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Public Key Encryption

o Plaintext m is concealed by encrypting it
o Let [[m]] denote a ciphertext for m

o Encryption Ency: m — [[m]]
o pk: public encryption key

o Decryption Decg: [[m]] — m
o sk: secret decryption key

o It should be computationally hard to guess any
information on m from [[m]] and pk (w/o sk)
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Homomorphic Encryption (HE)

o Can compute a function for plaintexts inside
ciphertexts w/o decryption

o Homomorphic evaluation (operation)
Evale(f; [[mi]], - - -, [[mk]]) = [[f(m1, - ., mk)]]
o ek: public evaluation key
o E.g., [[m]] B [[m2]] = [[m1 + my]],
[[ba]] A [[B2]] = [[b1 A b2]]
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Fully Homomorphic Encryption (FHE)

o HE for arbitrary function
o by combining hom. eval. of some
fundamental operations
(e.g., 7, &, A, ..)
o Firstly realized by [Gentry, 2009]
o Almost all known FHE are lattice-based
e Some are based on approximate GCD
o except for (doubtful) preprints on others

(c) Koji Nuida September 29, 2025 On Compression Functions over Groups 6/39



Example: [van Dijk et al., 2010]

o [[m]] = pa+2r+m (me {0,1})

o p: secret prime, a, r: random
o Dec([[m]]) = ([[m]] mod p) mod 2 if the

“noise” 2r is sufficiently small

o [[m]] B [[ma]] = [[m]] + [[m2]]

o = p(Oél + 042) + 2(/’1 + I’2) + my 4+ my
o [[m]] R [[mo]] = [[m]] > [[m2]]

» = p(some complicated term)

+ 2(some complicated term) + my X my
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Example: [van Dijk et al., 2010]

o Ciphertext noise grows via Eval
o Dec will fail finally
o A "bootstrapping” can reset the noise
o but generally a heavy operation
o All known FHE are noise-based
o Open Problem: not noise-based FHE
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o Group-Theoretical Approach to FHE
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Group Function (Univariate Case)

e on group G means a sequence of the form

8oX81X82 * * * n—1X8n
(gi € G, x: variable)

o Regarded as a function
G — G, h— gohgihgs- - - gr-1hgn
o E.g., for F(x) := xgx®g’, F(h) = hgh’g’ € G
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An Ongoing Approach to FHE

(1) Encode bit b into an element o}, of a group G
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An Ongoing Approach to FHE

(1) Encode bit b into an element o}, of a group G
(2) For each fundamental bit operation, implement
it as a group function on G
o E.g., FAND(Ob;, Th,) = OAND(by,by) 1-€-,
Fanb (00, 00) = Fanp (0o, 01)
= Fanp(c1,00) = 00, Fanp(01,01) = 01
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An Ongoing Approach to FHE

(1) Encode bit b into an element o}, of a group G

(2) For each fundamental bit operation, implement
it as a group function on G
o E.g., FAND(Ob;, Th,) = OAND(by,by) 1-€-,
Fanp(ao, 70) = Fanp(oo, 01)
= Fanp(c1,00) = 00, Fanp(01,01) = 01
(3) Construct HE for plaintext space G; i.e., hom.
eval. of multiplication - is possible
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An Ongoing Approach to FHE

(1) Encode bit b into an element o}, of a group G

(2) For each fundamental bit operation, implement
it as a group function on G
o E.g., FAND(0bys Ob,) = OAND(by,0,), 1-€-,
Fanp (o0, 00) = Fanp (oo, 01)
= Fanp(01,00) = 00, Fanp(o1,01) = 01
(3) Construct HE for plaintext space G; i.e., hom.
eval. of multiplication - is possible
o ~~ By defining Enc'(b;) := [[0]], e-g.,
Eval'(AND; [[b4]]', [[£2]]')
= Eval(Fanp; [[o5,]], [[76,]])
= [[oanD(b1.6,)]] = [[AND(by, by)]]
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An Ongoing Approach to FHE

o Thus constructing FHE is reduced to (2) & (3)
o where (3) is the most difficult (unsolved)
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An Ongoing Approach to FHE

o Thus constructing FHE is reduced to (2) & (3)
o where (3) is the most difficult (unsolved)

o [Grigoriev & Ponomarenko, 2004] firstly
mentioned such an approach

o where (2) uses [Barrington et al., 1990]
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An Ongoing Approach to FHE

o Thus constructing FHE is reduced to (2) & (3)
o where (3) is the most difficult (unsolved)
o [Grigoriev & Ponomarenko, 2004] firstly
mentioned such an approach
o where (2) uses [Barrington et al., 1990]
o [Ostrovsky & Skeith 11, 2008] re-invented
o where (2) uses commutators in simple
groups
o [N., 2021] formalized a similar approach
o Preprint in 2014
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Step (2) in [N., 2021]

o Called “approximate-then-adjust” method
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Step (2) in [N., 2021]

o Called “approximate-then-adjust” method
o Eg., whenop:=1€ G and o7 := 0, OR is
approximated by multiplication 0,0},
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Step (2) in [N., 2021]

o Called “approximate-then-adjust” method
o Eg., whenop:=1€ G and o7 := 0, OR is
approximated by multiplication 0,0},
o 0009 = 1 = 09 = 00R(0,0)
° 0001 = 0 = 01 = O0OR(0,1)
°© 0100 = 0 = 01 = O0QR(1,0)
o But 0101 =0 # 0y = OOR(1,1)
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Step (2) in [N., 2021]

o Called “approximate-then-adjust” method
o Eg., whenop:=1€ G and o7 := 0, OR is
approximated by multiplication 0,0},
o 0009 = 1 = 09 = 00R(0,0)
° 0001 = 0 = 01 = O0OR(0,1)
°© 0100 = 0 = 01 = O0QR(1,0)
o But 0101 =0 # 0y = OOR(1,1)
o The incorrect result o2 should be adjusted to o
while keeping 1 and o unchanged

o by a group function F s.t. F(1) =1 and
F(o)=F(c®) =0
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Step (2) in [N., 2021]

e When o7 = o has order 3, the same function F
can adjust the incorrect results of the followings
(taken from [N., arXiv 2022]):

» OR: Op,0p,

o NAND (NOT AND): oo, 0p,

s XOR: 0,20y,

s EQ (=): o?0p,00,

° S—NEQ (NOT b1 = b2 = bg)i O b0 b,0 by
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Step (2) in [N., 2021]

o For the “compression” function F s.t. F(1) =1
and F(o) = F(0?) = o, the following function
on G = S5 was found by a heuristic approach
where o := (12 3):

F(x) = (15)(2 3 4)x(2 3 4)x(3 4)x*(2 3)(4 5)
-x(234)x(34)x*(1425)
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Step (2) in [N., 2021]

o For the “compression” function F s.t. F(1) =1
and F(o) = F(0?) = o, the following function
on G = S5 was found by a heuristic approach
where o := (12 3):

F(x) = (15)(2 3 4)x(2 3 4)x(3 4)x*(2 3)(4 5)
-x(234)x(34)x*(1425)

o Question: More systematic approach?
o More efficient construction?
o (Im)possibility on smaller groups, e.g., 547
(Step (3) might be easier)
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Remark on Step (3)

o HE over a group G will be obtained when
3 surj. group hom. p: G — G s.t.
o preimage of g € G can be efficiently
sampled (encryption),
» computation of ¢ (decryption) is efficient
when a secret key sk is given, but is hard
when sk is not given
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Remark on Step (3)

o HE over a group G will be obtained when
3 surj. group hom. p: G — G s.t.

o preimage of g € G can be efficiently
sampled (encryption),

» computation of ¢ (decryption) is efficient
when a secret key sk is given, but is hard
when sk is not given

o Candidate over any finite G was given in
[Grigoriev & Ponomarenko, 2004] but broken by
[Choi et al., 2007]

o Even if it were not broken, the HE is not

compact (G is an infinite group)
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o On Compression Functions over Groups
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Summary of [N., arXiv 2022]

o Re-formulating existence of such a function by
existence of solutions for certain equations

o A, when G is a finite solvable group (including
Abelian groups and S,, n < 4)

o If 3on S5, then 3 on As (.. no advantage of
considering Ss)

o Shortest possible expression on As
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Re-formulation of Problem

Definition 1
A compression function of type (c; (i, pi)b), size
¢, and exponent (e, e, ..., &) is a group function
of the form

F(x) = gox®g1x®-- - gr_1x%g
s.t. F(ot) = p; (V).
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Re-formulation of Problem

A compression function of type (c; (1, pi)E_,), size

¢, and exponent (e, e, ..., &) is a group function
of the form

F(x) = gox®g1x®-- - gr_1x%g
s.t. F(ot) = p; (V).

o Here we only consider “normalized” types w/
(11, p1) = (0,1) (i.e., F(1) =1)

o Our target function is normalized of type
(0;(0,1),(1,0),(2,0)) s.t. ord(c) =3
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Re-formulation of Problem

3F of (normalized) type (o; (ui, pi)-,), size ¢, and
exponent (ei, ..., ¢e) over a group G
<> the equations

Yyl i Ly i = g, (i =2,..., L)

have a solution (11, ...,7) € G* w/ the conjugacy
condition: Vi, T; is conjugate to o in G.
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Re-formulation of Problem

3F of (normalized) type (o; (ui, pi)-,), size ¢, and
exponent (ei, ..., ¢e) over a group G
<> the equations

Yyl i Ly i = g, (i =2,..., L)

have a solution (11, ...,7) € G* w/ the conjugacy
condition: Vi, T; is conjugate to o in G.

Corollary 3

d our target function <= the equations
ylel 0o .yéef =0 and y12e1 .. ,ygzef =0 have a
solution w/ the conjugacy condition.
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Re-formulation of Problem

(Proof)

F(o") = goo""“ g1+~ - gr-10""gi
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Re-formulation of Problem

(Proof)

F(o") = 00" g1+ - - gr-10""" g
= (800" g0 ") - (80810""*(gog1) )
- (gog1- - gr-10""*(gog1 - - 'gé—l)il) - 8081 8
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Re-formulation of Problem

(Proof)

F(o") = 00" g1+ - - gr-10""" g
= (800" g0 ") - (80810""*(gog1) )
- (gog1- - gr-10""*(gog1 - - 'gé—l)il) - 8081 8

= (googo )" - (gog10(gog1) ")"®
T (gOgl e 'gf—la(gogl " ‘gf—l)_l)uieé - 8081 8¢
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Re-formulation of Problem

(Proof)

F(o") = goo""“ g1+~ - gr-10""gi
= (800" g0 ") - (gog10""*(gog1) ")
- (gog1- - - gr-10""*(gogr - - 'gé—l)il) - 8081 8¢

= (googo )" - (gog10(gog1) )"

T (gOgl e 'gf—la(gogl " ‘gf—l)_l)uieé - 8081 8¢
= (googo )" - (gog10(gog1) 1)

"'(gOgl o 'ge—lﬁ(gogl o 'gﬁ—l)_l)“"ee ( F(l) = 1)
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Re-formulation of Problem

(Proof)

F(o™) = goot®gy - - - gi_10M® g,
= (800" g0 ") - (gog10""*(gog1) ")

- (gog1- - &r10"(gog1- - gr1) ) - Q&L &
= (googo )" - (gog10(gog1) )"

T (gOgl o 'gf—la(gogl o ‘gf—l)_l)uieé - 8081 8¢
= (googo 1) - (gogio(gog1) 1)

"'(gOgl g 'ge—lﬁ(gogl - 'gﬁ—l)_l)“"ee ( F(l) = 1)
Then 7; := gog1 -~ gj-10(gog1 " - gj—1) []
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Abelian or Size 2 Cases

If Ay # ip s.it. pi, = pi, 71 and p;, = p;, +1 (e.g.,
our target function), then A solution (7i, ..., )
s.t. 11,...,Ty—1 commute or T, ..., Ty commute.

Note: Here conj. cond. is not concerned.
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Abelian or Size 2 Cases

If Ay # ip s.it. pi, = pi, 71 and p;, = p;, +1 (e.g.,
our target function), then A solution (7i, ..., )
s.t. 11,...,Ty—1 commute or T, ..., Ty commute.

Note: Here conj. cond. is not concerned.
(Proof) When 74, ..., 7y_1 commute,
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Abelian or Size 2 Cases

If Ay # ip s.it. pi, = pi, 71 and p;, = p;, +1 (e.g.,
our target function), then A solution (7i, ..., )
s.t. 11,...,Ty—1 commute or T, ..., Ty commute.

Note: Here conj. cond. is not concerned.
(Proof) When 74, ..., 7y_1 commute,

(7_161 - Té_leéfl),uil Tgewil = pi,

= pi, = (7'161 L. Té_lez_l)ﬂizTgezuiQ
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Abelian or Size 2 Cases

If Ay # ip s.it. pi, = pi, 71 and p;, = p;, +1 (e.g.,
our target function), then A solution (7i, ..., )
s.t. 11,...,Ty—1 commute or T, ..., Ty commute.

Note: Here conj. cond. is not concerned.
(Proof) When 74, ..., 7y_1 commute,

e €y i €y Lj
(7—1 1.,.. Tr—1 4 l)ﬂng 0 iy pll
= pp, = (1 - g &)

Tt = (o Wi, = i, + 1).
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Abelian or Size 2 Cases

If Ay # ip s.it. pi, = pi, 71 and p;, = p;, +1 (e.g.,
our target function), then A solution (7i, ..., )
s.t. 11,...,Ty—1 commute or T, ..., Ty commute.

Note: Here conj. cond. is not concerned.
(Proof) When 74, ..., 7y_1 commute,

e €y i € lLj.
(7—1 1.,.. Tr—1 4 l)ﬂng 0 iy pll
= pp, = (1 - g &)

e -1 — ~—€ (.. —
R Z(,M,'2—/L,'1—|—1).
- (7-161 .. .7-6719@—1)/111 = 7, M€
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Abelian or Size 2 Cases

If Ay # ip s.it. pi, = pi, 71 and p;, = p;, +1 (e.g.,
our target function), then A solution (7i, ..., )
s.t. 11,...,Ty—1 commute or T, ..., Ty commute.

Note: Here conj. cond. is not concerned.
(Proof) When 74, ..., 7y_1 commute,
e €r— i Colliy __
(7_1 LT ¢ 1)#17—6 CHi — Pi
e €r— i € fbj
:pl-2 = (7’1 1...7-€_1 £ 1)#27—6 Z'LL2
TSt =1 ( Wi, = i, + 1).
" (Tlel . e e Tgilef—l)/'l‘il — Tg_lu’l']_efl
". pi, = 1. Contradiction. []
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Abelian or Size 2 Cases

Remark: Lemma 4 (and some of the following
results) can be slightly generalized.
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Abelian or Size 2 Cases

Remark: Lemma 4 (and some of the following
results) can be slightly generalized.

If 3h # i s.t. p, = pi, # 1 and p, = iy + 1 (eg.,
our target function), then A F of size < 2.

Corollary 6

If iy # i sit. py, = pi, # 1 and p, = pi, +1 (e.g.,
our target function), then A F over Abelian groups.

(Proof) The commutativity condition in Lemma 4 is

trivially satisfied in these cases. []
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Solvable Cases

If
o diy 75 I s.t. Py = Pi, =0 and Wi, = i, + 1
(e.g., our target function),
o INKH< Gst.oe H\N and
(C1) any element of G conjugate to o belongs to
H,
(C2) ifn, 1, € H and
ord(v1) = ord(1,) = ord(c), then
v, = oy where=: H — H/N is the
natural projection,
then A F.

(c) Koji Nuida September 29, 2025 On Compression Functions over Groups 24/39



Solvable Cases

(Proof) & = p;, # 1.
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Solvable Cases

(Proof) & = p;, # 1.

If 3 solution (71, ..., 7), this is also a solution over
H s.t. ord(7;) = ord(c) by the conjugacy condition
and (C1).
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Solvable Cases

(Proof) & = p;, # 1.

If 3 solution (71, ..., 7), this is also a solution over
H s.t. ord(7;) = ord(c) by the conjugacy condition

and (C1).

. (71, ...,7) is a solution over H/N (w/ p; instead
of p;), while all 7; commute by (C2).
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Solvable Cases

(Proof) & = p;, # 1.

If 3 solution (71, ..., 7), this is also a solution over
H s.t. ord(7;) = ord(c) by the conjugacy condition
and (C1).

. (71, ...,7) is a solution over H/N (w/ p; instead
of p;), while all 7; commute by (C2).

Such a solution is denied by Lemma 4.
Contradiction. ]
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Solvable Cases

Theorem 8

If 3ih # ix s.t. py, = pi, =0 # 1 and p;, = i, +1
(e.g., our target function), and G is finite and
solvable, then AF.
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Solvable Cases

Theorem 8

If 3ih # ix s.t. py, = pi, =0 # 1 and p;, = i, +1
(e.g., our target function), and G is finite and
solvable, then AF.

(Proof) Let G = G > GV > ... > G =1
(G =[G Gk=1)]) be the derived series of G.
Note that G < G.
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Solvable Cases

Theorem 8

If 3ih # ix s.t. py, = pi, =0 # 1 and p;, = i, +1
(e.g., our target function), and G is finite and
solvable, then AF.

(Proof) Let G = G > GV > ... > G0 =

(G =[G Gk=1)]) be the derived series of G.
Note that G < G.

As o #1, Ik <nst.oec GK\ G+,
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Solvable Cases

Theorem 8

If 3ih # ix s.t. py, = pi, =0 # 1 and p;, = i, +1
(e.g., our target function), and G is finite and
solvable, then AF.

(Proof) Let G = G > GV > ... > G0 =

(G =[G Gk=1)]) be the derived series of G.
Note that G < G.

Asco #1, 3k <nst. oc Gk \G"le

Then for Lemma 7 with H := G®) and N := G+1),
(C1) holds as G <1 G, and (C2) holds as

G /Gk+1) is Abelian, so Lemma 7 works. O
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No Advantage to Consider S,

If AN < G s.t. o0 € N and G = NZg(o) (Zs(0):
centralizer of o), and if 3 solution over G w/ conj.
cond., then 3 solution over N w/ conj. cond.
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No Advantage to Consider S,

If AN < G s.t. o0 € N and G = NZg(o) (Zs(0):
centralizer of o), and if 3 solution over G w/ conj.
cond., then 3 solution over N w/ conj. cond.

(Proof) For solution (71, ...,7) over G, write

Ti = U,'O'U,'_l.
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No Advantage to Consider S,

If AN < G s.t. o0 € N and G = NZg(o) (Zs(0):
centralizer of o), and if 3 solution over G w/ conj.
cond., then 3 solution over N w/ conj. cond.

(Proof) For solution (71, ...,7) over G, write
7, = ujou; L. Write u; = hiz;, h; € N, z; € Zg(0o).
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No Advantage to Consider S,

If AN < G s.t. o0 € N and G = NZg(o) (Zs(0):
centralizer of o), and if 3 solution over G w/ conj.
cond., then 3 solution over N w/ conj. cond.

(Proof) For solution (74, ...,7) over G, write
Ti = U,'O'U,'_l. Write u; = h;z;, h € N, z; € Zg(O').
Then 7; = /'l,'Z,'O'Z,'ilh,'*1 = h,'O'h,'i1 e N.
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No Advantage to Consider S,

If AN < G s.t. o0 € N and G = NZg(o) (Zs(0):
centralizer of o), and if 3 solution over G w/ conj.
cond., then 3 solution over N w/ conj. cond.

(Proof) For solution (71,...,7) over G, write

Ti = U,'O'U,'_l. Write u; = h;z;, h € N, z; € Zg(O').
Then 7; = /'l,'Z,'O'Z,'ilh,'*1 = h,'O'h,'i1 e N.

. (71,...,7¢) is a solution over N w/ conj.

cond. ]
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No Advantage to Consider S,

Corollary 10

Let n>5 and o = (123) € A,. If 3 our target
function over S,,, then 3 our target function over A,.
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No Advantage to Consider S,

Corollary 10

Let n>5 and o = (123) € A,. If 3 our target
function over S,,, then 3 our target function over A,.

(Proof) As A, < S,,, [Sn: An] =2, and
(45) € Zs (o) \ Ap, we have S, = A,Zs (o).
Apply Lemma 9.

L]
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No Advantage to Consider S,

Corollary 10

Let n>5 and o = (123) € A,. If 3 our target
function over S,,, then 3 our target function over A,.

(Proof) As A, < S,,, [Sn: An] =2, and
(45) € Zs (o) \ Ap, we have S, = A,Zs (o).
Apply Lemma 9. ]

By this corollary and Theorem 8, we consider As
instead of S5 as the underlying group.
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Case of Size 3 over As

Let 0 = (123). Then A our target function F of
size 3 over As.
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Case of Size 3 over As

Let 0 = (123). Then A our target function F of
size 3 over As.

(Proof) Assume 3F of exponent (ey, e, €3),

€ < {1, 2}

Let (71,72, 73) be the corresponding solution for the
equations.
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Case of Size 3 over As

Let 0 = (123). Then A our target function F of
size 3 over As.

(Proof) Assume 3F of exponent (ey, e, €3),

€ < {1, 2}

Let (71, 72, 73) be the corresponding solution for the
equations.

As F(c) = F(0?) = o, we have

MAT2T® = g = 1282028,
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Case of Size 3 over As

Let 0 = (123). Then A our target function F of
size 3 over As.

(Proof) Assume 3F of exponent (ey, e, €3),

€ < {1, 2}

Let (71,72, 73) be the corresponding solution for the
equations.

As F(c) = F(0?) = o, we have

TIOR8 = g = 726 7,2%2 728,

3 7_2—627-1617-26‘2 — 7-3—637-2—62_
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Case of Size 3 over As

VQT]_elVQ_l = 1lh, V] = 7_3—93, Vy = '7_2_e2.
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Case of Size 3 over As

VQT]_elVQ_l = 1lh, V] = 7_3—93, Vy = 7_2_e2.
. e e —e
oV Neonj T1TE Neonj Y, V1 Neonj O3,

Uy ~conj 0 2 are cyclic permutations of length 3.
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Case of Size 3 over As

VQT]_elVQ_l = Wlp, V1 :=T3 B, 1h =1 2.
. e e —é

oV Neonj T1TE Neonj Y, V1 Neonj O3,

Uy ~conj 0 2 are cyclic permutations of length 3.

Write 11 = (a by bg), Uy = (a C1 C2).
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Case of Size 3 over As

VQT]_elVQ_l = Wlp, V1 :=T3 B, 1h =1 2.
. e e —é

oV Neonj T1TE Neonj Y, V1 Neonj O3,

Uy ~conj 0 2 are cyclic permutations of length 3.

Write 11 = (a by bg), Uy = (a C1 C2).
(1) When {by, bo} N {c1, o} # 0:
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Case of Size 3 over As

VQT]_elVQ_l = Wlp, V1 :=T3 B, 1h =1 2.
. e e —é

oV Neonj T1TE Neonj Y, V1 Neonj O3,

Uy ~conj 0 2 are cyclic permutations of length 3.

Write 11 = (a by bg), Uy = (a C1 C2).

(1) When {by, bo} N {c1, o} # 0:
dH < Ssst. vy, v, € H~ 5.
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Case of Size 3 over As

VQT]_elVQ_l = Wlp, V1 :=T3 B, 1h =1 2.
. e e —é

oV Neonj T1TE Neonj Y, V1 Neonj O3,

Uy ~conj 0 2 are cyclic permutations of length 3.

Write 11 = (a by bg), Uy = (a C1 C2).
(1) When {by, bo} N {c1, o} # 0:
dH < Ssst. vy, v, € H~ 5.

% =y ln? e H.
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Case of Size 3 over As

VQT]_elVQ_l = 1lh, V] = 7_3—93, Vy = 7_2_e2.

. e e —é
V12 Neonj 1T Neonj 1, V1 Neonj O3,
Uy ~conj 0 2 are cyclic permutations of length 3.

Write 11 = (a by bg), Uy = (a C1 C2).

(1) When {by, by} N{c1, c} # 0:

dH < 55 s.t. Vi,V € H~S,.

oM =’ € H.

As 11 € (11®), 7 € (1n), 13 € (1), we have
T1,T, 73 € Hand 0 = iy € H.
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Case of Size 3 over As

VQT]_elVQ_l = Wlp, V1 :=T3 B, 1h =1 2.
. e e —é
V12 Neonj 1T Neonj 1, V1 Neonj O3,
Uy ~conj 0 2 are cyclic permutations of length 3.

Write 11 = (a by bg), Uy = (a C1 C2).

(1) When {by, by} N{c1, c} # 0:

dH < 55 s.t. Vi,V € H~S,.

ST =1 1V1V22 € H.

As 11 € (11®), 7 € (1n), 13 € (1), we have
T1,T, 73 € Hand 0 = iy € H.

They are in H ~ S, and have order 3, so they are
conjugate to o in H.
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Case of Size 3 over As

VQT]_elVQ_l = 1lh, V] = 7_3—93, Vp 1= Ty .
. e e —e
V12 Neonj 1T Neonj 1, V1 Neonj O3,
Uy ~coni 0 2 are cyclic permutations of length 3.
conj

Write 11 = (a by bg), Uy = (a C1 C2).

(1) When {by, by} N {c1, 2} # 0

dH < 55 s.t. Vi,V € H~S,.

oM =’ € H.

As 71 € (11%), T € (12), T3 € (1), we have
T1,T, 73 € Hand 0 = iy € H.

They are in H ~ S, and have order 3, so they are
conjugate to o in H.

*. d solution over H ~ S,, contradicting Theorem 8.
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Case of Size 3 over As

V2T161V2_1 =Vl V1 = T3 B, Ip =Ty 2.
Write v; = (a by b2), Uy = (a C1 Cg).

(”) When {bl, b2} = {Cl, C2} 7£ @Z
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Case of Size 3 over As

V2T161V2_1 =y, V1 :=T3 3, 1h =T 2.
Write 11 = (a by b2), Uy = (a 1 Cg).

(”) When {bl, b2} = {Cl, C2} 7£ @Z

Now V1V2(C2) = bl, I/1V2(b1) = bz,

(b)) = a # ¢, so v, cannot be a cyclic
permutation of length 3. Contradiction.

]
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Case of Size 3 over As

V2T161V2_1 =y, V1 :=T3 3, 1h =T 2.
Write 11 = (a by b2), Uy = (a 1 Cg).

(”) When {bl, b2} = {Cl, C2} 7£ @Z

Now V1V2(C2) = bl, I/1V2(b1) = bz,

(b)) = a # ¢, so v, cannot be a cyclic
permutation of length 3. Contradiction.

]

By this theorem and Corollary 5, the smallest
possible size of our target function over As is 4.
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On the Exponents

Any two cyclic permutations p, v of length 3 are
conjugate in As.

(Proof) Take a transposition 7 € Ss s.t. p7 = 7p.
For v = upu™t with u € S5, v = (ut)p(ut) ™, and
either u or ut is in As as [Ss : As] = 2. H
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On the Exponents

Corollary 13

Let 0 = (12 3). If 3 our target function of size {
and exponent (e, ..., e) over As s.t. e; € {1,2},
then 3 our target function of size { and exponent
(1,1,...,1) over As.

.
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On the Exponents

Corollary 13

Let 0 = (12 3). If 3 our target function of size {
and exponent (e, ..., e) over As s.t. e; € {1,2},
then 3 our target function of size { and exponent
(1,1,...,1) over As.

(Proof) As 7;¢ ~con; i by Lemma 12,
(11, ..., 7*) is a solution of the equations
corresponding to exponent (1,1,...,1). ]
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A Smallest Solution

We search (by SageMath) for a solution of the
equations over As corresponding to our target
function of size 4 (cf. Corollary 5 and Theorem 11)
and exponent (1,1,1,1) (cf. Corollary 13), where
o= (123):

TITaT3Ts = T2 13° % = (12 3) .

We found
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A Smallest Solution

Moreover,

=(12435)0(12435)*

Jo )

7 =(15243)0(15243)"",
73=(13524)0(13524)"!
74=(12534)0(12534)!

Then by following the proof of Lemma 2, we obtain
F(x) :=(12435)x(135)x
(143)x(15)(23)x(14352)

simpler than the previously known F (of size 6 and
exponent (1,1,2,1,1,2)).
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o (Im)possibility of our target function over other
groups

o Construction of compact HE over a finite
non-solvable group G (hopefully G = As)
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