7(.J); here J = {1,3,4,5,6}

Lemma 5.8. Let I be an arbitrary subset of S. Then we have w € Wg 1) for any w € Yy 4,
with y € S™ | and we have ® = L1

= Y5
Proof. First,let w € Y, ,, withy € § (M) Then by Proposition B3|[2]), there are a finite sequence
20 = X[, %1, Zn1,2n = y of elements of S®) and a finite sequence g, s1, ..., $p_1 of elements

of S satisfying that z;11 # 2, si & [2i], [2i]~s, is of finite type and w3’ € Y, , ., for each index
0<i<n-—1, and we have w = wiZj < wwi). We show, by induction on 0 <4 < n—1, that
W([zig1]) = (D), U([zi11]) = (1), and w3i € Wg ). It follows from the induction hypothesis
when ¢ > 0, and is trivial when i = 0, that ¢([z;]) = ¢(I) and 7([2;]) = 7(I). Since s; & [z;] and
[2i]~s; 1s of finite type, it follows from the definition of 7 that [z;]~s; C S \ 7([z]), therefore
we have wit € W)y = W tlzis1]) = u(z1)) = o), and 1([zi1) = 1([=]) = 7(7), as
desired. This implies that w = w2, ", - - - wil w30 € Wg. 51y, therefore the first part of the claim
holds.

For the second part of the claim, the inclusion D is obvious by the definitions of ¢(I) and 7(I).
For the other inclusion, it suffices to show that ®/ C & S<i(I)s Or equivalently o’ c @ S<a(I)-
Let v € II’. By Proposition B3I, we have v = w - y(y, s) for some y € SO, w € Y,y and a
root y(y, ) introduced in the statement of Proposition Now by applying the result of the
previous paragraph to w™! €Y, ,,, it follows that ¢([y]) = (1), 2([y]) = 7(1), and w € Ws (-
Moreover, since [y]|.s is of finite type (see Proposition B.2]), a similar argument implies that
[Yl~s © S NTU([y]) = SN 2(I) and wy, € Wy gy, therefore v(y,s) € ®g.4). Hence we have
v =w-v(y,s) € Ps ), concluding the proof of Lemma 5.8l O

For an arbitrary subset I of S, suppose that v € II7, 5y € W, and w € Y;. Then by
the second part of Lemma [5.8, we have v € II! = IS H)-INiD) apd s, also belongs to the finite
Py LI

S\U(I)
also belongs to the group Y7y constructed from the pair S \7(I), I \7([) instead of the pair
S, I. Hence we have the following result: If the conclusion of Theorem [Tl holds for the pair
SN U(I), I (1) instead of the pair S, I, then the conclusion of Theorem [l also holds for
the pair S, I. Note that I \7(I) = I ~ ¢(I) is the union of the irreducible components of I of
finite type. As a consequence, we may assume without loss of generality that every irreducible
component of I is of finite type (note that the Asi-freeness in the hypothesis of Theorem [A.1]
is preserved by considering I \ «(I) instead of I).

part of . Moreover, we have w € Wg. ;) by the first part of Lemma 5.8 therefore w
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From now on, we assume that every irreducible component of I is of finite type, as mentioned
in the last paragraph. For any J C S, we say that a subset ¥ of the simple system II7 of W7
is an irreducible component of 117 if S(¥) = {sg | B € ¥} is an irreducible component of the
generating set R’ of W/, Now, as in the statement of Theorem E.1], let w € Y; and v € II/,
and suppose that s, € W, . Let ¥ denote the union of the irreducible components of IT!
containing some w* - v with k& € Z. Then we have the following:

Lemma 5.9. In this setting, VU is of finite type; in particular, |¥| < oo. Moreover, the two
subsets I ~. Supp V¥ and Supp V¥ of S are not adjacent.

Proof. First, there exists a finite subset K of S for which w € Wx and v € ®x. Then, the
number of mutually orthogonal roots of the form w* - v is at most |K| < oo, since those roots
are linearly independent and contained in the | K|-dimensional space Vi . This implies that the
number of irreducible components of II/ containing some w* - v, which are of finite type by
the property s, € W4, and Proposition B3|(), is finite. Therefore, the union ¥ of those
irreducible components is also of finite type. Hence the first part of the claim holds.

For the second part of the claim, assume contrary that some s € I \ Supp ¥ and ¢ € Supp ¥
are adjacent. By the definition of Supp ¥, we have t € Supp 8 C Supp ¥ for some 5 € V. Now
we have s € Supp 3. Let ¢ > 0 be the coefficient of oy in 5. Then the property s € Supp 3
implies that (s, 3) < clas,) < 0, contradicting the property 8 € ®/. Hence the claim
holds, concluding the proof of Lemma [5.9 O

We temporarily write L = I N Supp V¥, and put ¥/ = ¥ UIl;. Then we have Supp ¥’ =
Supp ¥, therefore by Lemma[5.9] I~ Supp ¥’ and Supp ¥’ are not adjacent. On the other hand,
we have |¥| < co by Lemma[5.9] therefore Supp ¥/ = Supp ¥ is a finite set. By these properties
and the above-mentioned assumption that every irreducible component of [ is of finite type, it
follows that Il is of finite type as well as W. Note that ¥ C I € &1L, Hence the two root
bases ¥ and II}, are orthogonal, therefore their union ¥’ is also a root basis by Theorem 2.3] and
we have |W(¥')| < oco. By Proposition 24 ¥’ is a basis of a subspace U := span ¥’ of Vaypp v
By applying Proposition to Wsupp wr instead of W, it follows that there exist u € Wgypp v/
and J C Supp ¥’ satisfying that W, is finite, u- (UN®*) = &} and u- (UNII) C II;. Now we
have the following:

Lemma 5.10. In this setting, if we choose such an element u of minimal length, then there
exists an element y € SO satisfying that u € Yy .z, the sets [y] N~ J and J are not adjacent,
and (u- W) Ul is a basis of V.

Proof. Since ¥’ is a basis of U, the property u - (U N ®T) = <I>‘J]r implies that u - ¥’ is a basis
of V;. Now we have u - II;, C Il since II;, C U N1II, while u fixes II;.;, pointwise since the
sets I ~ Supp¥’' = I ~ L and Supp ¥’ are not adjacent. By these properties, there exists an
element y € S satisfying that y = u* 27, [y] N Supp ¥’ C J and [y] ~ Supp ¥’ = I . Supp ¥'.
Since J C Supp ¥, it follows that [y] ~ J and J are not adjacent. On the other hand, since
w-Tlp p = g, u- (UN®T) = <1>}L and II; ;,NU = 0, it follows that HI\Lﬂq)}r = ), therefore
we have u - 1T, = I}y ;. Hence u - W' = (u - ¥) UTlj,n; is a basis of V.

Finally, we show that such an element u of minimal length satisfies that « - IIf C ®*, hence
u- (@H)T C @ and u € Y, ,,. We have u - ¥ C u- (UN®F) = &F. Secondly, for any
B € II' . U, assume contrary that -8 € ®~. Then we have 3 € Pgypp v since u € Wsypp v,
therefore sg € Wsypp w/. On the other hand, since ¥ is the union of some irreducible components
of TI!, it follows that /3 is orthogonal to ¥, hence orthogonal to ¥'. By these properties, the
element usg also satisfies the above characteristics of the element u. However, now the property
u-f € @ implies that £(usg) < £(u) (see Theorem 2.2)), contradicting the choice of u. Hence
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we have u- 3 € ®* for every 3 € II! \ ¥, therefore v -II! C ®*, concluding the proof of Lemma
.10l O

For an element u € Y, ;, as in Lemma [5.10, Proposition B3|l implies that u -y € il
and s,., = us,YU_1 € W“y]ﬁn. Now w fixes the root « if and only if the element wwu~l € Y,y
fixes the root u - v. Moreover, the conjugation by u defines an isomorphism of Coxeter systems
(Wr,I) = (W, [y]). Hence, by considering [y] C S, uwu™" € Y}, u-y € 1Y and w - ¥ C 1Y
instead of I, w, v and WV if necessary, we may assume without loss of generality the following
conditions:

(A1) Every irreducible component of I is of finite type.

(A2) There exists a subset J C S of finite type satisfying that I \ J and J are not adjacent
and W U II;ns is a basis of V.

Moreover, if an irreducible component J’ of J is contained in I, then a smaller subset J . J’
instead of J also satisfies the assumption (A2); indeed, now II;» C II;~; spans Vs, and since
W UIlAy is a basis of V; and the support of any root is irreducible (see Lemma [2.1]), it follows
that the support of any element of W UII;n (. ;) does not intersect with .J ’. Hence, by choosing
a subset J C S in (A2) as small as possible, we may also assume without loss of generality the
following condition:

(A3) Any irreducible component of J is not contained in 1.
We also notice the following properties:
Lemma 5.11. In this setting, we have ¥ = 10 hence I U Tl Ay is a basis of Vj.

Proof. The inclusion ¥ C ITI//7 follows from the definition of ¥ and the condition (A2). Now
assume contrary that 8 € 1!/ \ W. Then we have 3 € II! by (A2). Since ¥ is the union of
some irreducible components of II/, it follows that 3 is orthogonal to ¥ as well as to II;~y. This
implies that 8 belongs to the radical of V, which should be trivial by Proposition 2.4l This is
a contradiction. Hence the claim holds. O

Lemma 5.12. In this setting, the element w € Y satisfies that w - ® 5 = @, and the subgroup
(w) generated by w acts transitively on the set of the irreducible components of 171N,

Proof. The second part of the claim follows immediately from the definition of ¥ and Lemma
G110l It also implies that w - 7" = I/ 10Y while w - jny = jny since w € Y. Moreover,
I/ UTIjAy is a basis of Vi by Lemma 511l This implies that w - V; = V, therefore we have
w-P; = &;. Hence the claim holds. ]

5.3 A key lemma

Let I+ denote the set of all elements of S that are apart from I. Then there are two possibilities:
o107 ¢ &1, or " C &,.. Here we present a key lemma regarding the former possibility
(recall the three conditions (A1)—(A3) specified above):

Lemma 5.13. If 117" ¢ &, , then we have I N.J # 0 and J is irreducible.

Proof. First, take an element 8 € II’/™/ < ®,.. Then we have 8 ¢ ®; since II1" C &1/
Moreover, since the support Supp 8 of 3 is irreducible (see Lemma [2]), there exists an element
s € Supp B ~ I which is adjacent to an element of I, say s € I. Now the property 3 € &/
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implies that s’ € Supp 3, since otherwise we have (5, ay) < c¢{as, ay) < 0 where ¢ > 0 is the
coefficient of s in B. Hence we have s € Supp II'"7 C J.

Let K denote the irreducible component of J containing s’. Put ¥/ = II//"/ N ® . Then,
since II71N7 UTI;~; is a basis of V; by Lemma[5.11 and the support of any root is irreducible (see
Lemmal[2T]), it follows that 3 € W', ¥ is orthogonal to II"*/™/\ ¥’ and W'UII; is a basis of Vi.
Now ¥ is the union of some irreducible components of II'"/"/. We show that J is irreducible
if we have w - @ = ®g. In this case, we have w - ¥/ = U’ therefore I/ = ¥/ C &y by the
second part of Lemma [5.12] Now by the condition (A3), J has no irreducible components other
than K (indeed, if such an irreducible component .J’ of .J exists, then the property II""/"/ C &
implies that the space Vj should be spanned by a subset of I, therefore J C I). Hence
J = K is irreducible.

Thus it suffices to show that w - ®x = ®x. For the purpose, it also suffices to show that
w-Pr C Pg (since K is of finite type as well as J), or equivalently w - I C ®x. Moreover,
by the three properties that K is irreducible, K NI # () and w - [Ixn; = Igny, it suffices
to show that w - ay € ®x provided ¢ € K is adjacent to some t € K with w - oy € Pk.
Now note that w - ®; = ®; by Lemma Assume contrary that w - oy € ®x. Then we
have w - ap € &5\ P = ® ;g since K is an irreducible component of J, therefore w - oy is
orthogonal to w - oy € ®k. This contradicts the property that ¢’ is adjacent to ¢, since w leaves
the bilinear form (, ) invariant. Hence we have w - ap € P, as desired. O

6 Proof of Theorem [4.1: On the special case

In this section, we introduce the assumption in Theorem (1] that I is A-1-free, and continue
the argument in Section Bl Recall the properties (A1), (A2) and (A3) of I, J and ¥ = 1%/
(see Lemma [5.17]) given in Section Our aim here is to prove that w fixes II/"/"7 pointwise,
which implies our goal w - = v since v € ¥ = II"/"Y by the definition of ¥. We divide the
following argument into two cases: 11" ¢ ®,1, or TN C ®,. (see Section (.3 for the
definition of I+).

6.1 The first case II"" ¢ ®;,

Here we consider the case that II’"'™Y ¢ ®,.. In this case, the subset J C S of finite type is
irreducible by Lemma [5.13] therefore we can apply the classification of finite irreducible Coxeter
groups. Let J = {r1,ra,...,rn}, where N = |J|, be the standard labelling of J (see Section
2.3). We write a; = a,, for simplicity.

We introduce some temporal terminology. We say that an element y € S satisfies Property
P if [y]~J = I~ J (hence [y] \ J is apart from J by the condition (A2)) and H‘]’[y}nJUH[y]mJ is
a basis of V. For example, z; itself satisfies Property P. For any y € S®) satisfying Property
P and any element s € J \ [y] with ¢(y,s) # y, we say that the isomorphism ¢ — wy * ¢ from
[yl N J to [p(y,s)] N J is a local transformation (note that now [y].s C J and w, € W, by the
above-mentioned property that [y] . J is apart from J). By abusing the terminology, in such
a case we also call the correspondence y — ¢(y, s) a local transformation. Note that, in this
case, ¢(y,s) also satisfies Property P, we have wy € Y (), and wy xt =t for any ¢ € [y] \ J,
and the action of w; induces an isomorphism from I/ WIN7 4o T1/lew:s)nJ

Since w - [N =TI the claim is trivial if [II7"/| = 1. From now, we consider the
case that [II7"/| > 2, therefore we have N = |J| > [I N J| 4+ 2 > 3 (note that I N.J # 0 by
Lemma [5.13). In particular, J is not of type I3(m). On the other hand, we have the following
results:
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Lemma 6.1. In this setting, J is not of type An.

Proof. We show that II7'™/ UTI;~; cannot span V if J is of type Ay, which deduces a contra-
diction and hence concludes the proof. By the A~ i-freeness of I, each irreducible component of
I'NJ (which is also an irreducible component of I) is of type A;. Now by applying successive
local transformations, we may assume without loss of generality that r; € I (indeed, if the
minimal index ¢ with r; € I satisfies ¢ > 2, then we have ¢(x,r;—1) * r; = 7;,_1). In this case,
we have ry & I, while we have CI%I C @7 {r1,r,) by the fact that any positive root in the root
system ®; of type Ay is of the form «; + i1 + -+ + a with 1 < ¢ < ¢ < N. This implies
that the subset I/ U Tl  of ‘1%[ U I~ cannot span Vj, as desired. ]

To prove the next lemma (and some other results below), we give a list of all positive roots
of the Coxeter group of type Eg. The list is divided into six parts (Tables 2HT). In the lists, we
use the standard labelling r1,. .., rg of generators. The coefficients of each root are placed at the
same relative positions as the corresponding vertices of the Coxeter graph of type Fg in Figure[I}
for example, the last root 199 in Table [[is 2a +3ag +4ag + 6cs + bas + 4dag + 3z + 2ag (which
is the highest root of type Eg). For the columns for actions of generators (4th to 11th columns),
a blank cell means that the generator r; fixes the root ~; (or equivalently, («;,~;) = 0); while a
cell filled by “—” means that v; = a;. Moreover, the positive roots of the parabolic subgroup
of type Eg (respectively, E7) generated by {r1,...,7r¢} (respectively, {ry,...,r7}) correspond to
the rows indicated by “Eg” (respectively, “E7”). By the data for actions of generators, it can
be verified that the list indeed exhausts all the positive roots.

Then we have the following:

Lemma 6.2. In this setting, if J is of type Fg, then |[I N J| = 1.

Proof. By the property N >[I NJ|+ 2 and the A~ -freeness of I, it follows that I N .J is either
{ra,r3,74,75} (of type Dy) or the union of irreducible components of type A;. In the former
case, we have CI%I = () (see Tables 2HT)), a contradiction. Therefore, I N J consists of irreducible
components of type Aj.

Now assume contrary that I N J is not irreducible. Then, by applying successive local
transformations and by using symmetry, we may assume without loss of generality that r4 € I
(cf., the proof of Lemma [6.T]). Now we have /it = {9, ay, a5, ag, &’} which is the standard
labelling of type As, where o is the root 44 in Table[d Note that II(;n ) ¢} € 74} Now
the same argument as Lemma [6.1] implies that the subspace V'’ spanned by IT1//1/ UITLrnn) 1}
is a proper subspace of the space spanned by II”{"1} therefore dim V’ < 5. This implies that
the subspace spanned by I/ U Il 7, which is the sum of V’ and R, has dimension less
than 6 = dim V7, contradicting the fact that I/ U II;n 7 spans Vi (see Lemma [5.1T]). Hence
I N J is irreducible, therefore the claim holds. O

We also give a list of all positive roots of the Coxeter group of type D,, (Table[§]) in order to
prove the next lemma (and some other results below). Some notations are similar to the above
case of type Fg. For the data for actions of generators on the roots, if the action r; - v does
not appear in the list, then it means either 7 fixes v (or equivalently, v is orthogonal to ay),
or v = ay. Again, these data imply that the list indeed exhausts all the positive roots.

Then we have the following:

Lemma 6.3. In this setting, suppose that J is of type Dy.

1. If INJ has an irreducible component of type Dy with k > 4 and N — k is odd, then we
have [INJ| <k+ (N —k—3)/2.
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Table 2: List of positive roots for Coxeter group of type Eg (part 1)

height | 4 root -y; index k with r; - v; =
L | T2 [ T3 | T4 | "5 [ T6 [ T7 | T8

1 1 1080000 — 9

2 00(1)0000 — 10

3 0180000 9 — | 11

4 00(1)0000 10 |11 | — | 12

5 0081000 12| — | 13

6 0080100 13| — | 14

7 0080010 14| — |15

8 0080001 15 | —
2 9 1180000 3 1|16

10 00%0000 4 | 17| 2 | 18

11 01(1)0000 16174 ] 3 |19

12 00(1)1000 18119 5 | 4 ]20

13 0081100 200 6 | 5 |21

14 0080110 21 7| 6 |22

15 0080011 22|18 17
3 16 11(1)0000 11 | 23 9 | 24

17 01%0000 23 [ 11 |10 25

18 00%1000 12 ] 25 10 | 26

19 01(1)1000 24 | 25 | 12 11| 27

20 00(1)1100 26 | 27 | 13 12 | 28

21 0081110 28 | 14 13 | 29

22 0080111 29 | 15 14
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Table 3: List of positive roots for Coxeter group of type Eg (part 2)

height | 4 root -y; index k with r; - v; =
ri | ro | T3 | rg |75 | e | 7| T8
4 23 11%0000 17 | 16 30
24 11(1)1000 19 | 30 16 | 31
25101 % 1000 | 30|19 |18 |32 17| 33
26 00%1100 20 | 33 18 | 34
27 01(1)1100 31133120 19 | 35
28 00(1)1110 34 3521 20 | 36
29 0081111 36 | 22 21
5 30 11%1000 25 | 24 37123 |38
31 11(1)1100 27 | 38 24 | 39
32 01%1000 37 25 40
33 01%1100 38 | 27 | 26 | 40 25 | 41
34 00%1110 28 | 41 26 | 42
35 01(1)1110 39 | 41 | 28 27 | 43
36 00(1)1111 42 1 43 | 29 28
6 37 11%1000 32 44 | 30 45
38 11%1100 33|31 45 30 | 46
39 11(1)1110 35 | 46 31 | 47
40 01%1100 45 33|48 | 32 | 49
41 01%1110 46 | 35 | 34 | 49 33 | 50
42 00%1111 36 | 50 34
43 01(1)1111 47 | 50 | 36 35
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Table 4: List of positive roots for Coxeter group of type Eg (part 3)

height | 4 root -y; index k with r; - v; =
ri | ro | T3 | rg |75 | e | 7| T8
7 44 1 12 % 1000 37 51
45 | 11 % 1100 |40 51 | 38 | 52 | 37 | 53
46 11%1110 41 | 39 53 38 | 54
47 1 11 (1) 1111 |43 | 54 39
48 1 01 % 2100 | 52 40 55
49 01%1110 53 41 | 55 40 | 56
50 01%1111 54 | 43 | 42 | 56 41
8 51 12%1100 45 57 | 44 | 58
52 11%2100 48 57 45 59
53 | 11 % 1110 |49 58 | 46 | 59 45 | 60
54 11%1111 50 | 47 60 46
55 01%2110 59 49 | 61 | 48 | 62
56 01%1111 60 50 | 62 49
9 57 12%2100 52 | 63 | 51 64
58 12%1110 53 64 51 | 65
59 | 11 % 2110 | 55 64 53 | 66 | 52 | 67
60 11%1111 56 65 | b4 | 67 53
6101 % 2210 | 66 55 68
62 01%2111 67 56 | 68 55
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Table 5: List of positive roots for Coxeter group of type Eg (part 4)

height | 4 root -y; index k with r; - v; = 4
ri | ro | T3 | rg |75 | e | 7| T8
10 63 12%2100 69 57 70 E¢ Fy
64 | 12 % 2110 59 | 70 | 58 | 71 | 57 | 72 Er
65| 12 % 1111 60 72 58
66 11%2210 61 71 59 73 Er
67 11%2111 62 72 60 | 73 59
68 01%2211 73 62 | 74 | 61
11 69 12%2100 63 75 E¢ Fy
70| 12 ;) 2110 75 64 76 | 63 | 77 Er
71 12%2210 66 | 76 64 78 Ey
72 12%2111 67 | 77 | 65| 78 64
73 11%2211 68 78 67 | 79 | 66
74101 % 2221|179 68
12 7|12 % 2110 70 80 | 69 | 81 Ey
76| 12 i1’> 2210 80 71|82 | 70 83 Ey
7 12£1’>2111 81 72 83 70
78 12%2211 73 | 83 72|84 |71
7911 % 2221|174 84 73
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Table 6: List of positive roots for Coxeter group of type Eg (part 5)

height i root y; index k with r; - v; =
ry | Te | T3 | ra | 75| 16 | 7T | T8
13 80 12%2210 76 85 | 75 86
81 | 12 Z23 2111 7 86 75
82 | 12 % 3210 85 76 87
83 | 12 % 2211 86 78 | 87| 77 | 88 | 76
84 | 12 % 2221 79 | 88 78
14 85 12%3210 82 89 | 80 90
86 12?32211 83 90 | 81 | 91 | 80
87 12i133211 90 83 92 | 82
88 12Z132221 91 84 | 92 83
15 89 121213210 93 | 85 94
90 12?’)3211 87 94 | 86 95 | 85
91 | 12 ?’) 2221 88 95 86
92 1221’)3221 95 88 | 96 | 87
16 93 131213210 97 89 98
94 121213211 98 | 90 99 | 89
95 | 12 ?’) 3221 92 99 |91 | 100 | 90
9 | 12 Z1’> 3321 100 92
17 97 231213210 93 101
98 1312132 11101 94 102 | 93
99 | 12 121 3221 102 | 95 103 | 94
100 12?’)3321 96 103 95

21

Er



Table 7: List of positive roots for Coxeter group of type Eg (part 6)

height 1 root y; index k with r; - v; = v
ri | re | T3 | g | 5 | T | T | T8
18 101 231213211 98 104 | 97
102 131213221 104 99 105 | 98
103 121213321 105 | 100 | 106 | 99
19 104 231213221 102 107 | 101
105 134213321 107 103 108 | 102
106 121214321 108 103
20 107 234213321 105 109 | 104
108 131214321 109 106 | 110 | 105
21 109 231214321 108 111 | 107
110 13%4321 111 | 112 108
22 111 23%4321 110 | 113 | 114 | 109
112 13%4321 113 | 110
23 113 23%4321 112 | 111 | 115
114 24%4321 115 | 111
24 115 24%4321 114 | 113 | 116
25 116 24%4321 115 | 117
26 117 24%5321 116 | 118
27 118 24%5421 117 | 119
28 119 24%5431 118 | 120
29 120 24%5432 119
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Table 8: List of positive roots for Coxeter group of type D,

roots actions of generators
1) =Y i) = > 2)
(1<i<j<n-2) riey) =4l < -1)
(%(? = ;) Ty %‘,lj) = %(7?_1 (i<j-1)

1 1 .
Ti+1 Vi = %'(,j)+1 (j<n-3)
1 2

7= o ri D =0 (1> 2)
(1<i<n-1) el =y ((<n=2)
(71(1221 = an-1) Tn-1 ‘%'(2) = %‘,173—2 (i<n-2)

Tn 72(2) = ’71‘(,472—1 (i1<n-2)
72‘(3) = n;? ap + ap Ti—1" 'YZ'(g) = 72‘(3)1 (Z > 2)
(1<i<n-1) riony =3 (i <n—2)
(1) = am) o) =)y (i <n—2)

4 j— — 4 4 _
1] = e+ 0 2+ A an | rien o) =90 (0> 2)

. . 4 . .
(I1<i<j<n-1) Ti"YZ-(J):'YiJru(ZS]_Q)

4 3
Tn—1" )z‘(,rzfl - fyi( )
4
Tn - r)/i(,rz—l )i(2)

2. If N is odd, I N J does not have an irreducible component of type Dy with k > 4 and
{rnv_1,7n} € I, then we have |[INJ| < (N —3)/2.

3. If N is odd, I NJ does not have an irreducible component of type Dy with k > 4 and
{rn-1,7n} C I, then we have [INJ| < (N —1)/2.

Proof. Assume contrary that the hypothesis of one of the three cases in the statement is sat-
isfied but the inequality in the conclusion does not hold. We show that II*" UTI;~; cannot
span V;, which is a contradiction and therefore concludes the proof. First, recall the property
N > |INJ|+ 2 and the A~;-freeness of I. Then, in the case [I by applying successive local
transformations, we may assume without loss of generality that I N .J consists of elements ry;
with1 < j < (N—k—1)/2 and r; with N—k+1 < j < N. Similarly, in the case 2 (respectively,
the case B]), by applying successive local transformations and using symmetry, we may assume
without loss of generality that I N J consists of elements ry; with 1 < j < (N —1)/2 (respec-
tively, ro; with 1 < j < (N —1)/2 and ry). In any case, we have &5/ C @y, (sce Table B),
therefore the subspace spanned by /177 U Tl is contained in VJ\{,,I}. Hence 1717 Ul n
cannot span Vj, concluding the proof. O

We divide the following argument into two cases.
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6.1.1 Case w-1I; ¢ dF

In order to prove that w - II; C ®*, here we assume contrary that w - II; € ®* and deduce a
contradiction.

In this setting, we construct a decomposition of w in the following manner. Take an element
s € J with w - as € ®~. By Lemma [3.6, the element w;  is a right divisor of w. This implies

that ®-[ws ] € &+ [w] = 0 (see Lemma 2.2 of [7] for the first inclusion), therefore we have
wy, € Yy, where we put y := ¢(zr,s) € S(®) By Proposition B2, we have y # ;. This

clement w3 induces a local transformation z; — y. Now if w(w$ )~'-II; € ®F, then we
can similarly factor out from w(wil)_l a right divisor of the form wg € Y1),y With ¢ € J.
Iterating this process, we finally obtain a decomposition of w of the form w = wwy] "} - - - wytwy?
satisfying that n > 1, u € Y, , with z € SA) wyi €Yy NWj for every 0 < i <n—1 where
we put yo = z7 and y, = z, and u - II; C &,

Put o := w7} - wylwy9 # 1. By the construction, the action of u €Y, ,, NW; induces
(as the composition of successive local transformations) an isomorphism o: I NJ — [2] N J,
t — u' * t, while v’ fixes every element of II;. ;. Now o is not an identity mapping; otherwise,
we have z = zy and 1 # v € Yy, ,, while v/ has finite order since |Wj;| < oo, contradicting
Proposition 3.4l On the other hand, we have v - ®; = wu'~! - ®; = w - ®; = ®, therefore
U - @JJF = @JJF since u - II; C ®T. This implies that u - II; = I1;, therefore the action of u defines
an automorphism 7 of J. Since w = uu’ € Y7, the composite mapping 7 o ¢ is the identity
mapping on I N.J, while ¢ is not identity as above. As a consequence, we have 7 !|;n; = o
and hence 77! is a nontrivial automorphism of J, therefore the possibilities of the type of J are
Dy, Eg and Fy (recall that J is neither of type Ay nor of type I2(m)).

i+1,Yi

Lemma 6.4. In this setting, J is not of type Fy.

Proof. Assume contrary that J = {ry,ro, 73,74} is of type Fy. In this case, each of r1 and ry
is not conjugate in W to one of r3 and r4 by the well-known fact that the conjugacy classes
for the simple reflections r; are determined by the connected components of the graph obtained
from the Coxeter graph by removing all edges having non-odd labels. Therefore, the mapping
77 Y1ns = o induced by the action of u' € W; cannot map an element r; (1 < i < 4) to r5_;.
This contradicts the fact that 7! is a nontrivial automorphism of .J. Hence the claim holds. O

From now, we consider the remaining case that .J is either of type Dy with 4 < N < oo
or of type Eg. Take a standard decomposition D = wypy_; - -wiwp of u € Yy, . with respect
to J (see Proposition [(5.3). Note that J is irreducible and J ¢ [z]. This implies that, if
0 <i<¥{D)—1 and wj is a narrow transformation for every 0 < j < i, then it follows by
induction on 0 < j <4 that the support of w; is apart from J, the product w; - - - wywy fixes I1;
pointwise, [yUtD]N.J = [2]NJ, and [y¥ D]\ J is not adjacent to J (note that [2] ~ J = I~ J
is not adjacent to J). By these properties, since v does not fix II; pointwise, D contains at
least one wide transformation. Let w := w; be the first (from right) wide transformation in D,
and write y = y@ (D), t = tO(D) and K = K®(D) for simplicity. Note that J& (D) = J by
the above argument. Note also that II*WNE C 1 since [y] ~ K is not adjacent to K by the
definition of K. Now the action of w;_1---wiwott € Y, », induces an isomorphism ! — 1l
which maps /77 onto II/WINY = [17[:0/ Hence we have the following (recall that I/ is
the union of some irreducible components of II7):

Lemma 6.5. In this setting, IV s isomorphic to I/

ducible components of IV . In particular, each element of I1
Of HK’[?AOK AN (I>J.

and is the union of some irre-
LN is orthogonal to any element
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Now note that K = ([y] U J)~¢ is irreducible and of finite type, and ¢ is adjacent to [y].
Moreover, by Lemma (4] the element w = w; 7 does mnot fix Ilg. g pointwise. By these
properties and symmetry, we may assume without loss of generality that the possibilities of K
are as follows:

1. J is of type Fjg, and;

(a) K =JU{tt'} is of type Fg where t is adjacent to r¢ and t/, and ¢’ € [y],
(b) K = JU({t} is of type E7 where t is adjacent to 76, and 76 € [y],

2. J is of type D7, K = JU{t} is of type Eg where t is adjacent to r7, and r7 € [y],
3. J is of type D5, and;

(a) K =JU{t,t'} is of type E7 where t is adjacent to r5 and ', and t' € [y],
(b) K = JU{t} is of type Eg where t is adjacent to r5, and r5 € [y],

4. J is of type Dy, K = J U {t} is of type D1 where t is adjacent to 71, and r1 € [y].

We consider Case [[lal We have |[y] N J| = |[INJ| =1 by Lemma Now by Tables 2HT]
(where 77 = t and rg = ), we have (3, ') # 0 for some g € I and g’ € MOUINK (@,
(namely, (8,8') = (a4,vs84) when [y N J = {r1}; (8,6") = (716,7v74) when [y] N J = {r3}; and
(B8,8") = (a1,v74) when [y| N J = {r;} with j € {2,4,5,6}, where the roots 7, are as in Tables
[2HT7). This contradicts Lemma

We consider Case [Ibl We have [[y] N J| = |[I N J| =1 by Lemma [62] hence [y] N J = {rg}.
Now we have as+ag+ay € IIFEUNE (® ) a4 € HJ’[y]mJ, and these two roots are not orthogonal,
contradicting Lemma

We consider Case[2l Note that N =7 > |INJ|+2 = |[y]NJ|+2, therefore |[y]NJ| < 5. By
Lemma [6.3]and A~ -freeness of I, it follows that the possibilities of [y] N .J are as listed in Table
@, where we put (1,75, 75, 7y, 5, 6, rh,rg) = (t,r6,77,75,74,73,72,71) (hence K = {r},...,rg}is
the standard labelling of type Fg). Now by Tables 2H7 we have (8, 3') # 0 for some 3 € /:winJ
and 3’ € IEWNE (& as listed in Table [, where we write oz9 = o, and the roots 7, are as in
Tables BH7ZL This contradicts Lemma !

Table 9: List of roots for Case

[y nJ B 1B

rhelylNJ C{ry,rg, o, e} oy | me

{rs, r5} by | 31

{Té,?“é} - [y] nJc {ré,ré,rﬁl,rg,rg} Oéé Y97
{Té, Té, 7”/7} 22

{ry,rs, rg} ag | Y104

We consider Case Bal Note that N =5 > |[INJ|+2 = |[y] N J| + 2, therefore |[y] N J| < 3.
By Asj-freeness of I, every irreducible component of [y] N J is of type A;. Now by Lemma
[6.3] the possibilities of [y] N J are as listed in Table [I0, where we put (r}, 75, ry, ry, rs, re,rh) =
(r1,74,72,73,75,t,t') (hence K = {r},...,r,} is the standard labelling of type E7). Now by
Tables 2HZ, we have (3, 8') # 0 for some 3 € IWN and g/ € TOINK (@ as listed in Table
A, where we write a; = and the roots ~ are as in Tables 2Hil This contradicts Lemma
0.0l

We consider Case[Bbl By the same reason as Case[Bal every irreducible component of [y]N.J
is of type A;. Now by Lemma [6:3] we have only two possibilities of [y] N J; {r5} and {ry4,75}.
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Table 10: List of roots for Case

lylnJ B | a

ylNJ C{ry,ra, 5} | @4 | Y61
{r3} Y16

{r1} o |

In the first case [y] N J = {r5}, we have ay € W07 s + ag + ap € THEOWNE (@, and
these two roots are not orthogonal, contradicting Lemma Hence we consider the second
case [y] N J = {r4,7r5}. In this case, the action of the first wide transformation w in D maps
the elements 71, r9, 13, 74 and r5 to t, r5, r3, ro and r4, respectively (note that {¢,r5,rs, 79,74}
is the standard labelling of type Ds). Now, by a similar argument as above, the possibility
of the second wide transformation wy in D (if exists) is as in Case BB, where t” := t@)(D) is
adjacent to either ro or r4 (note that Case Bal cannot occur as discussed above, while Case [
cannot occur by the shape of J and the property 1 & [y] N J). This implies that the action of
wjr either maps the elements ¢, r5, r3, r4 and ro to t”, ro, 3, r5 and ry, respectively (forming
a subset of type D5 with the ordering being the standard labelling), or maps the elements ¢,
r5, T3, ro and r4 to t”) r4, r3, r5 and 79, respectively (forming a subset of type Dj with the
ordering being the standard labelling). By iterating the same argument, it follows that the
sequence of elements (r9,73,74,75) is mapped by successive wide transformations in D to one
of the following three sequences; (r2,73,74,75), (r5,73,72,74) and (r4,73,75,72). Hence u itself
should map (rg,73,74,75) to one of the above three sequences; while the action of u induces
the nontrivial automorphism 7 of J, which maps (r1, 79, 73,74, 75) to (r1,72,73,75,74). Thisis a
contradiction.
Finally, we consider the case dl First we have the following lemma:

Lemma 6.6. In this setting, suppose further that there exists an integer k > 1 satisfying that
2k < N =3, roj_1 € [y| and 195 & [y] for every 1 < j <k, and rop11 & [y]. Then there exist a
root B € PN and a root ' € THOWINK (@ with (8, 8') # 0.

Proof. Put J" := {r; | 2k +1 < j < N}. First, we have ' := ay + Z?il a; € TOWINK (@,
in this case. On the other hand, Ny ® ;; consists of k roots 7%)_172]. with 1 <75 <k (see
Table [§ for the notation), while H[y}m J N @ consists of k roots agj_1 with 1 < j < k. Hence
\(HJ’[y]mJUH[y]mJ) \® /| = 2k. Since HJ’[meUH[y]mJ is a basis of the space V of dimension IV,
it follows that the subset (IT/¥7/ U Mfns) N @y spans a subspace of dimension N — 2k = [.J'|.
This implies that (TN UTIn ) N@ s Z @ gy, 13
w0y 0 g L D@y {roy.1}> Damely there exists a root 5 € 17407 1 & ;» which has non-zero
coefficient of agy1. These § and 3 satisfy (8,5') # 0 by the construction, concluding the
proof. O

therefore (since aog 11 & Ijy)n7) we have

By Lemma and Lemma [6.5], the hypothesis of Lemma [6.6] should not hold. By this fact,
As1-freeness of I and the property N > |INJ|+2 = |[y]NJ|+2, it follows that the possibilities
of [y] N J are as follows (up to the symmetry ry_1 <> 7n); (I) [yJNJ =J ~{ry; |1 < j < k}
for an integer k with 2 < k < (N —2)/2 and 2k # N — 3; (II) N is odd and [y] N J = {rg;_1 |
1<j<(N-1)/2}; (III) Niseven and [y NJ = {rg;—1 |1 < j < (N —2)/2}; (IV) N is even
and [y] N J = {roj—1 | 1 < j < N/2}. For Case (I), by the shape of J and [y] N J, it follows
that I NJ = [y] N J, and each local transformation can permute the irreducible components
of I N J containing neither ry_1 nor ry but it fixes pointwise the irreducible component(s)
of I N J containing ry_1 or ry. This contradicts the fact that o = 7*1] 1nJs for a nontrivial
automorphism 77! of J (note that 7=! exchanges ry_1 and ry). Case (II) contradicts Lemma
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. For Case (III), the roots ay_1 € 7N and o + N-2q: € TIEWINK ®; are not
9 Jj=1 =
orthogonal, contradicting Lemma
Finally, for the remaining case, i.e., Case (IV), by the shape of J and [y] N J, it follows that
Y g y p Yy
InJ = [y]NJ and each local transformation leaves the set I N .J invariant. By this result and
the property that ¢ = 77!~ for a nontrivial automorphism 71 of .J, only the possibility of
property p ) y b y
NJisthat N =4 and |[y|NJ =1NJ = {ry,r3}, and o exchanges r; and r3. Now we arrange
Y Y g g
the standard decomposition D of u as u = wjw; wy_ | -+ whwswiwy, where each wj is a wide
transformation and each w;' is a (possibly empty) product of narrow transformations. Let each
wide transformation w; belong to Y, . with z;, 2, € SA) | In particular, we have w] = w and
Rt J

z1 = y. Now we give the following lemma:

Lemma 6.7. In this setting, the following properties hold for every 1 < j < £ —1: The action
of the element uj 1= wiw: Wi | ---wjw] maps (r1,72,73,74) to (r1,72,73,74) when j is odd and
to (r1,72,74,73) when j is even; the subsets J and [z;] \ J are not adjacent; the support of w}
is as in Case [{] above, with t replaced by some element t; € S; and w; maps (ri,72,1r3,74) to
(11,72,74,73).

Proof. We use induction on j. By the definition of narrow transformations, the first and the
second parts of the claim hold obviously when j = 1 and follow from the induction hypothesis
when j > 1. In particular, we have u; - II; = II;. Put (h,h') := (3,4) when j is odd and
(h,h') :== (4,3) when j is even. Then we have [z;] N J = {r1,r,}. Now, by using the above
argument, it follows that the support of w;» is of the form {ry,ry,r3,r4,t;} which is the standard
labelling of type Ds, where t; is adjacent to one of the two elements of [z;] N J. We show that
t; is adjacent to 1, which already holds when j = 1 (note that t; = ¢ when j = 1). Suppose
j > 1 and assume contrary that ¢; is adjacent to rj,. In this case, t; is apart from [z;] \ {74}
On the other hand, we have [2}_;]NJ = {ry, 7}, the subsets [2}_;]\ J and J are not adjacent,
and the support of each narrow transformation in w;’ is apart from to J. Moreover, by the
induction hypothesis, we have [z;_i]NJ = {ry,r;} and the action of wé;l maps (71,72, Th, T'y/)
to (1,72, 7 ,75) while it fixes every element of [2;_1] \. J. This implies that w;' €Y, , for
the element z” € S®) obtained from z;j by replacing rj, with 7. Now we have oy, € ="l

since t; is not adjacent to [2"] = ([z;] \ {rn}) U {rw}, therefore §' := (w})™' -y, € I1lzi-1l,
This root belongs to ®g. ; and has non-zero coefficient of a4, since the support of each narrow
transformation in w}-’ is not adjacent to J and hence does not contain ¢;. Therefore, the roots
B e =11 1151007 and o1 +200+ag+ay € I71z-1107 are not orthogonal. This contradicts
the fact that TI""[77/ is the union of some irreducible components of I1¥ (see Lemma B.5) and
the isomorphism I — T11%-1) induced by the action of Wi _ Wi oWl 5+ wyw] Maps I/ winJ
to IT"1%-1107 (since the action of this element leaves the set II; invariant). This contradiction
proves that ¢; is adjacent to 71, therefore the third part of the claim holds. Finally, the fourth
part of the claim follows immediately from the third part. Hence the proof of Lemma 6.7 is

concluded. O

By Lemma 6.7} the action of the element w)_w} | - - whwiwiw!, hence of © = wjwy_jus_1,
maps the elements (ry,ra,73,74) to either (r1,re,73,74) oOr (r1,72,74,73). This contradicts the
above-mentioned fact that o exchanges r1 and rj3.

Summarizing, we have derived a contradiction in each of the six possible cases, Cases TaH4l
Hence we have proven that the assumption w - II; € ®* implies a contradiction, as desired.
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6.1.2 Case w-1I; C ®*

By the result of Section 6.1, we have w -II; C ®*. Since w - ®; = ®; by Lemma (.12 it
follows that w - ®F C @7, therefore w - ®F = ®F (note that || < co). Hence the action of w
defines an automorphism 7 of J (in particular, w - II; = II;). To show that 7 is the identity
mapping (which implies the claim that w fixes II"/"/ pointwise), assume contrary that 7 is a
nontrivial automorphism of J. Then the possibilities of the type of J are as follows: Dy, Fg
and Fy (recall that J is neither of type Ayx nor of type Is(m)). Moreover, since the action of
w € Y7 fixes every element of I N J, the subset I N J of J is contained in the fixed point set of
7. This implies that J is not of type Fy, since the nontrivial automorphism of a Coxeter graph
of type Fy has no fixed points.

Suppose that J is of type Fg. Then, by the above argument on the fixed points of 7 and
Lemmal6.2] we have INJ = {ro} or INJ = {ry}. Now take a standard decomposition of w with
respect to J (see Proposition £.3)). Then no wide transformation can appear due to the shape
of J and the position of I NJ in J (indeed, we cannot obtain a subset of finite type by adding
to J an element of S adjacent to I N J). This implies that the decomposition of w consists of
narrow transformations only, therefore w fixes I1; pointwise, contradicting the fact that 7 is a
nontrivial automorphism.

Secondly, suppose that J is of type Dy with N > 5. Then, by the above argument on the
fixed points of 7, we have INJ C J \ {ry_1,7n}, therefore every irreducible component of
INJis of type Ay (by Asi-freeness of I). Now take a standard decomposition D of w with
respect to J (see Proposition [1.3]). Note that D involves at least one wide transformation, since
T is not the identity mapping. By the shape of J and the position of I N J in J, only the
possibility of the first (from right) wide transformation w = w; in D is as follows: K = J U {t}
is of type D41, t is adjacent to r1, and r; € [y], where we put y = y@(D), t = t)(D),
and K = K (D). Now the claim of Lemma in Section also holds in this case, while
1707 s the union of some irreducible components of TI¥ by the same reason as in Section
Hence the hypothesis of Lemma should not hold. This argument and the properties
that N > |[INJ|+2 = |[y]NJ|+2 and INJ C J~{rn_1,rn} imply that the possibilities of [y]N.J
are the followings: N is odd and [y] N J consists of elements r9;_1 with 1 < j < (N —1)/2;
or, N is even and [y] N J consists of elements ry;_1 with 1 < j < (N — 2)/2. The former
possibility contradicts Lemma [6.3l[2]). On the other hand, for the latter possibility, the roots
an_1 € I and o, + Z;V:_lz aj € I < I1707 are not orthogonal, contradicting the

above-mentioned fact that II/¥77 is the union of some irreducible components of II%. Hence
we have a contradiction for any of the two possibilities.

Finally, we consider the remaining case that J is of type D4. By the property N = 4 >
|I N J|+ 2 and Asq-freeness of I, it follows that I N J consists of at most two irreducible
components of type A;. On the other hand, by the shape of J, the fixed point set of the
nontrivial automorphism 7 of J is of type Ay or As. Since I N J is contained in the fixed
point set of 7 as mentioned above, it follows that [I N J| = 1. If I NJ = {r1}, then we have
M = fag, a4, B} where B = oy + 20 + a3 + a4 (see Table B), and every element of I17/7/
forms an irreducible component of 11/, However, now the property w-II; = IT; implies that
w fixes o and permutes the three simple roots aq, ag and ay, therefore w- 8 = 3, contradicting
the fact that (w) acts transitively on the set of the irreducible components of II//™/ (see
Lemma [5.12). By symmetry, the same result holds when I NJ = {r3} or {r4}. Hence we have
InJ = {ry}. Take a standard decomposition of w with respect to J (see Proposition [(.3]).
Then no wide transformation can appear due to the shape of J and the position of I N J in
J (indeed, we cannot obtain a subset of finite type by adding to J an element of S adjacent
to I NJ). This implies that the decomposition of w consists of narrow transformations only,
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therefore w fixes II; pointwise, contradicting the fact that 7 is a nontrivial automorphism.

Summarizing, we have derived in any case a contradiction from the assumption that 7 is a
nontrivial automorphism. Hence it follows that 7 is the identity mapping, therefore our claim
has been proven in the case 1" ¢ &, .

6.2 The second case I1"'" C &,

In this subsection, we consider the remaining case that II”/"/ C ®,.. In this case, we have
;. CII, therefore I = 1I; ;. Let L be an irreducible component of J ~. I. Then L is
of finite type. The aim of the following argument is to show that w fixes II; pointwise; indeed,
if this is satisfied, then we have /" = TI; ; = Il since (w) acts transitively on the set
of irreducible components of II"/™/ (see Lemma [512)), therefore w fixes II/'"Y pointwise, as
desired. Note that w - II;, C II;. s, since now w leaves the set II/"/"/ = II;; invariant.

6.2.1 Possibilities of semi-standard decompositions

Here we investigate the possibilities of narrow and wide transformations in a semi-standard
decomposition of the element w, in a somewhat wider context. Let D = wyp)_1 -+ wiwp be a
semi-standard decomposition of an element u of W, with the property that [y(o)] is isomorphic
to I, J© is irreducible and of finite type, and J(© is apart from [y(o)]. Note that any semi-
standard decomposition of the element w € Y7 with respect to the set L defined above satisfies
the condition. Note also that D™! := (wg) ' (w1)™' -+ (wyp)—1) " is also a semi-standard
decomposition of u~!, and (w;)~! is a narrow (respectively, wide) transformation if and only if
wj is a narrow (respectively, wide) transformation.

The proof of the next lemma uses a concrete description of root systems of all finite irre-
ducible Coxeter groups except types A and Iy(m). Table [[1] shows the list for type B, where
the notational conventions are similar to the case of type D,, (Table [§). For the list for type
Fy (Table [12]), the list includes only one of the two conjugacy classes of positive roots (denoted
by 'yl-(l)), and the other positive roots (denoted by ’yi(z)) are obtained by using the symmetry
r1 <> 14, T2 <> 3. In the list, [c1, 9, ¢3, ¢q] signifies a positive root cia + coa + cgas + cqay,
and the description in the columns for actions of generators is similar to the case of type Fg
(Tables 2HT). The list for type Hy is divided into two parts (Tables [[3] and [[4]). In the list,
[c1, ca, c3, 4] signifies a positive root cjay + coag + c3az + cqaq, where we put ¢ = 2 cos(n/5) for
simplicity and therefore ¢> = ¢ + 1. The other description is in a similar manner as the case of
type Eg, and the marks “Hj3” indicate the positive roots of the parabolic subgroup of type Hs
generated by {ry,ra,73}.

Then, for the wide transformations in D, we have the following:

Lemma 6.8. In this setting, if w; is a wide transformation, then there exist only the following

two possibilities, where K = {r1,re,...,rn} is the standard labelling of K® given in Section
2.3
1. K9 s of type Ax with N >3, t®) =1y, [y DN K® = {r} and JO = {rs,... ,ry}; now
the action of w; maps r1 to ry and (r3,r4,...,7N) to (r1,72,...,"N—2);

2. KW g of type E7, t@ = rg, [y(i)] NKO = {ri,mo,r3,74,75} and J@ = {r7}; now the
action of w; maps (r1,72,7r3,74,75) to (r1,75,73,74,72) and r7 to r7.

Hence, if D involves a wide transformation, then J© is of type Axr with 1 < N’ < co.
Proof. The latter part of the claim follows from the former part and the fact that the sets J®

for 0 < i < ¢(D) are all isomorphic to each other. For the former part, note that J® is an
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Table 11: List of positive roots for Coxeter group of type B,

roots actions of generators
%(,lj) = %Zi ap Tie1 '%(,lj) = %(Pl,j (i>2)
(1<i<j<n-—1) rioqyy =g (<5 —1)
(%(,li) = o) Ty %-,lj) = %(,lj)_l (i<j-1)
el = %%)H (j<n-2)

@)

Pl - _ 2 2 .
’Yz‘(,j) = Y on + 555 200+ V20, | ric '72‘(,1) - 'Yz‘(f)l,j (i=2)
. . 2 2 . .
(1<i<j<n) T'i"Yi(,j):'Yi(+)1j(Z§]_2)

’Y@'(g) = YhC V2a + an Ti—1 '72‘(3) = 72‘(3)1 (i >2)
(1<i<n) rioy) = i <n—1)
(3”) = )

irreducible subset of K which is not adjacent to [y(®] (by the above condition that J(©) is
apart from [y(9]), t®) is adjacent to [y)] N K® and w; cannot fix the set g o) gy pointwise
(see Lemma [54]). Moreover, since I is Asi-free, [y(i)] is also A~i-free. By these properties, a
case-by-case argument shows that the possibilities of K, [y(i)] and t() are as enumerated in
Table 5 up to symmetry (note that J® = K@ < ([y®] U {t®})). Now, for each case in Table
15l except the two cases specified in the statement, it follows by using the tables for the root
systems of finite irreducible Coxeter groups that there exists a root 8 € (<I>IL([(€)(1)}OK(Z))Jr that
has non-zero coefficient of a,@), as listed in Table (where the notations for the roots § are
as in the tables). This implies that w; - € ®~. Moreover, the definition of K @ implies that
the set [y®] ~ K® is apart from K@, therefore § € Ll and @L[y(i)}[wi] # (. However,
this contradicts the property w; € Y, i+ ). Hence one of the two conditions specified in the
statement should be satisfied, concluding the proof of Lemma [6.8l ]

On the other hand, for the narrow transformations in D, we have the following:

Lemma 6.9. In this setting, suppose that w; is a narrow transformation, [y+t1] # [yD], and
KON [yD] = KO {t®O} has an irreducible component of type Ay. Then K is of type As or
of type Io(m) with m an odd number.

Proof. First, by the condition [y(*1] # [y()] and the definition of w;, the action of the longest
element of Wy induces a nontrivial automorphism of K (1) which does not fix the element
@, This property restricts the possibilities of K to one of the followings (where we use the
standard labelling of K®): K@ = {r ... ry} is of type Ay and t() # T(N+1)/25 K@ =
{r1,...,rn} is of type Dy with N odd and t) € {ry_1,ry}; K& = {ry,...,r¢} is of type
Eg and t) ¢ {ry,r4}; or K@ is of type Ir(m) with m odd. Secondly, by considering the
As1-freeness of I (hence of [y(*]), the possibilities are further restricted to the followings: K ()
is of type Ay; K@ is of type Eg and t®) € {ry,r¢}; and K is of type Ir(m) with m odd.
Moreover, by the hypothesis that K& N [y(i)] has an irreducible component of type Ai, the
above possibility of type Eg is denied. Hence the claim holds. U

30



Table 12: List of positive roots for Coxeter group of type Fy

The data of the remaining positive roots %'(2)

[c4, €3, c2, c1] and replacing each r; with 75_;.

are obtained by replacing [c1, ¢, 3, ¢4] With

height || 7 root %(1) ki rj - %(1) _ %il)
1 | ro | T3 | T4
1 1 [1,0,0,0] — 13
2 [0,1,0,0] 3 —114
2 3 [1,1,0,0] 21115
4] [0,1,v2,0] |5 2| 6
3 5 [M,1,v/2,00 [4]7]3]8
6 | [0,1,v2,v2] | 8 4
4 7 [1,2,v2,0] 5 9
8 | [1,1,vV2,v2] | 6 | 9 5
5 9 | [1,2,v2,V?2] 8107
6 10 | [1,2,2v/2,V2] 111 9
7 11 ] [1,3,2v/2,v2] [ 12| 10
8 12 | [2,3,2v/2,V2] | 11

6.2.2 Proof of the claim

From now, we prove our claim that w fixes the set I, pointwise. First, we have w-II;, C Il;; as
mentioned above, therefore Proposition [£.3] implies that there exists a standard decomposition
of w with respect to L. Moreover, L is apart from I = [z], since II}, is an irreducible component
of IT'. Now if L is not of type Ay with 1 < N < oo, then Lemma 6.8 implies that the standard
decomposition of w involves no wide transformations, therefore w fixes II;, pointwise, as desired
(note that any narrow transformation w; fixes Il ;i) pointwise by the definition). Hence, from
now, we consider the case that L is of type Ay with 1 < N < cc.
First, we present some definitions:

Definition 6.10. Suppose that 2 < N < co. Let D = wypy_; - wiwp be a semi-standard
decomposition of an element of W. We say that a sequence s1, sg,...,s, of distinct elements
of S is admissible of type Ay with respect to D, if J(© is of type Ay, p= N (mod 2), and the
following conditions are satisfied, where we put M := {s1,s2...,5,} (see Figure [3):

1. II ;) is an irreducible component of T,
2. m(sj,5j41) =3 forevery 1 <j<pu—1.

3. For each 0 < h < {(D), there exists an odd number A\(h) with 1 < A(h) < p— N +1
satisfying the following conditions, where we put p(h) := A(h) + N — 1:

T = {s; | A(h) < < p(h)} ,

M)A M ={s; | 1<j<A(h)—2and j=1 (mod 2)}
U{sj|p(h)+2<j<pandj=p (mod?2)} .

4. For each 0 < h < {(D), every element of [y] N M forms an irreducible component of
[y")] of type As.

5. For each 0 < h < ¢(D)—1, if wy, is a narrow transformation, then one of the following two
conditions is satisfied:
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Table 13: List of positive roots for Coxeter group of type Hy (part 1), where ¢ = 2cos(w/5),
2
cc=c+1

height || ¢ root -y; ks ri-vi =
1 T2 r3 T4
1 1 [1,0,0,0] — 15 H,
2 [0,1,0,0] 6 | — | 7 Hjy
3 [0,0,1,0] 7 |— | 8| Hs
4 [0,0,0,1] 8 | —
2 5 [1,c,0,0] 9 |1 |10 Hj
6 [c,1,0,0] 219 |11 H,
7 [0,1,1,0] ]3] 2 |12 Hs
8 [0,0,1,1] 121 4] 3
3 9 [e, ¢, 0,0] 516 |13 Hj
10 [1,c,c,0] 13 5 |14 | Hy
11 c,1,1,0] 7115 6 | 16 | Hs
12 0,1,1,1] 16 | 12 7
4 13 [e, ¢, ¢, 0] 10117 9 |18 | Hs
14 [1,c,¢ (] 18 10
15| [ce+1,1,0] |19 111720 | Hy
16 [c,1,1,1] 12 | 20 11
) 17 [c,e+1,¢,0] 21 |13 | 15| 22 | Hy
18 [e, ¢, ¢, ] 14 | 22 13
19 [ [c+1,c+1,1,0] | 15 21 [ 23 | H;
20| [ec+1,1,1] |23[16]24]15
6 21 | [e+1,c4+1,¢,0] | 17 | 25|19 | 26 | H3
22 [e,e+1,¢, ] 26 | 18 | 27 | 17
23 | [e+1,e+1,1,1] | 20 28 | 19
24 | e,e+1,c+1,1] | 28 20 | 27

e KM intersects with [y(h)] N M, and [y(h+1)] — [y(h)];
o K is apart from [y™] N M (hence [V M = [y n M).

6. For each 0 < h < /(D) — 1, if wy, is a wide transformation, then one of the following two
conditions is satisfied:

o Mh+1)=A(h)—2, KM = JW U {s\p)_,55)-1} is of type Anya, t) = s5(,)_1,
and the action of wy, maps sy, € JM (0<j<N-1)to S\(h+1)+; and maps
Sx(h)—2 € [y™] to Sp(h)+23
o AMh+1)=Ah)+2, KW = JW U {5,011, 5pm)42} is of type Anya, t™) = 5,011,
and the action of wy, maps sy, € JM (0 <j<N-1)to S\(h+1)+; and maps
Soh)+2 € [Y™M] 10 sxny—2-
Moreover, we say that such a sequence s1, s2,...,s, is tight if M = Uf;(:DO) Jh),

Definition 6.11. Suppose that N = 1. Let D = wyp)_1 -+ -wiwp be a semi-standard decom-
position of an element of W. We say that a sequence s, sg,...,s, of distinct elements of S is
admissible of type A, with respect to D, if J© is of type A; and the following conditions are
satisfied, where we put M = {s1,s2...,5,} (see Figure H):
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Table 14: List of positive roots for Coxeter group of type Hy (part 2), where ¢ = 2cos(w/5),
2
cc=c+1

height 7 root ~y; ksrg-vi =
L | T2 | T3 | T4
7|25 [c+1,2c,c,0] 21 29 | Hs
26 [c+1,c+1,¢,( 22 129 (30|21
27 [c,e+1,c+ 1, 30 22| 24
28 c+LctlctL1] 24 | 31 | 23 | 30
8 29 [c+1,2¢,¢ (] 26 | 32| 25
30 c+Lct+Lctlq 97 | 33 | 26 | 28
31| JerL2ctler1,1] [34]28 33
9 32 [c+1,2¢,2¢ ¢ 35| 29
33| Jc+L2c+lc+1,d |36]30]35]31
31| [2c+L2+LectL,1 |31|37 36
10 | 35 [c+1,2¢c+1,2¢ 38 32| 33
36| [2ctL2ctLctl,d |33]39|38] 34
37| et L2ct2c+ 11 34| 40 | 39
11| 38 ¢+ 1,2¢ + 1,26, ] 35 [ 41 | 36
30| Retl2ct2ctld 36 | 42 | 37
0] [2ctL2e+2c+21] 37 [ 43
12 |41 e+ 1,3c+ 1,2, 4438 | 45
42 [2¢+1,2¢+2,2¢+ 1, 45 | 39 | 46
43 | [2¢+1,2¢+2,¢+2,c+ 1] 46 | 40
13 || 44 [2c+2,3¢+ 1, 2¢, ] 1 47
15| et L3ctL2ct1,q |47 |42 |41 48
46 | [2¢+1,2¢+2,2c¢+ 1,¢+ 1] 48 | 43 | 42
14 47| [2ct23ctl,2ct1,d |45 494450
I8 [2c+ L3ct1,2c+1,c+1] |50 | 46 15
15 49 [2¢ +2,3¢c+2,2¢+ 1, ¢ 51 | 47 52
50 | [2¢+2,3¢+1,2¢+ 1,c+ 1] | 48 | 52 47
16 51 [Bc+1,3¢+2,2¢+ 1, ¢ 49 53
52 | [2¢4+2,3¢+2,2c+ 1,¢+1] | 53 | 50 | 54 | 49
17 |53 | Bet L3c+2,2c+1,cr1] |52 55 | 51
54 | [2¢+2,3¢+2,2¢+ 2,¢+ 1] | 55 52
18 |55 | BetL.3c+2,2c+2,c+1] | 545653
19 |56 | Be+1L,3c+3,2c+2,c+1] | 57 | 55
20 || 57 | Bc+2,3c+3,2c +2,c+ 1] | 56 | 58
91 |[58 | Be+2,4c+2,2c+ 2,¢ + 1] 57 | 59
22 || 59 | Bc+2,4c+2,3c+ Lc+ 1] 58 | 60
23 || 60 | [Bc+2.4c+2,3c+1,2q 59
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Table 15: List for the proof of Lemma [6.8]

type of K(® [y(i)] N K® o) 3

AN (N Z 3) {7“1} T9 S

By (N > 4) {rest, v} B<k<N-1) . Wi?»)

Dy {TN—17 T'N} TN—2 ’yﬁg
{res1,-- -, rv—1,7n} 2 < k< N —4) T

Ey 6N <8 {r1} T3 | a4

2 {ri,m2,73,74,75} re | —

{T7} T6 Y61

Es {r1,72,73, 74,75} T6 Y119
{r1,72,73,74,75,76} r7

{T8} 7 Y74

F4 {Tl} 79 ’yél)

Ha {71} T2 | 740
{7'1, 702} 3

{T4} 73 Y32

S¢1 3‘2 cee s)\(}?,z S)\fh) J(h) Spfh) e Sf‘

| BOx 20 RO ROn NOLOS0nOn0nOntn0nts nOn SO

- K®)

7 7 7 7 F F
| pOn S0n LOn Lo CnOnOnOnOn0n0nts oL ROu SO )

+ot 4 J(ht1) 4 4
§1 82 SA(h+1) Sp(h+1) S

Figure 3: Admissible sequence when N > 2; here N = 7, black circles in the top and the
bottom rows indicate elements of [y™] N M and [y("*D] N M, respectively, and wy, is a wide
transformation with t(" = s A(h)—1

1. II;() is an irreducible component of 1)

2. For each 0 < h < £(D), we have J® C M and M ~ J® C [yP)].

3. For each 0 < h < £(D), every element of [y)] N M forms an irreducible component of
[y™)] of type A;.

4. For each 0 < h < /(D) —1, if wy, is a narrow transformation, then one of the following two
conditions is satisfied:
o K intersects with [y™] N M, and [y(*tD] = [y")];
o KM is apart from [y™] N M, hence [y N M = [yM]n M.

5. For each 0 < h < {(D) — 1, if wy, is a wide transformation, then one of the following two
conditions is satisfied:

o JUHD) £ g K () is of type Az, KM~ {tM} = W)y gt ght) < (] A M,
and the action of wj, exchanges the unique element of J™® and the unique element
of J(h+1)

?
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o ) = J(0) angd [yt+D] = [y®),

Moreover, we say that such a sequence si, s2,...,s, is tight if M = Ui(fo) Jh),
([ o o—<—+1O| [ o
K ()
C——e
o o o o
J(h+1)

Figure 4: Admissible sequence when N = 1; here wy, is a wide transformation of the first type
in Definition B.ITI[]), the circles in each row signify elements of M, and the diamond signifies

the element ¢(")
Note that, if a sequence si,s2,...,5, is admissible of type Ay with respect to a semi-
standard decomposition D = wypy_1 - - -wiwp, then the subsequence of sy, s9,...,s, consisting

of the elements of Uﬁ(j)) JU) is admissible of type Ax with respect to D and is tight (for the

case N > 2, the property of wide transformations in Definition [6.I0[6]) implies that Uﬁ(j)) JU) =
{si | A(k) <1i < p(k')} for some k, k" € {0,1,...,4(D)}). Moreover, the sequence s1, s2,...,s,
is also admissible of type Ay with respect to D71,

The above definitions are relevant to our purpose in the following manner:

Lemma 6.12. Let D = wyp)_1 - wiwo be a semi-standard decomposition of w with respect to
L. If there exists a sequence which is admissible of type AN with respect to D, then w fizes Iy,
pointwise.

Proof. First, note that y“@P) = z; = y(©) since w € Y7, therefore [PV N M = [yO]n M
where M is as defined in Definition (when N > 2) or Definition (when N =1). Now it
follows from the properties in Definition [6I0I[B]) when N > 2, or Definition [6.ITI[2]) when N = 1,
that JEP) = O = [, Hence w fixes II;, pointwise when N = 1. Moreover, when N > 2, the
property in Definition B.I0(]) implies that wp, * sy(n)+j = Sx(h41)4; for every 0 < h < (D) — 1
and 0 < j < N — 1. Now by this property and the above-mentioned property J D) = jO) it
follows that w fixes the set 11 ;) = II;, pointwise. Hence the proof is concluded. O

As mentioned above, a standard decomposition of w with respect to L exists. Therefore,
by virtue of Lemma [6.12] it suffices to show that there exists a sequence which is admissible
with respect to this standard decomposition. More generally, we prove the following proposition
(note that the above-mentioned standard decomposition of w satisfies the assumption in this
proposition):

Proposition 6.13. Lel D = wypy_1 -+ wiwo be a semi-standard decomposition of an element.

0

Suppose that J© is of type Ay with 1 < N < 0o, and IL;0) is an irreducible component of

Y1, Then there exists a sequence which is admissible of type An with respect to D.
To prove Proposition [6.13], we give the following key lemma, which will be proven below:

Lemma 6.14. Let n > 0. Let D = wpwn_1---wiwg be a semi-standard decomposition of
an element, and put D' 1= w,_1---wiwy, which is also a semi-standard decomposition of an

35



element satisfying that y O (D') = y©O (D) and JO(D') = JO(D). Suppose that s1,...,s, is a
sequence which is admissible of type An with respect to D'. For simplicity, put y(j) = y(j)(D),
JU) = JU)(D), t¥) = tW)(D), and KU) = KU)(D) for each index j.

1. If wy is a narrow transformation, then we have either [y"+D] = [y™], or K™ is apart

from [y™] 0o JU).
2. If N =1, wy, is a wide transformation and J™H) = J0) then we have [y Y] = [y™)].

8. If N = 1, wy is a wide transformation and J"t) £ J0)  then KM is of type As,
K™ (M U {tM}) C [y™)], and the action of wy, exchanges the unique element of J™
and the unique element of K™ ~ (J™ U {tM}) (the latter belonging to [y™] N Jr+D),

4. If N > 2 and w,, is a wide transformation, then K™ is of type ANya, the unique element
s of KM <~ (J™ U {t(}) belongs to [y™)], and one of the following two conditions is
satisfied:

(a) t™) s adjacent to s' and S\(n), and the action of wy, maps the elements sx(n), Sx(n)+1,

SA\(n)421 - - - » Sp(n) and s tos, t, S\(n)s -+ s Sp(n)—2 and S (), respectively. Moreover;

p(n)
i. if A(n) > 3 and syn)—2 € U?:O JU) | then we have s' = Sx(n)—2 and () = S\(n)—17

ii. otherwise, we have s" ¢ |Ji_, J),

(b) t™ is adjacent to s’ and Sp(n)s
Sp(n)—2s -+ S\(n) and s’ to s, () Sp(n)s -+ -3 SAm)+2 and Sy(ny, Tespectively. More-
over;

and the action of w, maps the elements s,,); Spm)—15

i. if p(n) < p—2 and s,mmy42 € Uj—g J@) | then we have s’ = Sp(n)+2 and tn) =
Sp(n)+17
ii. otherwise, we have s" & |Ji_g JU,

Then Proposition is deduced by applying Lemma and the next lemma to the semi-
standard decompositions D, 1= w,_1---wiwp (0 < v < £(D)) successively (note that, when
v =0, i.e., D, is an empty expression, the sequence s1, ..., sy, where J©) = {s1,...,sn} is the
standard labelling of type Ay, is admissible of type Ay with respect to D,):

Lemma 6.15. In the situation of Lemma[6.14), we define a sequence o of elements of S in the
following manner: For Cases [, [2, |{(a)] and |4(b)i, let o be the sequence si,...,s,; for Case
3 let s be the unique element of K™ ~ (J™ U {t™}) = J+)  and let o be the sequence
S1,...,8u,8 when s’ & {s1,...,s,} and the sequence si,...,s, when s’ € {s1,...,s,}; for
Case let o be the sequence s/', () SA(n)s SA(n)+1s-- Sy, where p denotes the largest
index 1 < p' < p with sy € Uj_ J9: for the case let o be the sequence s, t™), 8p(n)>
Sp(n)—1,- -, S\, where N denotes the smallest index 1 < N < p with sy € U?:o JU) . Then o is
admissible of type An with respect to D = wy, - - - wiwp.-

Now our remaining task is to prove Lemma [6.14]l and Lemma [6.151 For the purpose, we
present an auxiliary result:

Lemma 6.16. Let s1,...,s, be a sequence which is admissible of type An, where N > 2, with
respect to a semi-standard decomposition D of an element of W. Suppose that the sequence
81,...,8, 48 tight. If 1 < j1 < jo < p, jo — j1 > 2, and either j; = 1 (mod 2) or jo = u
(mod 2), then sj, is not adjacent to sj,.
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Proof. By symmetry, we may assume without loss of generality that j; =1 (mod 2). Put D =
Wnp—1 - wiwp. Since the sequence sq,..., s, is tight, there exists an index 0 < h < n with s;, €
JM) . Now the properties@and Blin Definition E.I0 imply that J) = {SAR)s SAR)+15 > Sp(h) } 18
the standard labelling of type A, therefore the claim holds if s;, € J) (note that jo —j1 > 2).
On the other hand, if s;, ¢ J" then the property Bl in Definition and the fact j; < jo
imply that j; < A(h), therefore s;, € [y®] since j; =1 (mod 2). Hence the claim follows from
the fact that J™® is apart from [y®] (see the property [ in Definition B.I0). O

From now, we prove the pair of Lemma [6.14] and Lemma, [6.] by induction on n > 0. First,
we give a proof of Lemma [6.15] for n = ng by assuming Lemma [6.14] for 0 < n < ng. Secondly,
we will give a proof of Lemma for n = ng by assuming Lemma for 0 < n < ng and
Lemma [6.I5] for 0 < n < ng.

Proof of Lemma (for n = ng) from Lemma (for n < ngy). When ng = 0, the claim is
obvious from the property of wy,, specified in Lemma From now, we suppose that ng > 0.
We may assume without loss of generality that the sequence s, ..., s, (denoted here by ¢’) which
is admissible with respect to D’ is tight, therefore we have M’ := {51, cosut =UL T JW), We
divide the proof according to the possibility of wy,, listed in Lemma[6.141 By symmetry, we may
omit the argument for Case [4b] without loss of generality.

In Case [Il since M’ = U?io JU) as above, wn, satisfies the condition for ¢’ in Definition
EI0(E) (when N > 2) or Definition [E.IT(H]) (when N = 1), hence o = ¢’ is admissible of type Ay
with respect to D. Similarly, in Case 2, Case and Case B with s’ € M’, respectively, the
wide transformation wy,, satisfies the condition for ¢’ in Definition EITI[E]), Definition [E.T0IG]),
and Definition [E.ITI[H]), respectively. Hence o = ¢’ is admissible of type Ay with respect to D
in these three cases.

From now, we consider the remaining two cases: Case [ with s’ ¢ M’, and Case
Note that, in Case the tightness of ¢’ implies that A(ng) = 1 and p’ = u, therefore o is

the sequence s, t("0) s, ... , Sy Moreover, in this case the unique element s of Ko n [y("o)]
does not belong to (Jj2,J () = M’, therefore (™) cannot be adjacent to [y(™)] N M’; hence

t(n0) & M’ by the property of ¢’ in Definition EI0(B). Note also that, in both of the two cases,
we have s’ € J(F1) and {s'} is an irreducible component of [y("0)].

We prove by induction on 0 < v < ng that the sequence o is admissible of type An with
respect to D, and s’ € [y*T(D,)], where

D, = wluw;/—l e 'Wiwé = (wno—V)_l(wno—v—f—l)_l T (wno—l)_l(wno)_l

is a semi-standard decomposition of an element with respect to J(™0+1). Note that y)(D,) =
yro—i+1) - JU)(D,) = Jro—ith) 16)(D,) = t(ro=i+1) and KU)(D,) = KM=+ for each index
j. When v = 0, this claim follows immediately from the property of wy, specified in Lemma
B6.14] properties of ¢’ and the definition of o. Suppose that v > 0. Note that s’ € [y*)(D,_;)]
(which is equal to [y (D,)] = [y(™~¥+1]) by the induction hypothesis. First, we consider the
case that w!, (or equivalently, wy,—,) is a wide transformation. In this case, the possibility of
Wno—v 18 as specified in the condition of ¢’ in Definition [EI0I6]) (when N > 2) or Definition
BINE) (when N = 1), where h = ng — v; in particular, we have K™0—) < {t(ro=)} C MY,
therefore [y~ M’ = [y("0—*)] . M’. Hence the element s’ of [y ~*+D]~ M’ belongs to
[yo=)] = [y@+(D,)], and the property of wp,—, = (w),,)~! implies that o is admissible of type
Apn with respect to D, as well as D,,_1. Secondly, we consider the case that w!, (or equivalently,
Wne—v) 18 a narrow transformation. By applying Lemma [6.14] (for n = v) to the pair D,,, Dy
and the sequence o, it follows that either [y**1(D,)] = [y*)(D,)], or the support of w/, is apart
from [y™)(D,)] N Uj= 0 JY)(D,). Now in the former case, we have s’ € [y*)(D,)] = [y**V(D,)].
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On the other hand, in the latter case, we have s’ € [y*) (D)INUi JU)(D,) since s € [y)(D,)]
as above and s’ € JO)(D,) = J("0+1) by the choice of s, therefore s’ is apart from the support
of w!,. Hence, it follows in any case that s’ € [y**1)(D,)]; and the property of wp, , = (w,)™*
specified by the condition of ¢’ in Definition [E.I0(E) (when N > 2) or Definition [6.ITJ]) (when
N = 1), where h = ng — v, implies that o is admissible of type Ay with respect to D, as well
as D,_1. Hence the claim of this paragraph follows.

By using the result of the previous paragraph with v = ng, the sequence o is admissible
of type Ay with respect to D,, = D!, hence with respect to D as well. This completes the

proof. O

By virtue of the above result, our remaining task is finally to prove Lemma for n = ng
by assuming Lemma[6.14] for 0 < n < ng and Lemma [6.I5 for 0 < n < ng (in particular, with no
assumptions when ng = 0). Put M’ := {s1,...,s,}. In the proof, we may assume without loss
of generality that the sequence s, ...,s, (denoted here by ¢’) which is admissible with respect
to D’ is tight (hence we have J(© = M’ when ng = 0). Now by Lemma[6.8] the claim of Lemma
holds for the case that N =1 and wy,, is a wide transformation. From now, we consider
the other case that either NV > 2 or wy,, is a narrow transformation. Assume contrary that the
claim of Lemma does not hold. Then, by Lemma [6.8, Lemma and the properties of the
tight sequence ¢’ in Definition (when N > 2) or Definition (when N = 1), it follows
that the possibilities for the wy, is as follows (up to symmetry):

Case (I): wy,, is a narrow transformation, K () is of type Ay or type I(m) with m odd, and
we have s,, € K™ N[y(™0)] for some index 1 < 1 < p; hence t0) ¢ M', K(0) = {5, ¢(0)}
and the action of wy,, exchanges the two elements of K ("0),

Case (II): N > 2, wy, is a wide transformation, K(0) is of type An.2, and (") is adjacent
t0 8x(no) and the unique element s" of [y(")] N K (") hence the action of w,, maps the

elements s(0), SA(ng)+15 SA(no)+25 """ »Sp(ng) and s’ to s, t(no) 8A(no)s - - + » Sp(ng)—2 and

p(no)

Sp(no)s respectively. Moreover, () & M’ and

Case (II-1): s’ = sj, for an index p(ng) + 2 < jo < p with jo = p (mod 2);
Case (I1-2): A(ng) > 3 and 8" &€ {Sx(ng)—2) SA(ng)—1- - - » Su )3
Case (II-3): A(ng) > 3 and 8’ = 53(n0)—2-

In particular, by the tightness of ¢/, the conditions in the above four cases cannot be satisfied
when ng = 0. Hence the claim holds when ng = 0. From now, we suppose that ng > 0.

For each of the four cases, we determine an element 5 € [y(")] N M’ and an element 7 €
S\ [y™)] in the following manner: 5 = s, and 7 = (™) in Case (I); 3 = s, and T = (™) in
Case (II-1); 3 = sx(ng)—2 and T = sx(n)—1 in Case (II-2); and 5 = sy(py)—2 and # = (n0) in Case
(I1-3). Note that s and ¢ are adjacent by the definition. Since ¢’ is tight, there exists an index
0 < ho < ng—1 with 5 € J"0); let hy be the largest index with this property. By the definition
of hg, wp, is a wide transformation and J (ho+1) #*J (ho) | Let 7 denote the element of J(o+1)
with wp, * 5 =7. Then we have 7 € [y(ho)] by the property of wp, and the choice of 5.

Let D :=w/, ;- wjw] denote the simplification of

(Wn()*l o wh0+2wh0+1)_1 = (wh0+1)_1(wh0+2)_1 T (Wn()*l)_l

(see Section [5.1] for the terminology), and let @ be the element of W expressed by the product
D. Here we present the following lemma:

Lemma 6.17. In this setting, the support of each transformation in D does not contain t and
s apart from s.
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Proof. We prove by induction on 0 </ <n'/—1 that the support K’ of w/, does not contain ¢
and is apart from 3. Let (w,) ™! be the term in (wpy41) " (Whot2) ™+ (Wny—1)"* corresponding
to the term w!, in the simplification D. First, by the definition of simplification and the property
of narrow transformations specified in Definition (when N > 2) or Definition (when
N = 1), K' is apart from [y*)(D)] N M’ = [y**)] N M’ (see Lemma for the equality) if
w!, (or equivalently, w,) is a narrow transformation. Now we have 5 € [y(")] = [y(©)(D)] and
5 € M’ by the definition, therefore the induction hypothesis implies that 5 € [y(”/)(ﬁ)] N M.
Hence K’ is apart from 5 if w/, is a narrow transformation. This also implies that ¢ ¢ K’ if w/,
is a narrow transformation, since ¢ is adjacent to 3.

From now, we consider the other case that w/, (or equivalently, w, ) is a wide transformation.
Recall that 5 € [y(*")(D)] as mentioned above. Then, by the property of wide transformation w,
specified in Definition (when N > 2) or Definition (when N = 1) and the definition
of simplification, it follows that 5 € J* /H)(@) provided K’ is not apart from 5. On the other
hand, by the definition of hg, we have 5 ¢ JU) for any hg + 1 < j < ng. This implies that K’
should be apart from 3; therefore we have ¢t ¢ K’, since ¢ is adjacent to 5. Hence the proof of
Lemma is concluded. O

Now, in all the cases except Case (II-2), the following property holds:

Lemma 6.18. In Cases (I), (II-1) and (II-3), there exists a root § € "1 in which the
coefficient of as is zero and the coefficient of oy = qyng) 1S non-zero.

Proof. First, Lemma implies that @ - II ;) = II;ng+1y and [yf] = [y(ho+t D] where 3/ =
y")(D). Put v/ ;== ' 7 € J™). Then by Lemma and Lemma 5.7, we have u € Y/ ,,
where z and 2’ are elements of S®) obtained from y(© (D) = y(™) and 3/ by replacing the
element 3 with 7" and 7, respectively. Now by the property of the wide transformation wp,,, it
follows that (") is obtained from y"o*+1) by replacing 5 with 7; hence we have [2/] = [y("0)].

We show that there exists a root 8/ € ¥ in which the coefficient of as is zero and the
coefficient of a,(ny) is non-zero. In Case (I), ¢ is apart from both [y(™)] \ {5} and J(™0),
while we have [z] C ([y™)] < {3}) U J("0) by the definition; hence B’ := () satisfies the
required condition. In Case (II-1), we have 7 = sy(3o41) by the property of wy,, therefore
7' = 8x(no) by the property of wide transformations in D (see Definition E.I0(G)). Put 8’ :=
Qying) + Usy) F Aosyuoyn € T o) {r'} (note that N > 2 and K is of type Any2). Now
K() is apart from [y(™)] \ {3} = [2] ~ {r’}, therefore we have 8’ € I11*l and 3’ satisfies the
required condition. Moreover, in Case (II-3), we have 7 = Sp(ho+1) Dy the property of wp,,
therefore 1/ = s,(,,) by the property of wide transformations in D (see Definition B.I0(G)).
Now, since N > 2 and K (™) ig of type An4o, (") is not adjacent to r’/, while K () ig apart
from [y™0)] < {5} = [z] \ {r'}. Hence B’ := a(ny) satisfies the required condition.

By Lemma [6.17] the action of @ does not change the coefficients of az and a;. Hence by
the result of the previous paragraph, the root 8 :=u- 3 € ¥ = "] satisfies the required
condition, concluding the proof of Lemma O

Since ¢ ¢ J"0) and 7 is adjacent to , the root 5 € 11" given by Lemma does not
belong to II ;4,) and is not orthogonal to as. However, since 5 € J (ho) | this contradicts the
fact that II () is an irreducible component of 1"l (see Definition [E.I0(]) when N > 2, or
Definition [E.ITJ(I)) when N = 1). Hence we have derived a contradiction in the three cases in
Lemma [6.18]

From now, we consider the remaining case, i.e., Case (II-2). In this case, the following
property holds:
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Lemma 6.19. In this setting, the support of each transformation in D does not contain t("0)
and is apart from s'.

Proof. For each 0 < ¢ < ng — hg — 1, let D; denote the semi-standard decomposition of an
element defined by

D = wj' - wjwg = (Wg—i) "+ (Wng—1) T (Wig) T -

For each 0 < i < ng—hg—1, let o; denote the sequence s, t("o‘), S\(no)s SA(no)+1s - - - » Sp(s), Where
p(i) denotes the largest index s,y < p(i) < p with s54) € U;ﬂ) JUN(Dy) (= U?itéfi JW)). We
prove the following properties by induction on 1 < ¢ < ng—hg—1: The sequence o; is admissible
with respect to D;; we have s’ € [y(+1)(D;)]; and we have either [yt (D;)] = [y (D;)] and
JEH(Dy) = JO(D;), or the support K” = K@ (D;) of w! is apart from s'. Note that, by the
properties of w,, and o', we have s’ € [y(")] = [y()(Dy)], and the sequence oy (which is s,
t(no) S\(no)s - - -+ Sp(no)) 18 admissible with respect to Dy.

By the induction hypothesis and Lemma for n = i applied to the sequence o;_1 and
the pair D; and D;_1 (note that i < ng— hg — 1 < ng — 1), it follows that the possibilities of
w! = (wpy—;) "1 are as listed in Lemma Now if w! is a narrow transformation, then as in
Case [Tl of Lemma 614, we have either [y (D;)] = [y (D;)], or K" is apart from s’ (note that
s' € [y (Dy)] by the induction hypothesis, while s’ € J(©)(D;) = J(0+1D), On the other hand,
suppose that w!’ = (Wno—i) "t is a wide transformation. Then, by the property of o/, the support
K" of the wide transformation wy,—; is contained in M’, therefore s’ ¢ K”. This implies that
K" is apart from s/, since we have s’ € [y (D;)] by the induction hypothesis. Moreover, in any
case of w/, we have s’ € [y (D;)] by the above-mentioned fact s’ € [y (D;)] and the above
argument. On the other hand, the sequence ¢ in Lemma [6.15] corresponding to the current case
is equal to o;, therefore o; is admissible with respect to D; by Lemma [6.I5] for n = i (note again
that i <mng —1). Hence the claim of the previous paragraph holds.

By the above result, the simplification D = wh_q-wp of wgrhrl - whw! satisfies the
following conditions: For each 0 < 1/ < n' — 1, we have s’ € [y*)(D)], and the support of w/,
is apart from s'. Since (") is adjacent to &', this implies that the support of each w!, does not

contain (™). Hence the proof of Lemma [6.19]is concluded. O

By Lemma 619, we have ' € [y(")(D)] = [y"o+1)], therefore the set K" of type Ay o
consisting of $x(n,)—2; SA(ng)—1s- - - » Sp(no) 15 apart from s’. On the other hand, since s)(,,)—2 €
[y("o)], the set K(™0) of type An,o is apart from s’. From now, by using these properties, we
construct a root 8 € TIW") IT ;(ng) which is not orthogonal to as, , € II ;(ny) (note that
N > 2), in the following five steps.

Step 1. Note that the set K(™0) is apart from [y("0)] ~ K(™)  Put 20 := 4(0) Then

we have uy := wi((?)(;) = 't0) ¢ Y. .0, where (1) e S is obtained from z(®) by replacing

s’ with ¢(™)_ Similarly, we have uy := wZ?f;LO) — t(”O)s)\(nO) € Y, ,m), where 22 e sW) g

0)+1

obtained from z(!) by replacing t(") with S\(no)- Now, since [y := sy (no) and 3 :
)]

= Xs\(ng)+1
the roots By := uguy - By = ay and B =

are non-orthogonal elements of mi=®1,

are non-orthogonal elements of II ;n,) C Il
uzuy - 56 = Qyng) + as)\(no) + ask(noHl

Step 2. By the construction, z(?) is obtained from y(™) by replacing s with SA(ng)- Om
the other hand, we have J(0) = Jhotl) and 7 % S\(no) = SA(no) Dy the property of wide
transformations in D. Now by Lemma [5.7] we have uz := u € Y, ,2), where 23 ¢ §&)
is obtained from y(")(D) by replacing s’ with Sx(no)- Note that 0] = (y™)(D)] ~ {s'}) U

{8xno)} = ([yPotD] < {s'}) U {8xno)}- Put B3 := uz - B2 and B3 := uz - B5. Then we have
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Bs, B4 € 111 and (B3, B5) # 0. Moreover, by Lemma[6.17 and Lemma[6.19] ug fixes ay, hence
B3 = ag; and the action of uz does not change the coefficients of a, a,(ng), az and az, hence
the coefficients of these four simple roots in 5 are 0, 1, 0 and 0, respectively. This also implies
that the coefficient of s () in 35 is non-zero, since () ig adjacent to S\(no) € [2(3)].

Step 3. Note that the set K" is apart from [y"*V] < K (") hence from [2®)] \ K ().
Then we have uy = wi@) = 1S\(no)5t € Y, ) 3, where 24 e §A) ig obtained from z®) by

exchanging s)(,,) and 5. Now we have 5y := uy - B3 = ay € l'I[ZM)}7 B =4 B € =] and

(B1,B)) # 0. Moreover, by the property of coeflicients in 4 mentioned in Step 2 and the fact
that ¢ is adjacent to s A(no) and 3, it follows that the coefficient of az in B} is non-zero.

Step 4. Since [2(Y] = [2(})], there exists an element z(®) € S satisfying that [2()] = [2(?)]
and us :=u ! € Y. ) ,a. We have 85 := us -4 € H[z(5)], B ==us5- ) € 1121 and (Bs, BE) # 0.
Now by Lemma and Lemma .19 us fixes ay, hence 85 = ay; and the action of us does
not change the coefficient of oz, hence the coefficient of oz in S5 is non-zero.

Step 5. Put ug := up ' and uy := u;~!. Since [2] = [2(})] as above, there exists an
element z(" € SB) gsatisfying that [2(7] = [2(9] = [y(™)] and wrug € Y. ). Now we have
Br7 := urug - B5 = ag, since B5 = B2. On the other hand, put 5} := ujug - 5. Then we have
Bh € 1 = ™ and (B, B7) # 0. Moreover, since urug € Wy gz}, the coefficient of s in
B4 is the same as the coefficient of s in ff, which is non-zero as mentioned in Step 4.

Hence we have constructed a root ' = [} satisfying the above condition. However, this
contradicts the fact that II ;) is an irreducible component of Ily"o] (see Definition [6.T0ITI)).

Summarizing, we have derived a contradiction in any of the four cases, Case (I)-Case (II-
3), therefore Lemma for n = ng holds. Hence our claim has been proven in the case
HJ,IOJ C q)ll'

This completes the proof of Theorem 411

7 A counterexample for the general case

In this section, we present an example which shows that our main theorem, Theorem (.1} will
not generally hold when the assumption on the A-i-freeness of I C S is removed.

We consider a Coxeter system (W, S) of rank 7 with Coxeter graph I' in Figure 5l where the
vertex labelled by an integer i corresponds to a generator s; € S. Put I = {sy4, s5} which is of
type As (hence is not Asi-free).

Figure 5: Coxeter graph I' and subset I C S for the counterexample; here the two duplicated
circles correspond to I = {sy4, s5}

To determine the simple system II/ of W, Proposition B3I implies that each element
of II' is written as u - v(y, s), where y € SW, u € Yo, 8 € SN [yl, [yl~s is of finite type,

oy, s) =y, and ¥(y, s) is the unique element of (@i][i]{s}ﬁ as in Proposition In this case,

the element u~! € Y, ,, admits a decomposition as in Proposition B.3|2). In particular, such
an element y can be obtained from z; by applying a finite number of operations of the form
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2+ ¢(z,t) with an appropriate element ¢ € S. Table [If gives a list of all the element y € S()
obtained in this way. In the second and the fourth columns of the table, we abbreviate each s;
(1 <4 <7) toi for simplicity. This table shows, for each y, all the elements ¢ € S\ [y] satisfying
that [y]~; is of finite type and ¢(y,t) # y, as well as the corresponding element ¢(y,t) € S
(more precisely, the subset [p(y,t)] of S). Now the list of the y in the table is closed by the
operations y — ©(y,t), while it involves the starting point z; (No. I in Table [I6), therefore the
list indeed includes a complete list of the possible y.

Table 16: List for the counterexample

No. || [y] v € o1l t | oyt
T | {4,5} | [10]000J00], [01[000[00] || 3| I
6| 1
711V
T || 3,4} | [10[111]00], [01[1L1]00] || T | V
2 VI
5
I || {5,6} | [10]000J00], [01]000[00] || 4
71 1V
IV || 5,7} | [10]000[00], [01]000[00] || 4| 1
6| 1
V|| {1,3} | [00[001]00], [11]221[00] || 2 | VI
i 10
VI |[ 12,3} | [00]001[00], [11[221[00] | 1| V
i 10

On the other hand, Table also includes some elements of (®¥))* for each possible
y € S In the third column of the table, we abbreviate a root 22721 citus, 10 [crca|escacs|cger].
Moreover, a line is drawn under the coefficient ¢; of ay,; if s; belongs to [y]. Now for each
y, each root v € (®+)* and each t appearing in the table, the root wz € (@Hew O+
also appears in the row corresponding to the element (y,t) € SA) . Moreover, for each y in
the table, if an element s € S \ [y] satisfies that [y].s is of finite type and ¢(y,s) = y, then
the corresponding root (y,s) always appears in the row corresponding to the y. By these
properties, the above-mentioned characterization of the elements of II and the decompositions
of elements of Y, , given by Proposition B.3i2), it follows that all the elements of T/ indeed
appear in the list. Hence we have II/ = {ay,,as,} (see the row I in Table [[6), therefore both
elements of IT! satisfy that the corresponding reflection belongs to W+1g,.

Moreover, we consider the following sequence of operations:

3 1 2 4
xr = (54,85) = (53,54) = (s1,53) = (s3,52) = (54, 83)
5 6 7 4
— (85,84) = (86, 85) = (85,57) = (84,85) = 1 ,
where we write z - 2/ to signify the operation z — 2/ = ¢(2,s;). Then a direct calculation
shows that the element w of Y7 defined by the product of the elements w! corresponding to the

above operations satisfies that w - a5, = a,. Hence the conclusion of Theorem (4. does not
hold in this case where the assumption on the A< -freeness of I is not satisfied.
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