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Abstract

In this note, we describe an explicit construction of the outer au-
tomorphism of the symmetric group S6 on six letters. We also explain
the fact that Sn for n ̸= 6 has no outer automorphisms.

1 The Map

We briefly say (by postponing the detailed explanation) that, the group
automorphism F : S6 → S6 uniquely determined by the following conditions

F ((12)) = (12)(34)(56)

F ((23)) = (16)(24)(35)

F ((34)) = (14)(23)(56)

F ((45)) = (16)(25)(34)

F ((56)) = (13)(24)(56)

is the outer automorphism of S6 which is the subject of this note. See
Section 4 for some more properties of the map.

2 Preliminaries

In this note, n denotes a positive integer. The symmetric group of degree
n, denoted by Sn, is the set of permutations of integers from 1 to n. This
set is endowed with a binary operator defined by the composition of two
permutations as maps. Then Sn forms a group with respect to this operator.
We use notations like f · g and fg for the binary operator, rather than the
notation f ◦ g for composite maps.

Each element of Sn can be visualized by using an “Amida diagram”
(“Amida-kuji” in Japanese) with n vertical axes (see Figure 1 for example).
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f(3) f(4) f(2) f(1)

Figure 1: Amida diagram representing the permutation f ∈ S4 defined by
f(1) = 4, f(2) = 3, f(3) = 1 and f(4) = 2

Here, the vertical axes correspond to integers 1, . . . , n from left to right. To
determine the image f(i) of a number i by a given Amida diagram, we start
from the top of i-th vertical axis and follow the line downward, where if
we meet an endpoint of a horizontal edge joining the current vertical axis
with one of the adjacent vertical axes, we move to the opposite vertical axis
(by crossing the horizontal edge) and then continue to go downward.1 Then
we determine f(i) = j, if we finally reach to the bottom of j-th vertical
axis. By the definition, distinct numbers are mapped to different numbers,
therefore f is a permutation; f ∈ Sn.

2 When f, g ∈ Sn are determined
by Amida diagrams as above, we can construct another Amida diagram by
concatenating the two Amida diagrams, with the one for f combined at the
bottom of the one for g; the resulting Amida diagram defines the product
f · g ∈ Sn. On the other hand, we can construct another Amida diagram
by turning the Amida diagram for f upside down, which corresponds to the
inverse f−1 of f .

Conversely, given an element f of Sn, we can construct an Amida dia-
gram which determines the f as follows. First, for the number (say, i) which
is mapped by f to n, we join i-th and (i+1)-th vertical axes by a horizontal
edge, join (i+1)-th and (i+2)-th vertical axes by a horizontal edge, and so
on, and join (n − 1)-th and n-th vertical axes by a horizontal edge. These
edges let the number i go to n-th vertical axis correctly. Secondly, we let
the number mapped by f to n − 1 go to (n − 1)-th vertical axis correctly,

1We should not draw two horizontal edges from the same point in an Amida diagram,
because the choice of an edge to follow becomes ambiguous. We also suppose the total
number of horizontal edges to be finite.

2A rigorous proof can be given by a recursive argument with respect to the total number
of horizontal edges.
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by joining vertical axes except for n-th vertical axis by horizontal edges in a
similar way. Now these two numbers have correctly moved to (n−1)-th and
n-th vertical axes, respectively. Iterating this process recursively, we finally
obtain the desired Amida diagram corresponding to f .

Instead of drawing such Amida diagrams, we usually use the following
notations for specifying elements of Sn. For distinct numbers a1, . . . , ak
in {1, . . . , n}, let (a1 a2 . . . ak) denote the element of Sn which maps a1
to a2, a2 to a3,..., ak−1 to ak, and ak to a1, and fixes any other number.
Such an element of Sn is called a cyclic permutation (or simply a cycle),
and k is called the length of the cycle. We note that, for an index i with
1 ≤ i ≤ k, the cyclic permutation (ai ai+1 . . . ak a1 a2 . . . ai−1) is equal to
(a1 a2 . . . ak). By observing the orbits generated by applying an element f
of Sn to each number repeatedly, the following well-known fact is derived:

Proposition 1. Any element of Sn can be expressed as a product of cyclic
permutations (a1a2 . . . ak) for which the sets {a1, a2, . . . , ak} are disjoint to
each other.

For an element f of Sn, if an expression of f as a product of disjoint
cycles as in Proposition 1 involves mi cycles of length i for each i, we say
that f has cycle type (1m12m2 . . . ). Here, by supplying cycles (j) of length
one (i.e., identity permutation) for numbers j fixed by f if necessary, we
may assume without loss of generality that an expression of f as a product
of disjoint cycles always involves every number from 1 to n, each of which
appears exactly once. Namely, we assume that

∑
j≥1mj · j = n holds for

the type of an element of Sn. This requirement makes the type of f ∈ Sn

uniquely determined, independent of such an expression of f as a product
of disjoint cycles.3 Moreover, the following property is well-known:

Proposition 2. For elements f, g of Sn, f and g are conjugate (i.e., g =
hfh−1 for some h ∈ Sn) if and only if f and g have the same cycle type.

A cyclic permutation (a1 a2) of length two is called a transposition, and
such a transposition with a2 = a1+1 is called an adjacent transposition. For
example, the permutation f ∈ S4 given in Figure 1 is a cyclic permutation
f = (1423), and it can be written as f = (23)(12)(34)(23)(12) by a product
of adjacent transpositions. By the correspondence between permutations
and Amida diagrams mentioned above, adjacent transpositions correspond
to Amida diagrams with only one horizontal edge. By combining this fact
with the above-mentioned construction of an Amida diagram for a given
permutation, we have the following well-known result:

3In fact, such an expression of f is essentially unique.
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Proposition 3. Any element of Sn can be expressed as a product of adjacent
transpositions.

We note, however, that the way of expressing an element of Sn as a
product of adjacent transpositions is not necessarily unique (even if we do
not use obviously redundant adjacent transpositions like (12)(12)). For ex-
ample, the transposition (13) can be expressed as (12)(23)(12) and also as
(23)(12)(23). More generally, adjacent transpositions satisfy the following
relations. Here, id denotes the identity permutation (i.e., the element of Sn

that fixes every number), and the adjacent transposition (i i+1) is denoted
by si.

For 1 ≤ i ≤ n− 1 : sisi = id . (1)

For 2 ≤ i ≤ n− 1 : si−1sisi−1sisi−1si = id . (2)

For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 with |i− j| ≥ 2 : sisjsisj = id . (3)

Moreover, it is remarkable and well-known that, if an element of Sn can be
expressed as a product of adjacent transpositions in two different ways, then
the difference of the expressions is deduced from the three kinds of relations
above (a rigorous explanation of this fact is omitted here).4

If a bijection F : Sn → Sn from the group Sn to itself satisfies that
F (f · g) = F (f) · F (g) for any f, g ∈ Sn, we call the F an automorphism of
Sn. The set Aut(Sn) of all automorphisms of Sn also forms a group with
respect to composition of maps, which is called the automorphism group of
Sn. For example, for each element f of Sn, the map that maps an element
g ∈ Sn to fgf−1 ∈ Sn is an automorphism of Sn. Such an automorphism
is called an inner automorphism; and the other automorphisms are called
outer automorphisms. The following property of inner automorphisms is
derived from Proposition 2:

Proposition 4. For any inner automorphism F of Sn, any element of Sn

and its image by F have the same cycle type.

3 No Outer Automorphisms Exist Except for S6

In this section, we show that, for n ̸= 6, every automorphism of Sn is an
inner automorphism. We note that, the results in this section are also valid
for n = 6 unless we explicitly specify that n ̸= 6.

4Namely, by choosing the set of all adjacent transpositions as a generating set of Sn,
the above-mentioned three kinds of relations form the fundamental relations for Sn.
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Lemma 1. If an automorphism F of Sn maps every transposition to a
transposition, then F is an inner automorphism.

Proof. It is sufficient to show that, for some distinct numbers a1, a2, . . . , an ∈
{1, 2, . . . , n}, we have F ( (i i + 1) ) = (ai ai+1) for every index i with 1 ≤
i ≤ n − 1. Indeed, in this case, by choosing the element f ∈ Sn satisfying
f(j) = aj for each j ∈ {1, 2, . . . , n}, we have F (si) = fsif

−1 for each
adjacent transposition si = (i i+ 1), while Proposition 3 implies that every
g ∈ Sn can be written as a product of the elements si, therefore we have
F (g) = fgf−1.

From now, we verify the above-mentioned property. We consider the case
n ≥ 2, since the case n = 1 is trivial. First, by the assumption of this lemma,
F ( (12) ) is a transposition, which can be written as F ( (12) ) = (a1a2). This
proves the claim when n = 2; we consider the case n ≥ 3 from now on.
Secondly, by the assumption of this lemma, we have F ( (23) ) = (b1b2) for
some b1 and b2. Then F ( (12)(23) ) = F ( (12) )F ( (23) ) = (a1a2)(b1b2). Now
if two sets {a1, a2} and {b1, b2} are disjoint, then we have ((a1a2)(b1b2))

3 ̸=
id, while ((12)(23))3 = id; this is a contradiction. Therefore, {a1, a2} and
{b1, b2} have a common element, say (by symmetry) a2 = b1. We rewrite
b2 as a3. This proves the claim when n = 3; we consider the case n ≥ 4
from now on. By the assumption of this lemma, we have F ( (34) ) = (c1c2)
for some c1 and c2. Now, owing to the fact ((23)(34))3 = id, a similar
argument implies that {a2, a3} and {c1, c2} have a common element, while
the fact ((12)(34))2 = id implies that {a1, a2} and {c1, c2} should be disjoint.
Therefore, we have a3 ∈ {c1, c2}, and (c1c2) can be written as (c1c2) = (a3a4)
for some a4. By iterating this argument, we finally have the above-mentioned
property. Hence, this lemma holds.

By combining Proposition 4 with Lemma 1, we have the following prop-
erty:

Corollary 1. For an automorphism F of Sn, F is an inner automorphism
if and only if a transposition in Sn is always mapped by F to a transposition.

Lemma 2. For an automorphism F of Sn and any possible cycle type of
elements of Sn, the cycle type of F (f) for any element f ∈ Sn of the fixed
cycle type is uniquely determined, regardless of the choice of such an element
f .

Proof. Let g ∈ Sn be any element with the same cycle type as f . By
Proposition 2, f and g are conjugate, namely g = hfh−1 for some h ∈ Sn.
Now we have F (g) = F (hfh−1) = F (h)F (f)F (h)−1, therefore F (f) and
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F (g) are conjugate to each other as well. By Proposition 2, this implies
that F (f) and F (g) have the same cycle type. Hence, this lemma holds.

Lemma 3. For any integer a with 0 ≤ a ≤ n/2, the number of elements of
Sn having cycle type (1n−2a2a) is n(n− 1) · · · (n− 2a+ 1)/(a! · 2a).
Proof. Let Z be the set of elements of Sn with cycle type (1n−2a2a), let X
be the set of sequences [b1, . . . , b2a] of 2a distinct numbers in {1, . . . , n}, and
let Y be the set of sequences [B1, . . . , Ba] of a disjoint subsets B1, . . . , Ba ⊂
{1, . . . , n} of size two. We define maps F : X → Y and G : Y → Z by

F ([b1, . . . , b2a]) = [{b1, b2}, {b3, b4}, . . . , {b2a−1, b2a}] ,

G([{b1, b2}, {b3, b4}, . . . , {b2a−1, b2a}]) = (b1 b2)(b3 b4) · · · (b2a−1 b2a) .

(For the definition of G, note that (x y) = (y x) as transpositions.) Then, the
elements of X mapped by F to a given [B1, B2, . . . , Ba] ∈ Y are nothing but
the sequences obtained by first arranging the two elements of B1, secondly
arranging the two elements of B2, and so on, and finally arranging the
two elements of Ba. Since there are two ways of ordering the elements of
each Bi, the total number of such sequences is 2a. Therefore |Y | = |X|/2a
holds. On the other hand, the elements of Y mapped by G to a given
(b1 b2)(b3 b4) · · · (b2a−1 b2a) ∈ Z are nothing but the sequences obtained by
rearranging the a subsets in the sequence [{b1, b2}, {b3, b4}, . . . , {b2a−1, b2a}].
The total number of such sequences is a!, therefore |Z| = |Y |/a! holds.
Moreover, we have |X| = n(n− 1) · · · (n− 2a+ 1). This implies that

|Z| = |X|/(a! · 2a) = n(n− 1) · · · (n− 2a+ 1)/(a! · 2a) .

Hence, this lemma holds.

For an automorphism F of Sn, the square of the image of any transposi-
tion by F is the identity permutation (since the transposition has the same
property), therefore its cycle type can be written as (1n−2a2a) (where a is
an integer with 1 ≤ a ≤ n/2). Owing to Lemma 2, the cycle type does not
depend on the choice of the original transposition. By applying Lemma 2 to
F−1 as well, it follows that every element of Sn with cycle type (1n−2a2a) is
the image by F of some transposition. This implies that the transpositions
in Sn are in one-to-one correspondence via F to the elements of Sn with
cycle type (1n−2a2a). Therefore, the number of transpositions in Sn is equal
to the number of elements of Sn with cycle type (1n−2a2a). By this and
Lemma 3, we have the following equality:

n(n− 1)

2
=

n(n− 1) · · · (n− 2a+ 1)

a! · 2a
. (4)
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Lemma 4. For integers n, a with 2 ≤ a ≤ n/2, the condition (4) holds if
and only if (n, a) = (6, 3).

Proof. Let fa(n) = (n − 2)(n − 3) · · · (n − 2a + 1). Then the condition
(4) is equivalent to the condition fa(n) = a! · 2a−1. Now for each fixed
a, the function fa(n) is monotonically increasing in n. When a = 2, we
have a! · 2a−1 = 4, f2(4) = 2 and f2(5) = 6, therefore the above-mentioned
monotonicity of fa(n) implies that the condition (4) does not hold. From
now on, we consider the case a ≥ 3. Now we have

fa(2a) = (2a− 2)(2a− 3) · · · 2 · 1
= 2a−1(a− 1)! · (2a− 3)(2a− 5) · · · 3 · 1
≥ 2a−1(a− 1)! · a = 2a−1 · a! ,

where the equality holds if and only if a = 3. Therefore, by the monotonicity
of fa(n), the condition (4) does not hold for a ≥ 4; while, for the case a = 3,
the condition (4) holds if and only if n = 2a = 6. Hence, this lemma
holds.

Theorem 1. For n ̸= 6, every automorphism of Sn is an inner automor-
phism.

Proof. By Lemma 4 and the argument just before the lemma, if n ̸= 6, then
for any automorphism F of Sn, the image by F of any transposition in Sn

has cycle type (1n−221), i.e., it is a transposition as well. Therefore, F is an
inner automorphism by Lemma 1. Hence, this theorem holds.

4 The Outer Automorphism of S6

In this section, we show that an outer automorphism of S6 exists, and it is
“essentially” unique. Here, the “essentially” means that the outer automor-
phism of S6 is uniquely determined except the difference of inner automor-
phisms; more precisely, we have the following result:

Theorem 2. If F and G are outer automorphisms of S6, then we have
G = F ◦ I for some inner automorphism I.

Proof. First, in a way similar to the proof of Theorem 1, Lemma 4 and
the argument just before the lemma imply that the images by F and by
G of a transposition have cycle type (1421) (i.e., it is a transposition) or
(1023). Now in the first case, Lemma 1 implies that either F or G is an
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inner automorphism, contradicting the assumption of the theorem. Hence,
the images of any transposition by F and by G have cycle type (1023).
Moreover, by the argument just before Lemma 4, the transpositions in S6

are in one-to-one correspondence with the elements of S6 with cycle type
(1023) via both F and G. Now the automorphism F−1 ◦G of S6 maps any
transposition to a transposition, therefore F−1◦G is an inner automorphism
by Lemma 1. By writing the F−1 ◦ G as I, we have F ◦ I = G, therefore
this theorem holds.

From now on, we show that the automorphism F mentioned in Section 1
indeed exists. Once it is done, the F is an outer automorphism by definition,
and Theorem 2 implies that this is the unique outer automorphism except
the difference of inner automorphisms. Now we note that, if such an F
exists, then the property of the automorphism F implies the following:

(*) For any f ∈ S6, if f = t1t2 · · · tk with adjacent transpositions ti, then
F (f) = F (t1)F (t2) · · ·F (tk) holds, where each F (ti) is the element of
S6 specified in Section 1.

We are going to define the desired map F by the condition (*). Owing to
Proposition 3, such an element f ∈ S6 can be written as f = t1t2 · · · tk as
in the condition (*). The remaining task is to verify that, for any other
expression f = t′1t

′
2 · · · t′k′ as above, the resulting images of f defined by the

two expressions of f coincide with each other. As mentioned in Section 2,
the difference of the two expressions of f is deduced from combinations of the
three kinds of relations (1), (2) and (3). On the other hand, a straightforward
calculation using the precise values of F (si) specified in the definition of F
implies that, the left-hand sides of these relations are all mapped by the F
to the identity permutation id. Namely,

for (1): F (si)F (si) = id ,

for (2): F (si−1)F (si)F (si−1)F (si)F (si−1)F (si) = id ,

for (3): F (si)F (sj)F (si)F (sj) = id .

Then, the difference of the two expressions of f vanishes when these are
mapped by F , therefore we have

F (t1)F (t2) · · ·F (tk) = F (t′1)F (t′2) · · ·F (t′k′) .

Hence, it follows that the automorphism F specified in Section 1 indeed
exists.5 The argument above has derived the following theorem:

5This argument can of course be formalized by using terminology of group theory, but
we omit it here for the sake of simplicity.
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Theorem 3. An outer automorphism of S6 exists, and it is essentially
unique in the sense as in Theorem 2.

From now, we give some calculation results about the outer automor-
phism F . We quote the definition of F here for the sake of convenience
(where we abbreviate the relation F (x) = y to x 7→ y):

(12) 7→ (12)(34)(56)

(23) 7→ (16)(24)(35)

(34) 7→ (14)(23)(56)

(45) 7→ (16)(25)(34)

(56) 7→ (13)(24)(56)

First, we calculate the images by F of the other transpositions:

(13) = (12)(23)(12) 7→ (12)(34)(56) · (16)(24)(35) · (12)(34)(56) = (13)(25)(46)

(24) = (23)(34)(23) 7→ (16)(24)(35) · (14)(23)(56) · (16)(24)(35) = (13)(26)(45)

(35) = (34)(45)(34) 7→ (14)(23)(56) · (16)(25)(34) · (14)(23)(56) = (12)(36)(45)

(46) = (45)(56)(45) 7→ (16)(25)(34) · (13)(24)(56) · (16)(25)(34) = (12)(35)(46)

(14) = (12)(24)(12) 7→ (12)(34)(56) · (13)(26)(45) · (12)(34)(56) = (15)(24)(36)

(25) = (23)(35)(23) 7→ (16)(24)(35) · (12)(36)(45) · (16)(24)(35) = (15)(23)(46)

(36) = (34)(46)(34) 7→ (14)(23)(56) · (12)(35)(46) · (14)(23)(56) = (15)(26)(34)

(15) = (12)(25)(12) 7→ (12)(34)(56) · (15)(23)(46) · (12)(34)(56) = (14)(26)(35)

(26) = (23)(36)(23) 7→ (16)(24)(35) · (15)(26)(34) · (16)(24)(35) = (14)(25)(36)

(16) = (12)(26)(12) 7→ (12)(34)(56) · (14)(25)(36) · (12)(34)(56) = (16)(23)(45)

Secondly, for each possible cycle type of elements of S6, we calculate the
image by F of an element of S6 having the cycle type:

(12)(34) = (12) · (34) 7→ (12)(34)(56) · (14)(23)(56) = (13)(24)

(12)(34)(56) = (12)(34) · (56) 7→ (13)(24) · (13)(24)(56) = (56)

(123) = (12) · (23) 7→ (12)(34)(56) · (16)(24)(35) = (154)(236)

(123)(45) = (123) · (45) 7→ (154)(236) · (16)(25)(34) = (124653)

(123)(456) = (123)(45) · (56) 7→ (124653) · (13)(24)(56) = (263)

(1234) = (123) · (34) 7→ (154)(236) · (14)(23)(56) = (2645)

(1234)(56) = (1234) · (56) 7→ (2645) · (13)(24)(56) = (13)(2546)

(12345) = (1234) · (45) 7→ (2645) · (16)(25)(34) = (14356)

(123456) = (12345) · (56) 7→ (14356) · (13)(24)(56) = (15)(234)
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By these results and Lemma 2, the cycle types of elements of S6 are changed
by applying the map F as follows: Types (1421) and (23) are exchanged;
types (1331) and (32) are exchanged; types (112131) and (61) are exchanged;
and any other type is not changed.
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