On Compression Functions over Groups with Applications to Homomorphic Encryption

(arXiv:2208.02468)

Koji Nuida

> Algebra and Cryptology Seminar (Stevens Institute of Technology, USA) September 29, 2025

Contents

- Introduction to Fully Homomorphic Encryption
- Group-Theoretical Approach to FHE
- On Compression Functions over Groups

Contents

- Introduction to Fully Homomorphic Encryption
- Group-Theoretical Approach to FHE
- On Compression Functions over Groups

Public Key Encryption

- Plaintext m is concealed by encrypting it
 - Let [[m]] denote a ciphertext for m
- Encryption $Enc_{pk}: m \mapsto [[m]]$
 - pk: public encryption key
- **Decryption** Dec_{sk} : $[[m]] \mapsto m$
 - sk: secret decryption key
- It should be computationally hard to guess any information on m from [[m]] and pk (w/o sk)

Homomorphic Encryption (HE)

- Can compute a function for plaintexts inside ciphertexts w/o decryption
- Homomorphic evaluation (operation) Eval_{ek} $(f; [[m_1]], \ldots, [[m_k]]) = [[f(m_1, \ldots, m_k)]]$
 - ek: public evaluation key
- E.g., $[[m_1]] \boxplus [[m_2]] = [[m_1 + m_2]],$ $[[b_1]] \wedge [[b_2]] = [[b_1 \wedge b_2]]$

Fully Homomorphic Encryption (FHE)

- HE for arbitrary function
 - by combining hom. eval. of some fundamental operations
 (e.g., ¬, ⊕, ∧, ...)
- Firstly realized by [Gentry, 2009]
- Almost all known FHE are lattice-based
- Some are based on approximate GCD
 - except for (doubtful) preprints on others

Example: [van Dijk et al., 2010]

- $[[m]] = p\alpha + 2r + m \ (m \in \{0, 1\})$
 - p: secret prime, α , r: random
- Dec([[m]]) = ([[m]] mod p) mod 2 if the
 "noise" 2r is sufficiently small
- $[[m_1]] \boxplus [[m_2]] = [[m_1]] + [[m_2]]$
 - $\bullet = p(\alpha_1 + \alpha_2) + 2(r_1 + r_2) + m_1 + m_2$
- $[[m_1]] \boxtimes [[m_2]] = [[m_1]] \times [[m_2]]$
 - = p(some complicated term) + 2(some complicated term) + $m_1 \times m_2$

Example: [van Dijk et al., 2010]

- Ciphertext noise grows via Eval
 - Dec will fail finally
- A "bootstrapping" can reset the noise
 - but generally a heavy operation
- All known FHE are noise-based
- Open Problem: not noise-based FHE

Contents

- Introduction to Fully Homomorphic Encryption
- Group-Theoretical Approach to FHE
- On Compression Functions over Groups

Group Function (Univariate Case)

• on group G means a sequence of the form

$$g_0 x g_1 x g_2 \cdots g_{n-1} x g_n$$

$$(g_i \in G, x: variable)$$

Regarded as a function

$$G \rightarrow G$$
, $h \mapsto g_0 h g_1 h g_2 \cdots g_{n-1} h g_n$

• E.g., for $F(x) := xgx^2g'$, $F(h) = hgh^2g' \in G$

(1) Encode bit b into an element σ_b of a group G

- (1) Encode bit b into an element σ_b of a group G
- (2) For each fundamental bit operation, implement it as a group function on G
 - E.g., $F_{\text{AND}}(\sigma_{b_1}, \sigma_{b_2}) = \sigma_{\text{AND}(b_1, b_2)}$, i.e., $F_{\text{AND}}(\sigma_0, \sigma_0) = F_{\text{AND}}(\sigma_0, \sigma_1)$ = $F_{\text{AND}}(\sigma_1, \sigma_0) = \sigma_0$, $F_{\text{AND}}(\sigma_1, \sigma_1) = \sigma_1$

- (1) Encode bit b into an element σ_b of a group G
- (2) For each fundamental bit operation, implement it as a group function on G
 - E.g., $F_{\text{AND}}(\sigma_{b_1}, \sigma_{b_2}) = \sigma_{\text{AND}(b_1, b_2)}$, i.e., $F_{\text{AND}}(\sigma_0, \sigma_0) = F_{\text{AND}}(\sigma_0, \sigma_1)$ = $F_{\text{AND}}(\sigma_1, \sigma_0) = \sigma_0$, $F_{\text{AND}}(\sigma_1, \sigma_1) = \sigma_1$
- (3) Construct HE for plaintext space G; i.e., hom. eval. of multiplication \cdot_G is possible

- (1) Encode bit b into an element σ_b of a group G
- (2) For each fundamental bit operation, implement it as a group function on G
 - E.g., $F_{\text{AND}}(\sigma_{b_1}, \sigma_{b_2}) = \sigma_{\text{AND}(b_1, b_2)}$, i.e., $F_{\text{AND}}(\sigma_0, \sigma_0) = F_{\text{AND}}(\sigma_0, \sigma_1)$ = $F_{\text{AND}}(\sigma_1, \sigma_0) = \sigma_0$, $F_{\text{AND}}(\sigma_1, \sigma_1) = \sigma_1$
- (3) Construct HE for plaintext space G; i.e., hom. eval. of multiplication \cdot_G is possible
 - \leadsto By defining $Enc'(b_i) := [[\sigma_{b_i}]]$, e.g., $Eval'(AND; [[b_1]]', [[b_2]]')$ $:= Eval(F_{AND}; [[\sigma_{b_1}]], [[\sigma_{b_2}]])$ $= [[\sigma_{AND(b_1,b_2)}]] = [[AND(b_1,b_2)]]'$

- Thus constructing FHE is reduced to (2) & (3)
 - where (3) is the most difficult (unsolved)

- Thus constructing FHE is reduced to (2) & (3)
 - where (3) is the most difficult (unsolved)
- [Grigoriev & Ponomarenko, 2004] firstly mentioned such an approach
 - where (2) uses [Barrington et al., 1990]

- Thus constructing FHE is reduced to (2) & (3)
 - where (3) is the most difficult (unsolved)
- [Grigoriev & Ponomarenko, 2004] firstly mentioned such an approach
 - where (2) uses [Barrington et al., 1990]
- [Ostrovsky & Skeith III, 2008] re-invented
 - where (2) uses commutators in simple groups

- Thus constructing FHE is reduced to (2) & (3)
 - where (3) is the most difficult (unsolved)
- [Grigoriev & Ponomarenko, 2004] firstly mentioned such an approach
 - where (2) uses [Barrington et al., 1990]
- [Ostrovsky & Skeith III, 2008] re-invented
 - where (2) uses commutators in simple groups
- $[\underline{N}_{.}, 2021]$ formalized a similar approach
 - Preprint in 2014

Called "approximate-then-adjust" method

- Called "approximate-then-adjust" method
- E.g., when $\sigma_0 := 1 \in G$ and $\sigma_1 := \sigma$, OR is approximated by multiplication $\sigma_{b_1}\sigma_{b_2}$

- Called "approximate-then-adjust" method
- E.g., when $\sigma_0 := 1 \in G$ and $\sigma_1 := \sigma$, OR is approximated by multiplication $\sigma_{b_1}\sigma_{b_2}$

•
$$\sigma_0 \sigma_0 = 1 = \sigma_0 = \sigma_{OR(0,0)}$$

•
$$\sigma_0 \sigma_1 = \sigma = \sigma_1 = \sigma_{OR(0,1)}$$

•
$$\sigma_1 \sigma_0 = \sigma = \sigma_1 = \sigma_{OR(1,0)}$$

• But
$$\sigma_1 \sigma_1 = \sigma^2 \neq \sigma_1 = \sigma_{\mathsf{OR}(1,1)}$$

- Called "approximate-then-adjust" method
- E.g., when $\sigma_0 := 1 \in G$ and $\sigma_1 := \sigma$, OR is approximated by multiplication $\sigma_{b_1}\sigma_{b_2}$
 - $\sigma_0 \sigma_0 = 1 = \sigma_0 = \sigma_{OR(0,0)}$
 - $\sigma_0 \sigma_1 = \sigma = \sigma_1 = \sigma_{OR(0.1)}$
 - $\sigma_1 \sigma_0 = \sigma = \sigma_1 = \sigma_{OR(1.0)}$
 - But $\sigma_1 \sigma_1 = \sigma^2 \neq \sigma_1 = \sigma_{OR(1,1)}$
- The incorrect result σ^2 should be adjusted to σ while keeping 1 and σ unchanged
 - by a group function F s.t. F(1) = 1 and $F(\sigma) = F(\sigma^2) = \sigma$

- When $\sigma_1 = \sigma$ has order 3, the same function F can adjust the incorrect results of the followings (taken from [N., arXiv 2022]):
 - OR: $\sigma_{b_1}\sigma_{b_2}$
 - NAND (NOT AND): $\sigma \sigma_{b_1} \sigma_{b_2}$
 - XOR: $\sigma_{b_1}{}^2\sigma_{b_2}$
 - EQ (=): $\sigma^2 \sigma_{b_1} \sigma_{b_2}$
 - 3-NEQ (NOT $b_1 = b_2 = b_3$): $\sigma_{b_1} \sigma_{b_2} \sigma_{b_3}$

Step (2) in [<u>N.</u>, 2021]

• For the "compression" function F s.t. F(1) = 1 and $F(\sigma) = F(\sigma^2) = \sigma$, the following function on $G = S_5$ was found by a heuristic approach where $\sigma := (1\ 2\ 3)$:

$$F(x) = (15)(234)x(234)x(34)x^{2}(23)(45)$$
$$\cdot x(234)x(34)x^{2}(1425)$$

Step (2) in [<u>N.</u>, 2021]

• For the "compression" function F s.t. F(1) = 1 and $F(\sigma) = F(\sigma^2) = \sigma$, the following function on $G = S_5$ was found by a heuristic approach where $\sigma := (1\ 2\ 3)$:

$$F(x) = (15)(234)x(234)x(34)x^{2}(23)(45)$$
$$\cdot x(234)x(34)x^{2}(1425)$$

- Question: More systematic approach?
 - More efficient construction?
 - (Im)possibility on smaller groups, e.g., S_4 ? (Step (3) might be easier)

Remark on Step (3)

- HE over a group G will be obtained when \exists surj. group hom. $\varphi \colon \widetilde{G} \to G$ s.t.
 - preimage of $g \in G$ can be efficiently sampled (encryption),
 - computation of φ (decryption) is efficient when a secret key sk is given, but is hard when sk is not given

Remark on Step (3)

- HE over a group G will be obtained when \exists surj. group hom. $\varphi \colon \widetilde{G} \to G$ s.t.
 - preimage of $g \in G$ can be efficiently sampled (encryption),
 - computation of φ (decryption) is efficient when a secret key sk is given, but is hard when sk is not given
- Candidate over any finite G was given in [Grigoriev & Ponomarenko, 2004] but broken by [Choi et al., 2007]
 - Even if it were not broken, the HE is not compact (\widetilde{G} is an **infinite** group)

Contents

- Introduction to Fully Homomorphic Encryption
- Group-Theoretical Approach to FHE
- On Compression Functions over Groups

Summary of [N., arXiv 2022]

- Re-formulating existence of such a function by existence of solutions for certain equations
- $\not\exists$, when G is a finite solvable group (including Abelian groups and S_n , $n \le 4$)
- If \exists on S_5 , then \exists on A_5 (... no advantage of considering S_5)
- Shortest possible expression on A₅

Definition 1

A compression function of **type** $(\sigma; (\mu_i, \rho_i)_{i=1}^L)$, **size** ℓ , and **exponent** $(e_1, e_2, \ldots, e_{\ell})$ is a group function of the form

$$F(x)=g_0x^{e_1}g_1x^{e_2}\cdots g_{\ell-1}x^{e_\ell}g_\ell$$

s.t.
$$F(\sigma^{\mu_i}) = \rho_i \ (\forall i)$$
.

Definition 1

A compression function of **type** $(\sigma; (\mu_i, \rho_i)_{i=1}^L)$, **size** ℓ , and **exponent** $(e_1, e_2, \ldots, e_\ell)$ is a group function of the form

$$F(x)=g_0x^{e_1}g_1x^{e_2}\cdots g_{\ell-1}x^{e_\ell}g_\ell$$

s.t.
$$F(\sigma^{\mu_i}) = \rho_i \ (\forall i)$$
.

- Here we only consider "normalized" types w/ $(\mu_1, \rho_1) = (0, 1)$ (i.e., F(1) = 1)
- Our target function is normalized of type $(\sigma; (0,1), (1,\sigma), (2,\sigma))$ s.t. $ord(\sigma) = 3$

Lemma 2

 $\exists F$ of (normalized) type $(\sigma; (\mu_i, \rho_i)_{i=1}^L)$, size ℓ , and exponent (e_1, \ldots, e_{ℓ}) over a group G \iff the equations

$$y_1^{\mu_i e_1} y_2^{\mu_i e_2} \cdots y_\ell^{\mu_i e_\ell} = \rho_i \quad (i = 2, \dots, L)$$

have a solution $(\tau_1, \ldots, \tau_\ell) \in G^\ell$ w/ the **conjugacy condition**: $\forall i, \tau_i$ is conjugate to σ in G.

Lemma 2

 $\exists F$ of (normalized) type $(\sigma; (\mu_i, \rho_i)_{i=1}^L)$, size ℓ , and exponent (e_1, \ldots, e_ℓ) over a group G \iff the equations

$$y_1^{\mu_i e_1} y_2^{\mu_i e_2} \cdots y_\ell^{\mu_i e_\ell} = \rho_i \quad (i = 2, \dots, L)$$

have a solution $(\tau_1, \ldots, \tau_\ell) \in G^\ell$ w/ the **conjugacy** condition: $\forall i, \tau_i$ is conjugate to σ in G.

Corollary 3

 \exists our target function \iff the equations $y_1^{e_1} \cdots y_\ell^{e_\ell} = \sigma$ and $y_1^{2e_1} \cdots y_\ell^{2e_\ell} = \sigma$ have a solution w/ the conjugacy condition.

20/39

(Proof)

$$\mathsf{F}(\sigma^{\mu_i}) = \mathsf{g}_0 \sigma^{\mu_i \mathsf{e}_1} \mathsf{g}_1 \cdots \mathsf{g}_{\ell-1} \sigma^{\mu_i \mathsf{e}_\ell} \mathsf{g}_\ell$$

(Proof)

$$egin{aligned} F(\sigma^{\mu_i}) &= g_0 \sigma^{\mu_i e_1} g_1 \cdots g_{\ell-1} \sigma^{\mu_i e_\ell} g_\ell \ &= (g_0 \sigma^{\mu_i e_1} {g_0}^{-1}) \cdot (g_0 g_1 \sigma^{\mu_i e_2} (g_0 g_1)^{-1}) \ \cdots (g_0 g_1 \cdots g_{\ell-1} \sigma^{\mu_i e_\ell} (g_0 g_1 \cdots g_{\ell-1})^{-1}) \cdot g_0 g_1 \cdots g_\ell \end{aligned}$$

(Proof)

$$egin{aligned} F(\sigma^{\mu_i}) &= g_0 \sigma^{\mu_i e_1} g_1 \cdots g_{\ell-1} \sigma^{\mu_i e_\ell} g_\ell \ &= (g_0 \sigma^{\mu_i e_1} g_0^{-1}) \cdot (g_0 g_1 \sigma^{\mu_i e_2} (g_0 g_1)^{-1}) \ \cdots (g_0 g_1 \cdots g_{\ell-1} \sigma^{\mu_i e_\ell} (g_0 g_1 \cdots g_{\ell-1})^{-1}) \cdot g_0 g_1 \cdots g_\ell \ &= (g_0 \sigma g_0^{-1})^{\mu_i e_1} \cdot (g_0 g_1 \sigma (g_0 g_1)^{-1})^{\mu_i e_2} \ \cdots (g_0 g_1 \cdots g_{\ell-1} \sigma (g_0 g_1 \cdots g_{\ell-1})^{-1})^{\mu_i e_\ell} \cdot g_0 g_1 \cdots g_\ell \end{aligned}$$

Re-formulation of Problem

(Proof)

$$F(\sigma^{\mu_i}) = g_0 \sigma^{\mu_i e_1} g_1 \cdots g_{\ell-1} \sigma^{\mu_i e_\ell} g_\ell \ = (g_0 \sigma^{\mu_i e_1} g_0^{-1}) \cdot (g_0 g_1 \sigma^{\mu_i e_2} (g_0 g_1)^{-1}) \ \cdots (g_0 g_1 \cdots g_{\ell-1} \sigma^{\mu_i e_\ell} (g_0 g_1 \cdots g_{\ell-1})^{-1}) \cdot g_0 g_1 \cdots g_\ell \ = (g_0 \sigma g_0^{-1})^{\mu_i e_1} \cdot (g_0 g_1 \sigma (g_0 g_1)^{-1})^{\mu_i e_2} \ \cdots (g_0 g_1 \cdots g_{\ell-1} \sigma (g_0 g_1 \cdots g_{\ell-1})^{-1})^{\mu_i e_\ell} \cdot g_0 g_1 \cdots g_\ell \ = (g_0 \sigma g_0^{-1})^{\mu_i e_1} \cdot (g_0 g_1 \sigma (g_0 g_1)^{-1})^{\mu_i e_2} \ \cdots (g_0 g_1 \cdots g_{\ell-1} \sigma (g_0 g_1 \cdots g_{\ell-1})^{-1})^{\mu_i e_\ell} (\because F(1) = 1)$$

Re-formulation of Problem

(Proof)

$$F(\sigma^{\mu_{i}}) = g_{0}\sigma^{\mu_{i}e_{1}}g_{1}\cdots g_{\ell-1}\sigma^{\mu_{i}e_{\ell}}g_{\ell}$$

$$= (g_{0}\sigma^{\mu_{i}e_{1}}g_{0}^{-1})\cdot(g_{0}g_{1}\sigma^{\mu_{i}e_{2}}(g_{0}g_{1})^{-1})$$

$$\cdots(g_{0}g_{1}\cdots g_{\ell-1}\sigma^{\mu_{i}e_{\ell}}(g_{0}g_{1}\cdots g_{\ell-1})^{-1})\cdot g_{0}g_{1}\cdots g_{\ell}$$

$$= (g_{0}\sigma g_{0}^{-1})^{\mu_{i}e_{1}}\cdot(g_{0}g_{1}\sigma(g_{0}g_{1})^{-1})^{\mu_{i}e_{2}}$$

$$\cdots(g_{0}g_{1}\cdots g_{\ell-1}\sigma(g_{0}g_{1}\cdots g_{\ell-1})^{-1})^{\mu_{i}e_{\ell}}\cdot g_{0}g_{1}\cdots g_{\ell}$$

$$= (g_{0}\sigma g_{0}^{-1})^{\mu_{i}e_{1}}\cdot(g_{0}g_{1}\sigma(g_{0}g_{1})^{-1})^{\mu_{i}e_{2}}$$

$$\cdots(g_{0}g_{1}\cdots g_{\ell-1}\sigma(g_{0}g_{1}\cdots g_{\ell-1})^{-1})^{\mu_{i}e_{\ell}}(\because F(1) = 1)$$
Then $\tau_{j} := g_{0}g_{1}\cdots g_{j-1}\sigma(g_{0}g_{1}\cdots g_{j-1})^{-1}$.

Lemma 4

If $\exists i_1 \neq i_2 \text{ s.t. } \rho_{i_1} = \rho_{i_2} \neq 1 \text{ and } \mu_{i_2} = \mu_{i_1} + 1 \text{ (e.g., our target function), then } \exists \text{ solution } (\tau_1, \ldots, \tau_\ell)$ s.t. $\tau_1, \ldots, \tau_{\ell-1}$ commute or $\tau_2, \ldots, \tau_\ell$ commute.

Note: Here conj. cond. is not concerned.

Lemma 4

If $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} \neq 1$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function), then $\not\exists$ solution $(\tau_1, \ldots, \tau_\ell)$ s.t. $\tau_1, \ldots, \tau_{\ell-1}$ commute or $\tau_2, \ldots, \tau_\ell$ commute.

Note: Here conj. cond. is not concerned. (Proof) When $\tau_1, \ldots, \tau_{\ell-1}$ commute,

Lemma 4

If $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} \neq 1$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function), then $\not\exists$ solution $(\tau_1, \ldots, \tau_\ell)$ s.t. $\tau_1, \ldots, \tau_{\ell-1}$ commute or $\tau_2, \ldots, \tau_\ell$ commute.

Note: Here conj. cond. is not concerned. (Proof) When $\tau_1, \ldots, \tau_{\ell-1}$ commute,

$$(\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_1}} \tau_{\ell}^{e_{\ell}\mu_{i_1}} = \rho_{i_1}$$

$$= \rho_{i_2} = (\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_2}} \tau_{\ell}^{e_{\ell}\mu_{i_2}}.$$

Lemma 4

If $\exists i_1 \neq i_2 \text{ s.t. } \rho_{i_1} = \rho_{i_2} \neq 1 \text{ and } \mu_{i_2} = \mu_{i_1} + 1 \text{ (e.g., }$ our target function), then $\not\exists$ solution $(\tau_1, \ldots, \tau_\ell)$ s.t. $\tau_1, \ldots, \tau_{\ell-1}$ commute or $\tau_2, \ldots, \tau_{\ell}$ commute.

Note: Here conj. cond. is not concerned. (Proof) When $\tau_1, \ldots, \tau_{\ell-1}$ commute,

$$(\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_1}} \tau_\ell^{e_\ell \mu_{i_1}} = \rho_{i_1} = \rho_{i_2} = (\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_2}} \tau_\ell^{e_\ell \mu_{i_2}}.$$

$$\therefore \tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}} = \tau_{\ell}^{-e_{\ell}} \ (\because \mu_{i_2} = \mu_{i_1} + 1).$$

Lemma 4

If $\exists i_1 \neq i_2 \text{ s.t. } \rho_{i_1} = \rho_{i_2} \neq 1 \text{ and } \mu_{i_2} = \mu_{i_1} + 1 \text{ (e.g., }$ our target function), then $\not\exists$ solution $(\tau_1, \ldots, \tau_\ell)$ s.t. $\tau_1, \ldots, \tau_{\ell-1}$ commute or $\tau_2, \ldots, \tau_{\ell}$ commute.

Note: Here conj. cond. is not concerned. (Proof) When $\tau_1, \ldots, \tau_{\ell-1}$ commute,

$$(\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_1}} \tau_{\ell}^{e_{\ell}\mu_{i_1}} = \rho_{i_1}$$

$$= \rho_{i_2} = (\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_2}} \tau_{\ell}^{e_{\ell}\mu_{i_2}}.$$

Lemma 4

If $\exists i_1 \neq i_2 \text{ s.t. } \rho_{i_1} = \rho_{i_2} \neq 1 \text{ and } \mu_{i_2} = \mu_{i_1} + 1 \text{ (e.g., }$ our target function), then $\not\exists$ solution $(\tau_1, \ldots, \tau_\ell)$ s.t. $\tau_1, \ldots, \tau_{\ell-1}$ commute or $\tau_2, \ldots, \tau_{\ell}$ commute.

Note: Here conj. cond. is not concerned. (Proof) When $\tau_1, \ldots, \tau_{\ell-1}$ commute,

$$(\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_1}} \tau_\ell^{e_\ell \mu_{i_1}} = \rho_{i_1}$$

$$= \rho_{i_2} = (\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_2}} \tau_\ell^{e_\ell \mu_{i_2}} .$$

$$\therefore \tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}} = \tau_{\ell}^{-e_{\ell}} \ (\because \mu_{i_2} = \mu_{i_1} + 1).$$

$$\therefore (\tau_1^{e_1} \cdots \tau_{\ell-1}^{e_{\ell-1}})^{\mu_{i_1}} = \tau_{\ell}^{-\mu_{i_1} e_{\ell}}.$$

$$\therefore \rho_{i_1} = 1$$
. Contradiction.

Remark: Lemma 4 (and some of the following results) can be slightly generalized.

Remark: Lemma 4 (and some of the following results) can be slightly generalized.

Corollary 5

If $\exists i_1 \neq i_2 \text{ s.t. } \rho_{i_1} = \rho_{i_2} \neq 1 \text{ and } \mu_{i_2} = \mu_{i_1} + 1 \text{ (e.g., }$ our target function), then $\exists F$ of size < 2.

Corollary 6

If $\exists i_1 \neq i_2 \text{ s.t. } \rho_{i_1} = \rho_{i_2} \neq 1 \text{ and } \mu_{i_2} = \mu_{i_1} + 1 \text{ (e.g., }$ our target function), then $\exists F$ over Abelian groups.

(Proof) The commutativity condition in Lemma 4 is trivially satisfied in these cases.

Lemma 7

If

- $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} = \sigma$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function),
- $\exists N \lhd H \leq G$ s.t. $\sigma \in H \setminus N$ and
- (C1) any element of G conjugate to σ belongs to Η.
- (C2) if $\nu_1, \nu_2 \in H$ and $\operatorname{ord}(\nu_1) = \operatorname{ord}(\nu_2) = \operatorname{ord}(\sigma)$, then $\overline{\nu_1 \nu_2} = \overline{\nu_2 \nu_1}$ where $\overline{\cdot}$: $H \to H/N$ is the natural projection,

then $\exists F$.

24/39

(Proof)
$$\overline{\sigma} = \overline{\rho_{i_1}} \neq 1$$
.

(Proof) $\overline{\sigma} = \overline{\rho_{i_1}} \neq 1$. If \exists solution $(\tau_1, \dots, \tau_\ell)$, this is also a solution over H s.t. $\operatorname{ord}(\tau_j) = \operatorname{ord}(\sigma)$ by the conjugacy condition and (C1).

(Proof) $\overline{\sigma} = \overline{\rho_{i_1}} \neq 1$.

If \exists solution $(\tau_1, \ldots, \tau_\ell)$, this is also a solution over H s.t. $\operatorname{ord}(\tau_j) = \operatorname{ord}(\sigma)$ by the conjugacy condition and (C1).

 \therefore $(\overline{\tau_1}, \dots, \overline{\tau_\ell})$ is a solution over H/N (w/ $\overline{\rho_i}$ instead of ρ_i), while all $\overline{\tau_j}$ commute by (C2).

(Proof) $\overline{\sigma} = \overline{\rho_{i_1}} \neq 1$.

If \exists solution $(\tau_1, \ldots, \tau_\ell)$, this is also a solution over H s.t. $\operatorname{ord}(\tau_j) = \operatorname{ord}(\sigma)$ by the conjugacy condition and (C1).

 \therefore $(\overline{\tau_1}, \dots, \overline{\tau_\ell})$ is a solution over H/N (w/ $\overline{\rho_i}$ instead of ρ_i), while all $\overline{\tau_j}$ commute by (C2).

Such a solution is denied by Lemma 4.

Contradiction.

Theorem 8

If $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} = \sigma \neq 1$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function), and G is finite and solvable, then $\not\supseteq F$.

Theorem 8

If $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} = \sigma \neq 1$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function), and G is finite and solvable, then $\not\exists F$.

(Proof) Let $G = G^{(0)} > G^{(1)} > \cdots > G^{(n)} = 1$ $(G^{(k)} = [G^{(k-1)}, G^{(k-1)}])$ be the derived series of G. Note that $G^{(k)} \triangleleft G$.

Theorem 8

If $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} = \sigma \neq 1$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function), and G is finite and solvable, then $\exists F$.

(Proof) Let $G = G^{(0)} > G^{(1)} > \cdots > G^{(n)} = 1$ $(G^{(k)} = [G^{(k-1)}, G^{(k-1)}])$ be the derived series of G. Note that $G^{(k)} \triangleleft G$ As $\sigma \neq 1$, $\exists k < n \text{ s.t. } \sigma \in G^{(k)} \setminus G^{(k+1)}$.

Theorem 8

If $\exists i_1 \neq i_2$ s.t. $\rho_{i_1} = \rho_{i_2} = \sigma \neq 1$ and $\mu_{i_2} = \mu_{i_1} + 1$ (e.g., our target function), and G is finite and solvable, then $\exists F$.

(Proof) Let $G = G^{(0)} > G^{(1)} > \cdots > G^{(n)} = 1$ $(G^{(k)} = [G^{(k-1)}, G^{(k-1)}])$ be the derived series of G. Note that $G^{(k)} \triangleleft G$

As $\sigma \neq 1$, $\exists k < n \text{ s.t. } \sigma \in G^{(k)} \setminus G^{(k+1)}$.

Then for Lemma 7 with $H := G^{(k)}$ and $N := G^{(k+1)}$. (C1) holds as $G^{(k)} \triangleleft G$, and (C2) holds as $G^{(k)}/G^{(k+1)}$ is Abelian, so Lemma 7 works.

Lemma 9

If $\exists N \lhd G$ s.t. $\sigma \in N$ and $G = NZ_G(\sigma)$ ($Z_G(\sigma)$: centralizer of σ), and if \exists solution over G w/ conj. cond., then \exists solution over N w/ conj. cond.

Lemma 9

If $\exists N \lhd G$ s.t. $\sigma \in N$ and $G = NZ_G(\sigma)$ ($Z_G(\sigma)$: centralizer of σ), and if \exists solution over G w/ conj. cond., then \exists solution over N w/ conj. cond.

(Proof) For solution $(\tau_1, \ldots, \tau_\ell)$ over G, write $\tau_i = u_i \sigma u_i^{-1}$.

Lemma 9

If $\exists N \lhd G$ s.t. $\sigma \in N$ and $G = NZ_G(\sigma)$ ($Z_G(\sigma)$: centralizer of σ), and if \exists solution over G w/ conj. cond., then \exists solution over N w/ conj. cond.

(Proof) For solution $(\tau_1, \ldots, \tau_\ell)$ over G, write $\tau_i = u_i \sigma u_i^{-1}$. Write $u_i = h_i z_i$, $h_i \in N$, $z_i \in Z_G(\sigma)$.

Lemma 9

If $\exists N \lhd G$ s.t. $\sigma \in N$ and $G = NZ_G(\sigma)$ ($Z_G(\sigma)$: centralizer of σ), and if \exists solution over G w/ conj. cond., then \exists solution over N w/ conj. cond.

(Proof) For solution $(\tau_1, \ldots, \tau_\ell)$ over G, write $\tau_i = u_i \sigma u_i^{-1}$. Write $u_i = h_i z_i$, $h_i \in N$, $z_i \in Z_G(\sigma)$. Then $\tau_i = h_i z_i \sigma z_i^{-1} h_i^{-1} = h_i \sigma h_i^{-1} \in N$.

Lemma 9

If $\exists N \lhd G$ s.t. $\sigma \in N$ and $G = NZ_G(\sigma)$ $(Z_G(\sigma))$: centralizer of σ), and if \exists solution over G w/ conj. cond., then \exists solution over N w/conj. cond.

(Proof) For solution $(\tau_1, \ldots, \tau_\ell)$ over G, write $\tau_i = u_i \sigma u_i^{-1}$. Write $u_i = h_i z_i$, $h_i \in N$, $z_i \in Z_G(\sigma)$. Then $\tau_i = h_i z_i \sigma z_i^{-1} h_i^{-1} = h_i \sigma h_i^{-1} \in N$. $(\tau_1, \ldots, \tau_\ell)$ is a solution over N w/ conj. cond

Corollary 10

Let $n \ge 5$ and $\sigma = (1 \ 2 \ 3) \in A_n$. If \exists our target function over S_n , then \exists our target function over A_n .

Corollary 10

Let $n \ge 5$ and $\sigma = (1 \ 2 \ 3) \in A_n$. If \exists our target function over S_n , then \exists our target function over A_n .

(Proof) As
$$A_n \triangleleft S_n$$
, $[S_n : A_n] = 2$, and $(4 5) \in Z_{S_n}(\sigma) \setminus A_n$, we have $S_n = A_n Z_{S_n}(\sigma)$. Apply Lemma 9.

Corollary 10

Let $n \ge 5$ and $\sigma = (1 \ 2 \ 3) \in A_n$. If \exists our target function over S_n , then \exists our target function over A_n .

(Proof) As
$$A_n \triangleleft S_n$$
, $[S_n : A_n] = 2$, and $(4 5) \in Z_{S_n}(\sigma) \setminus A_n$, we have $S_n = A_n Z_{S_n}(\sigma)$. Apply Lemma 9.

By this corollary and Theorem 8, we consider A_5 instead of S_5 as the underlying group.

Theorem 11

Let $\sigma = (1\ 2\ 3)$. Then $\not\exists$ our target function F of size 3 over A_5 .

Theorem 11

Let $\sigma = (1\ 2\ 3)$. Then $\not\exists$ our target function F of size 3 over A_5 .

(Proof) Assume $\exists F$ of exponent (e_1, e_2, e_3) , $e_i \in \{1, 2\}$.

Let (τ_1, τ_2, τ_3) be the corresponding solution for the equations.

Theorem 11

Let $\sigma = (1\ 2\ 3)$. Then $\not\exists$ our target function F of size 3 over A_5 .

(Proof) Assume $\exists F$ of exponent (e_1, e_2, e_3) , $e_i \in \{1, 2\}$.

Let (τ_1, τ_2, τ_3) be the corresponding solution for the equations.

As
$$F(\sigma) = F(\sigma^2) = \sigma$$
, we have $\tau_1^{e_1} \tau_2^{e_2} \tau_3^{e_3} = \sigma = \tau_1^{2e_1} \tau_2^{2e_2} \tau_3^{2e_3}$.

Theorem 11

Let $\sigma = (1\ 2\ 3)$. Then $\not\exists$ our target function F of size 3 over A_5 .

(Proof) Assume $\exists F$ of exponent (e_1, e_2, e_3) , $e_i \in \{1, 2\}$.

Let (τ_1, τ_2, τ_3) be the corresponding solution for the equations.

As
$$F(\sigma) = F(\sigma^2) = \sigma$$
, we have $\tau_1^{e_1} \tau_2^{e_2} \tau_3^{e_3} = \sigma = \tau_1^{2e_1} \tau_2^{2e_2} \tau_3^{2e_3}$.
 $\therefore \tau_2^{-e_2} \tau_1^{e_1} \tau_2^{e_2} = \tau_3^{-e_3} \tau_2^{-e_2}$.

$$\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$

 $\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$ $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$ $\nu_2 \sim_{\text{coni}} \sigma^{-e_2}$ are cyclic permutations of length 3.

```
\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.
\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},
\nu_2 \sim_{\text{conj}} \sigma^{-e_2} are cyclic permutations of length 3.
Write \nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).
```

$$u_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
 $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$
 $\nu_2 \sim_{\text{conj}} \sigma^{-e_2} \text{ are cyclic permutations of length } 3.$
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(1) When $\{b_1, b_2\} \cap \{c_1, c_2\} \neq \emptyset$:

$$u_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
 $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$
 $\nu_2 \sim_{\text{conj}} \sigma^{-e_2} \text{ are cyclic permutations of length } 3.$
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(I) When $\{b_1, b_2\} \cap \{c_1, c_2\} \neq \emptyset$: $\exists H \leq S_5 \text{ s.t. } \nu_1, \nu_2 \in H \simeq S_4$.

$$\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
 $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$
 $\nu_2 \sim_{\text{conj}} \sigma^{-e_2} \text{ are cyclic permutations of length 3.}$
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(I) When $\{b_1, b_2\} \cap \{c_1, c_2\} \neq \emptyset$: $\exists H \leq S_5 \text{ s.t. } \nu_1, \nu_2 \in H \simeq S_4.$ $\vdots \tau_1^{e_1} = \nu_2^{-1} \nu_1 \nu_2^2 \in H.$

$$u_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
 $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$
 $\nu_2 \sim_{\text{conj}} \sigma^{-e_2} \text{ are cyclic permutations of length 3.}$
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(I) When $\{b_1, b_2\} \cap \{c_1, c_2\} \neq \emptyset$: $\exists H \leq S_5 \text{ s.t. } \nu_1, \nu_2 \in H \simeq S_4.$ $\therefore \tau_1^{e_1} = \nu_2^{-1} \nu_1 \nu_2^2 \in H.$ As $\tau_1 \in \langle \tau_1^{e_1} \rangle$, $\tau_2 \in \langle \nu_2 \rangle$, $\tau_3 \in \langle \nu_1 \rangle$, we have $\tau_1, \tau_2, \tau_3 \in H$ and $\sigma = \tau_1 \tau_2 \tau_3 \in H.$

$$\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
 $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$
 $\nu_2 \sim_{\text{conj}} \sigma^{-e_2}$ are cyclic permutations of length 3.
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(I) When $\{b_1, b_2\} \cap \{c_1, c_2\} \neq \emptyset$:

 $\exists H < S_5 \text{ s.t. } \nu_1, \nu_2 \in H \simeq S_4.$

 $\therefore \tau_1^{e_1} = \nu_2^{-1} \nu_1 \nu_2^2 \in H$.

As $\tau_1 \in \langle \tau_1^{e_1} \rangle$, $\tau_2 \in \langle \nu_2 \rangle$, $\tau_3 \in \langle \nu_1 \rangle$, we have $\tau_1, \tau_2, \tau_3 \in H$ and $\sigma = \tau_1 \tau_2 \tau_3 \in H$.

They are in $H \simeq S_4$ and have order 3, so they are conjugate to σ in H.

$$u_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
 $\therefore \nu_1 \nu_2 \sim_{\text{conj}} \tau_1^{e_1} \sim_{\text{conj}} \sigma^{e_1}, \ \nu_1 \sim_{\text{conj}} \sigma^{-e_3},$
 $\nu_2 \sim_{\text{conj}} \sigma^{-e_2} \text{ are cyclic permutations of length 3.}$
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(I) When $\{b_1, b_2\} \cap \{c_1, c_2\} \neq \emptyset$:

 $\exists H < S_5 \text{ s.t. } \nu_1, \nu_2 \in H \simeq S_4.$

 $\therefore \tau_1^{e_1} = \nu_2^{-1} \nu_1 \nu_2^2 \in H$.

As $\tau_1 \in \langle \tau_1^{e_1} \rangle$, $\tau_2 \in \langle \nu_2 \rangle$, $\tau_3 \in \langle \nu_1 \rangle$, we have $\tau_1, \tau_2, \tau_3 \in H$ and $\sigma = \tau_1 \tau_2 \tau_3 \in H$.

They are in $H \simeq S_4$ and have order 3, so they are conjugate to σ in H.

 $\therefore \exists$ solution over $H \simeq S_4$, contradicting Theorem 8.

$$u_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$
Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$
(II) When $\{b_1, b_2\} = \{c_1, c_2\} \neq \emptyset$:

$$\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$

Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(II) When $\{b_1, b_2\} = \{c_1, c_2\} \neq \emptyset$: Now $\nu_1\nu_2(c_2) = b_1$, $\nu_1\nu_2(b_1) = b_2$, $\nu_1\nu_2(b_2) = a \neq c_2$, so $\nu_1\nu_2$ cannot be a cyclic permutation of length 3. Contradiction.

$$\nu_2 \tau_1^{e_1} \nu_2^{-1} = \nu_1 \nu_2, \ \nu_1 := \tau_3^{-e_3}, \ \nu_2 := \tau_2^{-e_2}.$$

Write $\nu_1 = (a \ b_1 \ b_2), \ \nu_2 = (a \ c_1 \ c_2).$

(II) When $\{b_1, b_2\} = \{c_1, c_2\} \neq \emptyset$: Now $\nu_1\nu_2(c_2) = b_1$, $\nu_1\nu_2(b_1) = b_2$, $\nu_1\nu_2(b_2)=a\neq c_2$, so $\nu_1\nu_2$ cannot be a cyclic permutation of length 3. Contradiction.

By this theorem and Corollary 5, the smallest possible size of our target function over A_5 is 4.

On the Exponents

Lemma 12

Any two cyclic permutations ρ , ν of length 3 are conjugate in A_5 .

(Proof) Take a transposition $\tau \in S_5$ s.t. $\rho \tau = \tau \rho$. For $\nu = u \rho u^{-1}$ with $u \in S_5$, $\nu = (u\tau)\rho(u\tau)^{-1}$, and either u or $u\tau$ is in A_5 as $[S_5:A_5]=2$.

On the Exponents

Corollary 13

Let $\sigma = (1\ 2\ 3)$. If \exists our target function of size ℓ and exponent (e_1, \ldots, e_ℓ) over A_5 s.t. $e_i \in \{1, 2\}$, then \exists our target function of size ℓ and exponent $(1, 1, \ldots, 1)$ over A_5 .

On the Exponents

Corollary 13

Let $\sigma = (1\ 2\ 3)$. If \exists our target function of size ℓ and exponent (e_1, \ldots, e_ℓ) over A_5 s.t. $e_i \in \{1, 2\}$, then \exists our target function of size ℓ and exponent $(1, 1, \ldots, 1)$ over A_{5} .

(Proof) As $\tau_i^{e_i} \sim_{\text{conj}} \tau_i$ by Lemma 12, $(\tau_1^{e_1}, \dots, \tau_\ell^{e_\ell})$ is a solution of the equations corresponding to exponent $(1, 1, \ldots, 1)$.

A Smallest Solution

We search (by SageMath) for a solution of the equations over A_5 corresponding to our target function of size 4 (cf. Corollary 5 and Theorem 11) and exponent (1,1,1,1) (cf. Corollary 13), where $\sigma=(1\ 2\ 3)$:

$$\tau_1 \tau_2 \tau_3 \tau_4 = {\tau_1}^2 {\tau_2}^2 {\tau_3}^2 {\tau_4}^2 = (1 \ 2 \ 3) \ .$$

We found

$$\tau_1 := (2 4 5), \ \tau_2 := (1 5 4),
\tau_3 := (3 4 5), \ \tau_4 := (2 5 4).$$

A Smallest Solution

Moreover,

$$au_1 = (1\ 2\ 4\ 3\ 5)\sigma(1\ 2\ 4\ 3\ 5)^{-1}\ ,$$
 $au_2 = (1\ 5\ 2\ 4\ 3)\sigma(1\ 5\ 2\ 4\ 3)^{-1}\ ,$
 $au_3 = (1\ 3\ 5\ 2\ 4)\sigma(1\ 3\ 5\ 2\ 4)^{-1}\ ,$
 $au_4 = (1\ 2\ 5\ 3\ 4)\sigma(1\ 2\ 5\ 3\ 4)^{-1}\ .$

Then by following the proof of Lemma 2, we obtain

$$F(x) := (1\ 2\ 4\ 3\ 5)x(1\ 3\ 5)x \\ \cdot (1\ 4\ 3)x(1\ 5)(2\ 3)x(1\ 4\ 3\ 5\ 2) ,$$

simpler than the previously known F (of size 6 and exponent (1, 1, 2, 1, 1, 2).

Future Work

- (Im)possibility of our target function over other groups
- Construction of compact HE over a finite non-solvable group G (hopefully $G=A_5$)

References

- [Barrington et al., 1990] D. A. M. Barrington, H. Straubing, D. Thérien: Non-Uniform Automata over Groups, Information and Computation, 1990
- [Choi et al., 2007] S.-J. Choi, S. R. Blackburn, P. R. Wild: Cryptanalysis of a Homomorphic Public-Key Cryptosystem over a Finite Group, Journal of Mathematical Cryptology, vol.1, pp.351–358, 2007
- [van Dijk et al., 2010] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan: Fully Homomorphic Encryption over the Integers, **EUROCRYPT 2010**

References

- [Gentry, 2009] C. Gentry: Fully homomorphic encryption using ideal lattices, STOC 2009
- [Grigoriev & Ponomarenko, 2004] D. Grigoriev,
 I. Ponomarenko: Homomorphic Public-Key
 Cryptosystems over Groups and Rings, in:
 Complexity of Computations and Proofs,
 Quaderni di Matematica 13, Dept. of
 Mathematics, Seconda Università di Napoli,
 Caserta, 2004, pp.305–325

References

- [N., 2021] K. Nuida: Towards Constructing Fully Homomorphic Encryption without Ciphertext Noise from Group Theory, in: International Symposium on Mathematics, Quantum Theory, and Cryptography, Mathematics for Industry book series vol.33, Springer, pp.57–78, 2021
- [N., arXiv 2022] K. Nuida: On Compression Functions over Groups with Applications to Homomorphic Encryption, arXiv:2208.02468
- [Ostrovsky & Skeith III, 2008] R. Ostrovsky,
 W. E. Skeith III: Communication Complexity in Algebraic Two-Party Protocols, CRYPTO 2008