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Abstract

“Combinatorial proof” means a proof of equation for non-negative integers by counting the number
of elements in some finite set in two different ways. In this note, we describe combinatorial proofs for
some facts in number theory.

Notations
Let Z>0 denote the set of positive integers, and let Z≥0 denote the set of non-negative integers. For n,m ∈ Z,
we define [n,m] := {k ∈ Z | n ≤ k ≤ m}. For a set S and n ∈ Z≥0, we write the set of all n-element subsets
of S as

(
S
n

)
. That is,

(
S
n

)
= {T ⊆ S : |T | = n}. For n ∈ Z>0 and a, b ∈ Z, we write a ≡n b to mean a ≡ b

(mod n). Moreover, let a mod n denote the remainder of a ∈ Z modulo n ∈ Z>0.

1 Warm-Up: Expression of Binomial Coefficients
First, as an example of the methodology of combinatorial proofs itself, we describe a proof for the explicit
expression of binomial coefficients. Here, for non-negative integers n,m ∈ Z≥0, we define the binomial
coefficient

(
n
m

)
to be the number of the m-element subsets of an n-element set (e.g., [1, n]). By using the

notation above, it can be expressed as
(
n
m

)
= |

(
[1,n]
m

)
|. This value is, by definition, a non-negative integer.

We describe a combinatorial proof of the following well-known expression of binomial coefficients. We note
that if m > n, then

(
n
m

)
= 0.

Proposition 1. If n,m ∈ Z≥0 and m ≤ n, then
(
n

m

)
=

n!

m!(n−m)!
.

Proof. We enumerate the elements of the n-th symmetric group Sn in two ways. First, for σ ∈ Sn, there are
n choices for σ(1), there are n− 1 choices for σ(2), there are n− 2 choices for σ(3), and so on, and hence we
have |Sn| = n!.

Secondly, we consider the following way of enumeration: (i) choose the set I of m numbers σ(1), . . . , σ(m);
(ii) determine the order of elements of I; and (iii) determine the order of the remaining elements not in I.
There are

(
n
m

)
choices for (i) by the definition of binomial coefficients. For each of them, there are m! choices

for (ii) and (n−m)! choices for (iii). As these numbers are independent of I, the total number of elements
of Sn is equal to

(
n
m

)
·m!(n−m)!.

As a result, we have n! = |Sn| =
(
n
m

)
· m!(n − m)!, which implies the claim by dividing both sides by

m!(n−m)!.

2 Fermat’s Little Theorem
The statement of Fermat’s Little Theorem is as follows (which is one of the equivalent formulations).

Theorem 1 (Fermat’s Little Theorem). Let p be a prime and a ∈ Z. Then ap ≡p a.
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This is a famous result in elementary number theory, and some well-known proofs are one using the
multiplicative group of the finite field Fp and one by mathematical induction using the expansion of (a+1)p.
Here we describe a combinatorial proof.

Proof. We may assume without loss of generality that a > 0, by adding some multiple of p to a if necessary.
It suffices to show that ap − a is a multiple of p.

Let X := [1, a]p, i.e., the set of sequences of length p on the set {1, 2, . . . , a}. We have |X| = ap.
On the other hand, we consider the cyclic shift operation σ on sequences x = (x1, x2, . . . , xp−1, xp) ∈ X

defined by σ(x) = (x2, x3, . . . , xp, x1) ∈ X. This is a permutation on X with σp = id. To analize the orbit
decomposition of X by the action of the group G := 〈σ〉 of order p, we say that x ∈ X is of type 1 if σ(x) = x,
and of type 2 if σk(x) 6= x for any k ∈ [1, p−1] (note that both cannot be simultaneously satisfied, as p ≥ 2).
Now assume that there is an x ∈ X not of type 1 nor type 2. As x is not of type 2, there is a k ∈ [1, p− 1]
with σk(x) = x; we choose such a minimum k. As x is not of type 1 either, we have 2 ≤ k ≤ p− 1. As p is
prime, p is not a multiple of k, and by dividing p by k, we have p = qk+r for some q ∈ Z≥0 and r ∈ [1, k−1].
Now σk(x) = x and hence σqk(x) = x by the choice of k, while σp(x) = σqk+r(x) = x. Comparing them
implies that σr(x) = x, contradicting the minimality of k, as 1 ≤ r < k. Hence, each element of X is either
of type 1 or of type 2.

For x ∈ X, being of type 1 is equivalent to that all components are equal, therefore the number of such
elements of X is a. Hence the number of elements in X of type 2 is ap − a. On the other hand, the set X2

of elements in X of type 2 is invariant under the action of G, and each x ∈ X2 has trivial fixing subgroup
Gx := {τ ∈ G | τ(x) = x} = {id}. Therefore X2 is decomposed into the G-orbits each having cardinality
|G| = p, implying that |X2| ≡p 0. Hence we have ap − a ≡p 0, as desired.

3 On Divisors of Binomial Coefficients
Proposition 2. For n,m ∈ Z>0, if n is coprime to m, then

(
n
m

)
is a multiple of n.

A special case of this proposition is a well-known fact that if p is prime and k ∈ [1, p − 1], then
(
p
k

)
is

a multiple of p. We note that the proof for Fermat’s Little Theorem by mathematical induction using the
expansion of (a+1)p, briefly mentioned in Section 2, uses this fact, while our combinatorial proof above did
not require this fact.

Proof. Let X :=
(
[1,n]
m

)
. Then |X| =

(
n
m

)
by the definition of binomial coefficients.

Let σ denote the cyclic permutation (1 2 · · · n) ∈ Sn of length n. Then G := 〈σ〉 acts on X by
σ · S = {σ(s1), . . . , σ(sm)} for S = {s1, . . . , sm} ∈ X. Each orbit of X by this action has order at most
|G| = n. If each orbit has order precisely n, then the orbit decomposition implies that |X| =

(
n
m

)
is a

multiple of n, as desired. From now, we assume that there is an orbit in X with order less than n and deduce
a contradiction. Let S ∈ X be an element of this orbit.

By the choice of S, there is a k ∈ [1, n − 1] with σk · S = S. We choose such a minimum k. Then
σk(a) ∈ S for each a ∈ S. Now by dividing n by k, we have n = qk + r for some q ∈ Z≥0 and r ∈ [0, k − 1].
For each a ∈ S, we have σn(a) = a by the definition of σ, therefore σn+k−r(a) = σk−r(a); while we have
n + k − r = (q + 1)k and therefore σk · S = S by the choice of k, implying that σn+k−r(a) ∈ S. Hence we
have σk−r(a) ∈ S. This implies that σk−r · S = S, which contradicts the minimality of k if r > 0. Therefore
we have r = 0 and k is a divisor of n. Let τ := σk and d := n/k. Then τd = σn = id. Moreover, for any
a ∈ S and ` ∈ [1, d − 1], as 1 ≤ k · ` < n, we have τ `(a) = σk·`(a) 6= a by the definition of σ. This implies
that each orbit of S by the action of H := 〈τ〉 consists of precisely d elements, therefore |S| is a multiple of
d. However, now |S| = m is coprime to n and d is a divisor of n with d > 1, a contradiction. This concludes
the proof.

We note that the converse of Proposition 2 does not hold;
(
10
4

)
= 10·9·8·7

4·3·2·1 = 210 gives a counterexample.
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4 Lucas’ Theorem
Lucas’ Theorem [1] in elementary number theory is stated as follows. Here we describe a combinatorial
proof.

Theorem 2 (Lucas’ Theorem). Let p be a prime and let d ∈ Z>0. Suppose that n,m ∈ Z≥0 can be expressed
by d-digit p-ary expressions, say n = (nd−1nd−2 · · ·n0)p, m = (md−1md−2 · · ·m0)p (where ni,mi ∈ [0, p− 1]
and the most significant digits may be 0). Then we have(

n

m

)
≡p

(
nd−1

md−1

)(
nd−2

md−2

)
· · ·

(
n0

m0

)
.

Proof. Let X :=
(
[0,n−1]

m

)
. We have |X| =

(
n
m

)
by the definition of binomial coefficients.

For ` ∈ [0, d− 1] and α ∈ [0, n` − 1], we define

Y (`, α) := {(nd−1 · · ·n`+1α ∗`−1 · · · ∗1 ∗0)p ∈ Z≥0 | ∗i ∈ [0, p− 1] for any i ∈ [0, `− 1]} .

They are disjoint and form a partition of [0, n − 1]. For k ∈ [0, d − 2] and x ∈ Z≥0, we define fk(x) to be
the number obtained by changing the k-th or lower digits xk, . . . , x1, x0 to p − 1 in the p-ary expression
x = (· · ·x2x1x0)p. Moreover, for x ∈ Y (`, α), we define σk(x) in a way that if fk(x) ≤ n − 1, then σk(x) is
obtained by changing the k-th digit xk of x to xk + 1 mod p, and if fk(x) > n− 1, then σk(x) = x. Now for
any x ∈ Y (`, α), if k ≤ ` − 1, then we have fk(x) ≤ f`−1(x) = (nd−1 · · ·n`+1(α + 1)0 · · · 00)p − 1 ≤ n − 1,
therefore x is not fixed by σk, and σk(x) ∈ Y (`, α) by the definition of Y (`, α). On the other hand, if k ≥ `,
then we have fk(x) ≥ f`(x) = (nd−1 · · ·n`+1(p−1) · · · (p−1)(p−1))0 ≥ n > n−1, therefore σk(x) = x. This
implies that the set Y (`, α) is invariant under any σk; each of σ`, . . . , σd−2 fixes every element of Y (`, α),
while each of σ0, . . . , σ`−1 fixes no element of Y (`, α). By this and the fact that [0, n− 1] is partitioned into
the subsets Y (`, α), it follows that each σk is a permutation on [0, n− 1] with σp

k = id.
We show that if `1 < `2, then σ`1 and σ`2 commute with each other. Indeed, for x ∈ Y (`, α), the

argument in the previous paragraph implies the following:

• When ` > `2, we also have ` > `1. Therefore, both (σ`1 ◦ σ`2)(x) and (σ`2 ◦ σ`1)(x) are obtained by
adding 1 (modulo p) to each of the `1-th and the `2-th digits of x, where they differ only in the order
of the two additions. Hence we have (σ`1 ◦ σ`2)(x) = (σ`2 ◦ σ`1)(x).

• When `2 ≥ ` > `1, σ`2 fixes every element of Y (`, α), while Y (`, α) is invariant under the action of σ`1 .
Hence we have (σ`1 ◦ σ`2)(x) = σ`1(x) = (σ`2 ◦ σ`1)(x).

• When `1 ≥ `, we also have `2 ≥ `, therefore both σ`1 and σ`2 fix x. Hence we have (σ`1 ◦ σ`2)(x) =
x = (σ`2 ◦ σ`1)(x).

Hence we have (σ`1 ◦ σ`2)(x) = (σ`2 ◦ σ`1)(x) in any case, therefore σ`1 ◦ σ`2 = σ`2 ◦ σ`1 . By this and the
argument in the previous paragraph, the group G generated by σ0, . . . , σd−2 is commutative and the map
(Z/pZ)d−1 → G, (e0, e1, . . . , ed−2) 7→ σe0

0 σe1
1 · · ·σed−2

d−2 is a surjective group homomorphism. Hence by the
isomorphism theorem for groups, the order |G| of G is a divisor of |(Z/pZ)d−1| = pd−1, which should be a
power of the prime p.

We define the action of G on X by τ · {x1, . . . , xm} := {τ(x1), . . . , τ(xm)}. For the orbit decomposition
of X by the action, each orbit has order equal to that of some quotient group of G, which is a power of the
prime p as well as |G|. Hence, by considering the set X0 := {S ∈ X | τ · S = S for any τ ∈ G} of the fixed
points by the action, any orbit in X involving an element of X \X0 has order divisible by p. Therefore we
have |X| ≡p |X0|. The remaining task is to show that |X0| is equal to the right-hand side of the statement.

Let S ∈ X0. For ` ∈ [0, d − 1] and α ∈ [0, n` − 1], suppose that S ∩ Y (`, α) 6= ∅ and take its element
x. By the argument above, each of σ0, . . . , σ`−1 fixes no element of Y (`, α). Therefore, by the definitions of
these maps, all elements of Y (`, α) can be obtained by applying elements of G to x, and all of those elements
belong to S, as S ∈ X0. Therefore, either S∩Y (`, α) = ∅ or Y (`, α) ⊆ S holds. This implies that, by putting
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I` := {α ∈ [0, n` − 1] | Y (`, α) ⊆ S}, we have S =
⋃d−1

`=0

⋃
α∈I`

Y (`, α). Conversely, by the argument above,
each set Y (`, α) is invariant under the action of G, therefore any element S ∈ X of this form belongs to X0.
This implies that an element of X0 is determined solely by the choices of sets I`. Now put c` := |I`|. Then,
as |Y (`, α)| = p`, the corresponding element S ∈ X0 satisfies that |S| =

∑d−1
`=0 c`p

` = (cd−1 · · · c1c0)p. The
latter value is equal to |S| = m if and only if c` = m` holds for every `. This implies that |X0| is equal to
the number of choices of m` elements for I` from the n`-element set [0, n` − 1] for all `. The latter number
is equal to the right-hand side

(
nd−1

md−1

)
· · ·

(
n1

m1

)(
n0

m0

)
of the claim, concluding the proof.

References
[1] E. Lucas, “Théorie des Fonctions Numériques Simplement Périodiques”, Amer. J. Math. 1(3) (1878)

197–240

4


