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Abstract

An involution r in a Coxeter group W is called an intrinsic reflection of W if r ∈ SW for each Coxeter
generating set S of W . In recent joint work with R. B. Howlett [13] we determined all intrinsic reflections
in finitely generated Coxeter groups. In the present paper we extend this result to the infinite rank case.
An important tool in [13] is the notion of the finite contiuation of an involution that is only meaningful
for finitely generated Coxeter groups. Here we introduce the locally finite continuation for any subset of
an arbitrary group which enables us to deal with Coxeter groups of infinite rank. We apply our result
to show that certain classes of Coxeter groups are reflection independent and we investigate rigidity of
2-spherical Coxeter systems of arbitrary ranks.
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1 Introduction

Let (W,S) be a Coxeter system. Then the rank of (W,S) is the cardinality of S and elements of the form
sw := w−1sw, where w ∈W and s ∈ S, are called reflections of (W,S). A subset R of W is called a Coxeter
generating set of W if (W,R) is a Coxeter system. An involution t ∈W is called an intrinsic reflection of W
if it is a reflection of (W,R) for every Coxeter generating set R of W . In this paper we provide a complete
solution to the following problem.

Problem: Let (W,S) be a Coxeter system and let s ∈ S. Give, in terms of the Coxeter graph of (W,S),
conditions that are necessary and sufficient to ensure that s is an intrinsic reflection of W .

In [13] a complete solution of this problem has been provided in the case where (W,S) has finite rank in
order to provide the final step to the characterization of strongly rigid Coxeter systems of finite rank. A
Coxeter system (W,S) is called strongly rigid if any Coxeter generating set of W is conjugate to S in W .
An important class in the context of strong rigidity is the class of 2-spherical Coxeter systems. A Coxeter
system (W,S) is called 2-spherical if st has finite order for all s and t in S, and a 2-spherical Coxeter system
is called strongly 2-spherical, if it is irreducible and non-spherical. In [11] and [5] (see also [6]) it was shown
that each strongly 2-spherical Coxeter system of finite rank is strongly rigid. If the assumption of finite rank
is dropped this is no longer true. A most interesting counterexample is provided by the Coxeter group of
finitary permutations on a countable set. This group admits two Coxeter generating sets that even have
non-isomorphic Coxeter graphs, namely the graphs A∞ and A±∞ (see Figure 1 in Section 4.1 below for their
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definitions). Our solution to the problem above will enable us to show, that this is actually the only strongly
2-spherical Coxeter system (W,S) admitting a Coxeter generating set R such that the Coxeter graphs of
(W,S) and (W,R) are not isomorphic. Here is the precise statement of our result.

Rigidity-Theorem: Let (W,S) be a strongly 2-spherical Coxeter system (of arbitrary rank) and let R be
a Coxeter generating set of W . Then the following hold.

(a) We have SW = RW ; in particular, (W,S) is reflection independent (in the sense of [1]).

(b) If (W,S) is not of type A∞ nor A±∞, then S and R are locally conjugate. This means that there exists
a bijection α : S → R such that there exists for each finite subset K of S an element cK ∈ W with
α(t) = tcK for all t ∈ K; in particular, (W,S) is rigid (in the sense of [3]).

(c) If there exists a finite subset J of S such that 〈J〉 is an infinite group and such that [s, J ] 6= 1W for all
s ∈ S, then R = Sw for some w ∈W ; in particular (W,S) is strongly rigid.

Assertion (a) of the Rigidity-Theorem is Proposition 14.2 and the proofs of Assertions (b) and (c) are
given at the end of the final section. Note that it is not hard to construct examples of strongly 2-spherical
Coxeter systems (W,S) having a Coxeter generating set R that is not conjugate, but only locally conjugate
to S in W . This happens for instance in Coxeter systems whose Coxeter graph is an infinite tree.

We now come back to the discussion of our solution of the problem above. We recall that a complete solution
has been provided in [13] in the finite rank case. A lot of the arguments used in that paper do not need the
assumption of finite rank. However, one of the key tools used in [13] is the notion of the finite continuation of
a finite order element that had been introduced in [11] for Coxeter systems of finite rank. This concept relies
on several important features of Coxeter systems of finite rank that are known to be no longer available
in the infinite rank case. In the finite rank case there are maximal finite subgroups and all of them are
parabolic subgroups, and moreover, the intersection of any set of parabolic subgroups is again a parabolic
subgroup. Our main observation is that the principal ideas behind the definition of the finite continuation
can nevertheless be applied also to Coxeter systems of infinite rank by using the locally finite continuation.
One of the main ingredients in this modification is the notion of a locally parabolic subgroup of a Coxeter
system of arbitrary rank introduced by the second author in [19]. Indeed, it is basically the content of that
paper that provides an appropriate framework for making the ideas of [11] and [13] work also in the infinite
rank case.

As already mentioned the main result of the present paper is a solution to the problem formulated above
without any restriction on the rank of the Coxeter system (W,S). Its precise statement requires some
preparation and it will be given in Section 2. As our main result is a generalization of Theorem 1 in [13]
we will comment in this section in more detail about the additional work that has to be done. In Section
3 we introduce the locally finite continuation of a subset of an arbitrary group G. Assuming the axiom
of choice, the main advantage compared to the finite continuation is that any finite subgroup is contained
in a maximal locally finite subgroup. We provide some observations about basic properties of the locally
finite continuation and we discuss in particular global and local approaches which turn out to be equivalent.
Although we apply the locally finite continuation exclusively to Coxeter groups of infinite rank in the present
paper, it is worthwhile to point out that the definition makes sense for arbitrary groups. It is conceivable
that the locally finite continuation provides a valuable tool for studying the isomorphism problem for other
classes of groups. But we do not know of any concrete example.

In Section 4 we collect several preliminary results on Coxeter groups that are needed later on. We recall
in particular the classification of locally finite Coxeter groups and also the main results of [19] on locally
parabolic subgroups.

In [11] the finite continuation of a fundamental reflection of a Coxeter system of finite rank is described.
Here we describe the locally finite continuation of a fundamental reflection of a Coxeter system of arbitrary
rank. This is done in Sections 5 to 9. The statement of the main result in [11] and its proof given there are
rather technical. It involves the definition of (half-)focuses and C3-neighbors that cannot be avoided. As our
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result generalizes the main result of [11] we have to deal with all these technicalities as well. However, we
are able to take advantage of some tedious considerations made in [11] by just reducing certain parts of our
proof to the finite rank case. On the other hand, we have to deal with new phenomenons in our reasoning
that are due to the fact, that the list of irreducible locally finite Coxeter systems is slightly longer than the
list of irreducible finite Coxeter systems. This is however not visible in the final description of the locally
finite continuation of a reflection. As it turns out there are “no surprises” when comparing it to the main
result in [11].

In Section 13 we will complete the proof of Theorem 2.2. This is our main result that provides a complete
solution to the problem formulated above. As already pointed out, the main tool for establishing it is our
description of the locally finite continuation of a fundamental reflection. We essentially follow the strategy
of [13]. However, there are some additional ingredients needed with respect to the reasoning in [13]. Since
the Krull–Remak–Schmidt Theorem is no longer applicable in our new context, we will also need some facts
about direct decompositions of locally finite Coxeter groups which we provide in Section 10. On the other
hand, the proof in [13] for the finite rank case used some technical lemmas summarized in Section 11 of
[13] about some relations between the centers of finite continuations and the intrinsic reflections. We will
extend them in Section 11 to the infinite rank case with locally finite continuations. Furthermore, we have to
provide a complete solution of the problem above in the case where (W,S) is a locally finite Coxeter system.
This will be done in Section 12.

In the final two sections we provide some applications of our complete solution to the aforementioned
problem. A Coxeter group W is called reflection independent if any two Coxeter generating sets for W define
the same set of reflections in W . We give in Section 14 two natural classes of Coxeter groups of arbitrary
rank where all groups in the class are proven to be reflection independent. In particular, we prove Part
(a) of our Rigidity-Theorem as the main result of that section. Then Section 15 is devoted to proving the
remaining Parts (b) and (c) of our Rigidity-Theorem.

2 Statement of the Main Result

Here we briefly summarize the background information needed to state the main result of this paper, assuming
the basic knowledge of Coxeter systems; see Section 4 for omitted details. The odd graph of a Coxeter system
(W,S) is the graph with vertex set S where two distinct vertices s, t are joined if and only if st has odd order
in W . The presentation graph Π(S) of (W,S) is the graph with vertex set S where two distinct vertices s, t
are joined if and only if st has finite order. An odd component of (W,S) is a connected component of the
odd graph of (W,S). For any subset J ⊆ S, we define

J⊥ = {s ∈ S | st has order two for any t ∈ J} ,
J∞ = {s ∈ S | st has infinite order for any t ∈ J} .

We say that a generator s ∈ S is right-angled if S = {s} ∪ {s}⊥ ∪ {s}∞. Following the previous paper [13],
for any odd component M of S, we define E(M) = S \M∞, and we define C0(M) to be the irreducible
component of E(M) that contains M . We say that M is mutable if at least one irreducible component of
E(M) other than C0(M) is of (−1)-type (i.e., generating a (finite) subgroup with nontrivial center). The
next definition has also appeared in [13].

Definition 2.1. Let (W,S) be a Coxeter system. A pair (z, a) ∈ S × S is called a blowing down pair for
(W,S) if the following conditions hold:

1. z is right-angled in (W,S) and a ∈ {z}⊥;

2. the component C of {z}⊥ containing a is of type I2(n) or Dn for some odd integer n ≥ 3, and
b := ρCaρC 6= a where ρC denotes the longest element of the Coxeter system (〈C〉, C);

3. for each connected component U of Π({z}∞), either U ⊆ {a}∞ or U ⊆ {b}∞.
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Our main result is Theorem 2.2 below. Here we say that a Coxeter system (W,S) is spherical if W is a
finite group, and (W,S) is locally spherical if (〈I〉, I) is spherical for any finite subset I of S. On the other
hand, we postpone the definition of the notion of C3-neighbors until Section 7 since the definition is too
complicated to be included here; we only note that the notion of C3-neighbors is defined solely in terms of
the Coxeter graphs.

Theorem 2.2. Let (W,S) be a Coxeter system of arbitrary rank, and let s ∈ S. Let M be the odd component
of (W,S) containing s, and let J = C0(M). If the odd component M is mutable then s is not an intrinsic
reflection of W . If M is not mutable then the following hold:

1. if J = {s} then s is an intrinsic reflection of W if and only if there is no t ∈ S such that (s, t) is a
blowing down pair;

2. if J 6= {s} and J is of (−1)-type then s is an intrinsic reflection of W if and only if J is of type C2,
H3, E7, or I2(4k) for some k ≥ 2;

3. if J is spherical but not of (−1)-type then s is an intrinsic reflection of W if and only if J is not of
type A5;

4. if J is not spherical then s is an intrinsic reflection of W if and only if either J is locally spherical or
M has no C3-neighbors.

Theorem 2.2 is actually a synthesis of Propositions 2.3, 2.4, and 2.5 below. In order to prove Theorem
2.2 we will have to show Proposition 2.5 since Propositions 2.3 and 2.4 are already available in published
form.

Proposition 2.3. Let (W,S) be a Coxeter system of arbitrary rank, and let s ∈ S be a right-angled generator.
If the odd component {s} is mutable then s is not an intrinsic reflection of W . If {s} is not mutable then s
is an intrinsic reflection of W if and only if there is no t ∈ S such that (s, t) is a blowing down pair.

Proof. Proposition 2.3 is the main result of our previous paper [16].

Proposition 2.4. Let (W,S) be a Coxeter system of arbitrary rank, and let s ∈ S. Let M be the odd
component of (W,S) containing s, and let J = C0(M). If the odd component M is mutable then s is not
an intrinsic reflection of W . If M is not mutable, then s is not an intrinsic reflection of W if one of the
following conditions is satisfied:

1. J 6= {s} and J is of (−1)-type except type C2, H3, E7, or I2(4k) with k ≥ 2;

2. J is of type A5;

3. J is not locally spherical and M has a C3-neighbor.

Proof. Proposition 2.4 is an immediate consequence of Proposition 9.1 in our joint paper [13] with R. B. Howlett.
Note that the proof of Proposition 9.1 in [13] does not require the finiteness of the rank of (W,S), as already
pointed out after the proof of Proposition 9.1 in loc. cit..

Proposition 2.5. Let (W,S) be a Coxeter system of arbitrary rank, and let s ∈ S. Let M be the odd
component of (W,S) containing s, and let J = C0(M). Suppose that M is not mutable. Then s is an
intrinsic reflection of W if one of the following conditions is satisfied:

1. J is of type C2, H3, E7, or I2(4k) for some k ≥ 2;

2. J is locally spherical and is not of (−1)-type nor of type A5;

3. J is not locally spherical and M has no C3-neighbors.

On the proof of Proposition 2.5: This proposition is proved in Section 12 of [13] for Coxeter systems
of finite ranks and the assumption of finite rank is essential for the arguments given there. In view of what
has been said so far on the proof of Theorem 2.2, our task is to give a proof of Proposition 2.5 for Coxeter
systems of arbitrary ranks. It will be accomplished in Section 13.
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3 Locally Finite Continuations in Arbitrary Groups

In this section, we introduce the notion of the locally finite continuation of a subset of an arbitrary group,
and study its basic properties.

3.1 The Definitions

We recall a terminology from group theory: We say that a group G is locally finite, if any finite subset of G
generates a finite subgroup of G. As already indicated in the introduction there is a “local” and a “global”
definition for the locally finite continuation of any subset of a group. We start with the “local version”.

Definition 3.1. Let G be an arbitrary group, and let X ⊆ G. We define the locally finite continuation of
the subset X in G, denoted by LFCG(X), as

LFC(X) = LFCG(X)

:= {g ∈ G | if X ⊆ Z ⊆ G and 〈Z〉 is locally finite, then 〈Z ∪ {g}〉 is also locally finite} .

Note that LFC(X) = G if 〈X〉 is not a locally finite group. Therefore we will consider LFC(X) almost
always for subsets X of G that generate a locally finite group. When X = {w}, we often denote LFC(X)
simply by LFC(w).

We now come to the “global” definition of the finite continuation of a subset of a group.

Definition 3.2. Let G be an arbitrary group, and let X ⊆ G. We define the set LFC†(X) = LFC†G(X) to
be the intersection of all the maximal locally finite subgroups H of G containing X. (When there is no such

H, LFC†G(X) is defined to be the whole group G.)

In order to clarify the logical implication relations between the two definitions, we recall the following
standard terminology:

Definition 3.3. We say that a partially ordered set (P,�) satisfies the maximality condition, if for any
p ∈ P , there exists a q ∈ P that is maximal with respect to � and satisfies p � q.

In our argument below, this definition is applied only to the case of a set of some subsets of a given set,
with inclusion as the partial ordering. In particular, we consider the partially ordered set of all the locally
finite subgroups of a group G containing a given subset X; in this context the maximality condition is always
satisfied (assuming the Axiom of Choice, or equivalently Zorn’s Lemma).

Now we establish the equivalence of the “local version” and the “global version” of the locally finite
continuation.

Proposition 3.4. Let G be an arbitrary group, and let X ⊆ G.

1. We have LFC(X) ⊆ LFC†(X).

2. If the set of all the locally finite subgroups of G containing X satisfies the maximality condition (in
particular, if the Axiom of Choice holds), then we have LFC(X) = LFC†(X).

Proof. For the first assertion, let g ∈ LFC(X) and let H be any maximal locally finite subgroup of G
containing X. As g ∈ LFC(X) and H is locally finite, the group 〈H ∪ {g}〉 is locally finite. Since H is a
maximal locally finite subgroup of G and H ⊆ 〈H ∪ {g}〉 we have 〈H ∪ {g}〉 = H. We conclude that g ∈ H
which yields g ∈ LFC†(X) and finishes the proof of the first assertion.

For the second assertion, let g ∈ LFC†(X). We have to show that g ∈ LFC(X). Let Z ⊆ G be a subset
containing X and generating a locally finite subgroup. By the maximality condition in the hypothesis, there
is a maximal locally finite subgroup H of G satisfying X ⊆ 〈Z〉 ⊆ H. Now the fact g ∈ LFC†(X) implies
that g ∈ H; therefore 〈Z ∪ {g}〉 is contained in H and is locally finite as well as H. Hence g ∈ LFC(X) and
we are done.

As the equality LFC(X) = LFC†(X) above is important in our argument below, hereafter we always
assume (as usual) the Axiom of Choice without mentioning.

5



3.2 Relations with Finite Continuations

Replacing “locally finite subgroup” with “finite subgroup” in the two definitions for locally finite continua-
tions leads us to two versions of finite continuations of a subset X in a group G. Namely, we define

FC(X) = FCG(X)

:= {g ∈ G | if X ⊆ Z ⊆ G and 〈Z〉 is finite, then 〈Z ∪ {g}〉 is also finite} ,

and we define FC†(X) = FC†G(X) to be the intersection of all the maximal finite subgroups H of G containing
X (again, it is defined to be the whole group G when there is no such H). We recall that the finite
continuation has been defined in [11] for any element w of finite order in a finitely generated Coxeter group

W . The definition given in loc. cit. corresponds to FC†W (w). Now essentially the same arguments as the
ones given in the proof of Proposition 3.4 yield the equivalence of the two versions of finite continuations.

Proposition 3.5. Let G be an arbitrary group, and let X ⊆ G.

1. We have FC(X) ⊆ FC†(X).

2. If the set of all the finite subgroups of G containing X satisfies the maximality condition, then we have
FC(X) = FC†(X).

Comparing Proposition 3.5 with Proposition 3.4, the equivalence in Proposition 3.5 requires a non-trivial
assumption on the maximality condition, while the equivalence in Proposition 3.4 always holds. This shows
an advantage of locally finite continuations against finite continuations. Moreover, if X ⊆ G generates an
infinite subgroup then we have FC(X) = G by definition; while we have the following result for the other
case:

Proposition 3.6. Let G be an arbitrary group, and let X ⊆ G. If 〈X〉 is finite, then LFC(X) = FC(X).

Proof. First, let g ∈ LFC(X), and let Z ⊆ G be any subset that contains X and generates a finite subgroup.
Then 〈Z〉 is locally finite, and as g ∈ LFC(X) we have that 〈Z ∪ {g}〉 is locally finite. On the other hand,
since 〈Z〉 is finite, Z and hence also Z ∪ {g} is a finite set. We conclude that 〈Z ∪ {g}〉 is finite. This shows
that g ∈ FC(X), therefore we have LFC(X) ⊆ FC(X).

Secondly, let g ∈ FC(X), and let Z ⊆ G be any subset that contains X and generates a locally finite
subgroup. We have to show that 〈Z ∪ {g}〉 is locally finite; for this purpose, it suffices to check that
〈Z ′ ∪{g}〉 is finite for any finite subset Z ′ of Z. Since 〈X〉 is finite by the assumption, X is a finite set, so is
Z ′′ := Z ′ ∪X ⊆ Z. Since 〈Z〉 is locally finite, it follows that 〈Z ′′〉 is finite. Now the fact g ∈ FC(X) implies
that Z ′′ ∪ {g} generates a finite subgroup, so does its subset Z ′ ∪ {g}, as desired. Hence 〈Z ∪ {g}〉 is locally
finite. This shows that g ∈ LFC(X), therefore we have FC(X) ⊆ LFC(X), hence LFC(X) = FC(X).

Owing to the properties above, in this paper we focus on locally finite continuations rather than finite
continuations.

3.3 General Properties

In this subsection we provide some basic results on locally finite continuations in arbitrary groups.

Lemma 3.7. For an arbitrary group G and a subset X of G, the following hold:

1. If X ⊆ Y ⊆ G, then X ⊆ LFC(X) ⊆ LFC(Y );

2. LFC(X) = LFC(〈X〉);

3. LFC(X) is a subgroup of G;

4. if σ is an isomorphism from G to another group G′, then LFCG′(σ(X)) = σ(LFCG(X)).
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Proof. These assertions are all obvious by considering the corresponding assertions for LFC† owing to the
second assertion of Proposition 3.4. (We just note that the assertions can also be directly proved for LFC
by straightforward arguments even without the Axiom of Choice.)

Lemma 3.8. Let G be an arbitrary group, and let X ⊆ G. Then we have LFC(LFC(X)) = LFC(X).
Moreover, if 〈X〉 is locally finite, then LFC(X) is also locally finite.

Proof. The first assertion is again obvious by considering the corresponding assertion for LFC† owing to the
second assertion of Proposition 3.4 (and can also be directly proved even without the Axiom of Choice). For
the second assertion, let x1, . . . , xn be in LFC(X). By the hypothesis that 〈X〉 is locally finite, the definition
of LFC(X) implies recursively that, for each i = 1, . . . , n, X∪{x1, . . . , xi} generates a locally finite subgroup.
Hence, its finite subset {x1, . . . , xn} generates a finite subgroup. This proves the second assertion.

Lemma 3.9. Let H ≤ G be two groups, and let X ⊆ H. Then we have LFCG(X) ∩H ⊆ LFCH(X).

Proof. Let x ∈ LFCG(X) ∩H and let Z be any subset of H that contains X and generates a locally finite
subgroup of H. Then we have X ⊆ Z ⊆ G and 〈Z〉 is locally finite, therefore the fact x ∈ LFCG(X) implies
that 〈Z ∪ {x}〉 is also locally finite. Hence we have x ∈ LFCH(X).

Lemma 3.10. Let G be an arbitrary group, and let X ⊆ G be a subset that generates a locally finite subgroup.
Let H be a subgroup of G, and suppose that g ∈ H for any element g ∈ G for which 〈X ∪ {g}〉 is a locally
finite subgroup. Then we have LFCG(X) = LFCH(X).

Proof. First note that X ⊆ H by the assumption. Now for any x ∈ LFCG(X), the fact that 〈X〉 is locally
finite implies that 〈X ∪ {x}〉 is also locally finite. Therefore we have x ∈ H by the assumption, and
x ∈ LFCG(X) ∩H ⊆ LFCH(X) by Lemma 3.9. Hence we have LFCG(X) ⊆ LFCH(X).

Conversely, let x ∈ LFCH(X), and let Z ⊆ G be any subset that contains X and generates a locally
finite subgroup. Now for any z ∈ Z, the subgroup 〈X ∪ {z}〉 ≤ 〈Z〉 is locally finite, therefore z ∈ H by the
assumption. Hence we have Z ⊆ H, and now the fact x ∈ LFCH(G) implies that 〈Z ∪ {x}〉 is locally finite.
It follows that x ∈ LFCG(X), therefore we have LFCH(X) ⊆ LFCG(X). This concludes the proof.

Lemma 3.11. Let a group G be the direct sum of a family of groups {Gi}i∈Λ, with projection maps πi : G→
Gi. If X ⊆ G and 〈X〉 is locally finite, then LFCG(X) is the direct sum of LFCGi(πi(X)) over all i ∈ Λ.

Proof. First note that, a subgroup H of G is locally finite if and only if πi(H) ≤ Gi is locally finite for every
i ∈ Λ. Now suppose that x ∈ G, πi(x) ∈ LFCGi(πi(X)) for every i ∈ Λ, X ⊆ Z ⊆ G and 〈Z〉 is locally finite.
Then for each i ∈ Λ, 〈πi(Z)〉 is locally finite, and the fact πi(x) ∈ LFCGi(πi(X)) implies that 〈πi(Z ∪ {x})〉
is also a locally finite subgroup of Gi. Now the fact mentioned at the beginning of the proof implies that
〈Z ∪ {x}〉 is locally finite, therefore we have x ∈ LFCG(X). This shows that LFCG(X) includes the direct
sum of LFCGi(πi(X)) over all i ∈ Λ.

Conversely, let x ∈ LFCG(X), and suppose that i ∈ Λ, πi(X) ⊆ Z ⊆ Gi and 〈Z〉 is locally finite. Then,
by naturally regarding Z as a subset of G, we have 〈πi(X ∪ Z)〉 = 〈Z〉 (since πi(X) ⊆ Z) which is locally
finite, while for any other index j 6= i, we have 〈πj(X ∪Z)〉 = 〈πj(X)〉 which is locally finite by the fact that
〈X〉 is locally finite. Now the fact mentioned at the beginning of the proof implies that 〈X ∪ Z〉 is locally
finite, so is 〈X ∪ Z ∪ {x}〉 by the fact x ∈ LFCG(X). Therefore, 〈πi(X ∪ Z ∪ {x})〉 = 〈Z ∪ {πi(x)}〉 is also
locally finite. This shows that πi(x) ∈ LFCGi(πi(X)) for every i ∈ Λ, therefore LFCG(X) is included in the
direct sum of LFCGi(πi(X)) over all i ∈ Λ. This concludes the proof.

4 Preliminaries on Coxeter Systems

This section summarizes some definitions and facts about Coxeter systems. In this paper, (W,S) usually
denotes a Coxeter system, where S is a Coxeter generating set of a Coxeter group W . Namely, W admits a
presentation of the form

W = 〈S | (st)ms,t = 1 for all s, t ∈ S with ms,t <∞〉 ,
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where the indices ms,t satisfy that ms,t = mt,s ∈ {1, 2, . . . }∪ {∞} and we have ms,t = 1 if and only if s = t.
The cardinality |S| of S is called the rank of (W,S), which may be infinite unless otherwise specified. We
refer to the book [14] for basic definitions and facts for Coxeter systems that are implicit in this paper. We
write o(g) to denote the order of an element g of a group; then we have o(st) = ms,t for any s, t ∈ S. We
say that (W,S) is irreducible, if S is non-empty and the Coxeter graph (also known as Coxeter diagram) for
(W,S) is connected. (Recall that two generators s, t ∈ S are joined in the Coxeter graph by an edge with
label ms,t if and only if ms,t ≥ 3; the edge label is frequently omitted when ms,t = 3). In this case we also
say that S is irreducible. A reflection in W with respect to S, or a reflection of (W,S), is an element of the
set SW = {sw = w−1sw | s ∈ S,w ∈W}.

For any subset I ⊆ S, the subgroup 〈I〉 of W generated by I is called a visible subgroup of W . It is a
Coxeter group with Coxeter generating set I, and the Coxeter graph for (〈I〉, I) is the full subgraph of the
Coxeter graph for (W,S) restricted to the vertex set I. We also have that 〈I〉∩ 〈J〉 = 〈I ∩J〉 for any subsets
I, J ⊆ S. See e.g., [14] for these properties of visible subgroups. On the other hand, any subgroup of the
form 〈I〉w = w−1〈I〉w with I ⊆ S and w ∈W is called a parabolic subgroup of W .

We say that a subset I ⊆ S is a direct factor of S, if [I, S \ I] = 1; and I ⊆ S is an irreducible component
of S, if I is an irreducible direct factor of S. In the corresponding cases we also say that (〈I〉, I) is a direct
factor and an irreducible component of (W,S), respectively.

4.1 Spherical and Locally Spherical Coxeter Systems

A Coxeter system (W,S) is called spherical, if W is a finite group. In this case we also say that S is spherical.
Here we introduce a generalization of this notion that is meaningful in the infinite rank cases:

Definition 4.1. We say that a Coxeter system (W,S) is locally spherical, if W is a locally finite group. In
this case we also say that S is locally spherical.

We note that S is locally spherical if and only if every finite subset of S is spherical. They are characterized
as follows.

Proposition 4.2. A Coxeter system (W,S) is locally spherical if and only if, each irreducible component
of (W,S) is either spherical or of one of the four types A∞, A±∞, B∞ = C∞, and D∞ with infinite rank
defined by the Coxeter graphs in Figure 1.

Proof. This is Proposition 1 of [19].

A∞ i i i · · ·
1 2 3

A±∞ · · · i i i i · · ·
−1 0 1 2

B∞ = C∞ i i i · · ·4

0 1 2

D∞
iiHH�� i i i · · ·

0

0′ 1 2 3

Figure 1: Locally spherical irreducible Coxeter systems

The following three lemmas on Coxeter systems of type A, C, and D will be used in Section 15.

Lemma 4.3. Let (W,S) be a Coxeter system and let

m := max{|U | | U = 〈T 〉 with T ⊆ SW , |T | ≤ 4} .

Then:
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1. m = 60 if (W,S) is of type A∞ or A±∞;

2. m = 384 if (W,S) is of type C∞;

3. m = 192 if (W,S) is of type D∞.

Proof. Let U ≤ W be a subgroup generated by at most four reflections of (W,S). Then U is a subgroup
generated by at most four reflections in a visible subgroup 〈J〉 where (〈J〉, J) is of type An (respectively,
Cn, Dn) for some integer n ≥ 4. Thus the assertions follow from the corresponding statements for Coxeter
systems of type An, Cn, and Dn with 4 ≤ n <∞ where they are easily verified.

In the following two lemmas we recall (without proofs) elementary facts about finite Coxeter systems of
type C and D, respectively. The labellings of the Coxeter graphs of type C`+1 and D`+2 are given by the
corresponding subgraphs in Figure 1.

Lemma 4.4. Let (W,S) be a Coxeter system of type Cn+1 where S = {s0, s1, . . . , sn}. Let 2 ≤ k ≤ n and
T := {t0, t1, . . . , tk} ⊆ SW , and suppose that (〈T 〉, T ) is a Coxeter system of type Ck+1. Then there exists
w ∈W satisfying ti

w = si for all i ∈ {0, 1, . . . , k}.

Lemma 4.5. Let (W,S) be a Coxeter system of type Dn+2 where S = {s0, s0′ , s1, . . . , sn}. Let 2 ≤ k < n
and T := {t0, t0′ , t1, . . . , tk} ⊆ SW , and suppose that (〈T 〉, T ) is a Coxeter system of type Dk+2. Then there
exists w ∈W satisfying ti

w = si for all i ∈ {0, 0′, 1, . . . , k}.

For any spherical subset I of S, the unique longest element in 〈I〉 is denoted by ρI . We say that a Coxeter
system (W,S) is of (−1)-type, if it is spherical and ρS is in the center Z(W ) of W . In this case we also say
that S is of (−1)-type. For an irreducible Coxeter system (W,S), the center Z(W ) is trivial if (W,S) is not
of (−1)-type; and Z(W ) is the group of order two generated by ρS if (W,S) is of (−1)-type. Moreover, for
a Coxeter system (W,S), it is of (−1)-type if and only if it is spherical and each irreducible component of
(W,S) is of (−1)-type.

We need the following result by Richardson [20] on involutions in Coxeter groups.

Proposition 4.6. Let (W,S) be a Coxeter system. Each involution in W is conjugate to an element of the
form ρI for a subset I ⊆ S of (−1)-type. On the other hand, if I, J ⊆ S are of (−1)-type and ρI is conjugate
in W to ρJ , then I and J are conjugate in W and in particular of the same type.

4.2 On Supports of Elements

Let (W,S) be a Coxeter system. By the fact 〈I〉∩〈J〉 = 〈I∩J〉 for I, J ⊆ S mentioned above, for any element
w ∈W , the support supp(w) of w is uniquely defined as the smallest (finite) subset I ⊆ S satisfying w ∈ 〈I〉.
We note that supp(w−1) = supp(w) for any w ∈ W . The following property is deduced immediately from
the definition of the support and is used later.

Lemma 4.7. Let (W,S) be a Coxeter system, w ∈ W , I ⊆ S, and let s ∈ supp(w) \ I. Then we have
s ∈ supp(uw) and s ∈ supp(wu) for any u ∈ 〈I〉, and in particular s ∈ supp(wu) for any u ∈ 〈I〉.

We shall need also the following fact which is Assertion (2) of Lemma 2.9 in [18].

Lemma 4.8. Let (W,S) be a Coxeter system. If w ∈ W , s ∈ S \ supp(w) and s is adjacent to the set
supp(w) in the Coxeter graph of (W,S), then we have supp(sws) = supp(w) ∪ {s}.

4.3 On Conjugate Visible Subgroups

Let I ⊆ S and s ∈ S \I, and let Is denote the irreducible component of I∪{s} containing s. If Is is spherical,
then we define v[s, I] = ρIsρIs\{s} ∈ 〈Is〉. This element has the property that v[s, I]Iv[s, I]−1 ⊆ I ∪ {s};
and by putting K := (I ∪ {s}) \ Is, we have K ⊆ v[s, I]Iv[s, I]−1 and v[s, I]Iv[s, I]−1 \ K is the union of
some spherical irreducible components of v[s, I]Iv[s, I]−1. The following result was proved in [12] for finite
Coxeter groups and generalized in [7] to arbitrary Coxeter groups.
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Lemma 4.9. Let I, J ⊆ S. Then 〈I〉 and 〈J〉 are conjugate in W if and only if I is conjugate to J in W ,
i.e., J = wIw−1 for some w ∈ W . Moreover, if w ∈ W and J = wIw−1, then there are a finite sequence
J = J0, J1, . . . , Jn = I of subsets of S and a finite sequence of elements s1, . . . , sn of S with the properties
that v[si, Ji] is defined and v[si, Ji]Jiv[si, Ji]

−1 = Ji−1 for each i = 1, . . . , n, and v[s1, J1] · · · v[sn, Jn] is the
element in w〈I〉 of minimal length.

By Lemma 4.9, if two visible subgroups 〈I〉 and 〈J〉 are conjugate, then the subsets I, J ⊆ S are conjugate,
in particular they have the same cardinality. Due to this, the type and the rank of a parabolic subgroup G
are uniquely defined to be the type and the rank, respectively, of any visible subgroup conjugate to G.

4.4 On Parabolic Subgroups

In this subsection we collect several facts about parabolic subgroups of Coxeter systems.

Lemma 4.10. Let (W,S) be a Coxeter system, J,K ⊆ S, and let w ∈ W . Suppose that w−1Jw ⊆ 〈K〉.
Then we have (wu)−1J(wu) ⊆ K for some u ∈ 〈K〉.

Proof. This is Lemma 3.3 in [13].

Lemma 4.11. Let (W,S) be a Coxeter system, I ⊆ S, and let G be a parabolic subgroup of W . Then 〈I〉∩G
is a parabolic subgroup of 〈I〉. Moreover, if |I| is finite and 〈I〉 6⊆ G, then the rank of 〈I〉 ∩ G is strictly
smaller than the rank |I| of 〈I〉.

Proof. This is an immediate consequence of Corollary 7 in [10].

Let (W,S) be a Coxeter system and let X ⊆ W . Lemma 4.11 implies that, if X is contained in some
finite-rank parabolic subgroup of W , then the intersection of all parabolic subgroups of W containing X is
again a parabolic subgroup of W ; it is called the parabolic closure of X and is denoted by P(X). We also use
the notation P(x) when X = {x}. Two special cases for the above are the cases where X is a finite set or
(W,S) is of finite rank. On the other hand, in general, it is known that the intersection of all the parabolic
subgroups of W containing X is not necessarily a parabolic subgroup of W ; see Example 1 of [19].

Lemma 4.12. Let (W,S) be a Coxeter system, and let I ⊆ S be a subset of (−1)-type. Then P(ρI) = 〈I〉.

Proof. First, we have P(ρI) ≤ 〈I〉 since ρI ∈ 〈I〉. Now Lemma 4.11 implies that P(ρI) is a parabolic subgroup
of 〈I〉, therefore ρI ∈ P(ρI) = w〈K〉w−1 for some K ⊆ I and w ∈ 〈I〉. Since I is of (−1)-type, ρI is central
in 〈I〉, therefore we have ρI ∈ 〈K〉. This implies that K = I and P(ρI) = w〈I〉w−1 = 〈I〉.

The following result is due to Tits; see e.g., Theorem 4.5.3 of [2] for a proof.

Proposition 4.13. Let (W,S) be a Coxeter system, and let G be a finite subgroup of W . Then G is contained
in a finite parabolic subgroup of W .

Corollary 4.14. Let (W,S) be a Coxeter system and let X ⊆W . If 〈X〉 is finite, then P(X) is defined and
is also a finite subgroup of W .

We also have the following well-known result; here we give a proof for the sake of completeness.

Proposition 4.15. Let (W,S) be a Coxeter system of finite rank. Then any finite subgroup of W is contained
in a maximal finite subgroup of W , and any maximal finite subgroup of W is a parabolic subgroup of W .

Proof. For the former assertion, let H be a finite subgroup of W . By Lemma 4.11 and the assumption,
the ranks of parabolic subgroups in W are bounded by the rank of (W,S) which is finite. Therefore, by
Proposition 4.13, there exists a finite parabolic subgroup P of W containing H that has the maximal rank
subject to this condition. Now if G is a finite subgroup of W and P is properly contained in G, then G is
contained in a finite parabolic subgroup P ′ of W by Proposition 4.13, and the rank of P ′ should be strictly
larger than that of P by Lemma 4.11. This contradicts the choice of P . Hence P is a maximal finite subgroup
of W , proving the former assertion. The latter assertion follows immediately from Proposition 4.13.
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Moreover, by utilizing the parabolic closure, we show the following property used in our argument later.
For any spherical subset I of S, we define

E(I) := {s ∈ S | |〈J ∪ {s}〉| <∞ for some J ⊆ S conjugate in W to I} . (1)

Lemma 4.16. Let (W,S) be a Coxeter system. If I ⊆ S, g ∈W and 〈I ∪ {g}〉 is finite, then g ∈ 〈E(I)〉.

Proof. Due to the assumption, the parabolic closure of I ∪ {g} is defined and is finite by Corollary 4.14. We
have w−1Iw ⊆ w−1P(I ∪ {g})w = 〈J〉 for some spherical J ⊆ S and w ∈ W . By Lemma 4.10, we have
(wu)−1I(wu) = K for some K ⊆ J and u ∈ 〈J〉. Now we have |〈K ∪ {s}〉| ≤ |〈J〉| < ∞ for each s ∈ J ,
therefore we have J ⊆ E(I) and u ∈ 〈E(I)〉. On the other hand, we can choose v ∈ 〈I〉 in a way that (wu)−1v
is the element in (wu)−1〈I〉 of minimal length and admits a decomposition (wu)−1v = v[s1, J1] · · · v[sn, Jn]
as in Lemma 4.9 (where K plays the role of J). Now a recursive argument for i = n, n− 1, . . . , 1 implies the
following: Ji is conjugate to I in W ; Ji is spherical (recall that Jn = I is spherical by the assumption); the
irreducible component of Ji ∪ {si} containing si is spherical; and Ji ∪ {si} is spherical. Therefore, we have
Ji ∪ {si} ⊆ E(I) for each i = 1, . . . , n; hence we have (wu)−1v ∈ 〈E(I)〉, while we have u ∈ 〈E(I)〉 as above
and v ∈ 〈E(I)〉 since I ⊆ E(I). Therefore we have w ∈ 〈E(I)〉, concluding the proof.

4.5 Reflection Subgroups and Locally Parabolic Subgroups

The following property is fundamental, and can be deduced by considering the case |J | = 1 in Lemma 4.10.

Proposition 4.17. Let (W,S) be a Coxeter system, and let I ⊆ S. Then we have SW ∩ 〈I〉 = I〈I〉.

A subgroup G of W is called a reflection subgroup of W (with respect to S), if G is generated by reflections
in W (with respect to S). It was shown in [8, 9] that, for any reflection subgroup G, there is a distinguished
subset SG of G with the properties that (G,SG) is a Coxeter system, the root system of (G,SG) is a subset
of the root system of (W,S), and the decomposition of the root system of (G,SG) into positive roots and
negative roots coincides with that for (W,S). Based on the existence of the distinguished generating set SG
for G, the following notion was introduced in Definition 1 of [19].

Definition 4.18. Let (W,S) be a Coxeter system. We say that a subgroup G of W is a locally parabolic
subgroup of W , if G is a reflection subgroup of W and any finite subset of the Coxeter generating set SG of
G is conjugate in W to a subset of S.

We have the following two fundamental facts about locally parabolic subgroups.

Proposition 4.19. Let (W,S) be a Coxeter system. Any parabolic subgroup (possibly of infinite rank) of W
is a locally parabolic subgroup of W .

Proof. This is an immediate consequence of Lemma 6 in [19].

Proposition 4.20. Let (W,S) be a Coxeter system. The intersection of an arbitrarily large (possibly infinite)
family of locally parabolic subgroups of W is again a locally parabolic subgroup of W .

Proof. This is Theorem 1 of [19].

Moreover, a combination of Theorems 2 and 3 in [19] yields the following property, which is an analogy
of Proposition 4.15.

Proposition 4.21. Let (W,S) be a Coxeter system. Then any locally finite subgroup of W is contained in
a maximal locally finite subgroup of W , and any maximal locally finite subgroup of W is a locally parabolic
subgroup of W .

We note that, in comparison to Proposition 4.15 for finite subgroups in W , Proposition 4.21 for locally
finite subgroups in W holds without any restriction on the Coxeter system (W,S). This fact, combined with
Proposition 4.20, yields the following definition, which is an analogy to the parabolic closures.
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Definition 4.22. Let (W,S) be a Coxeter system, and let X ⊆ W . We define the locally parabolic closure
LP(X) of X to be the intersection of all locally parabolic subgroups of W containing X. We also use the
notation LP(x) when X = {x}.

The arguments above are enough for showing that LP(X) is locally parabolic provided 〈X〉 is locally
finite. In fact, a slightly stronger statement holds by Theorem 2 of [19].

Proposition 4.23. Let (W,S) be a Coxeter system, and let X ⊆W . If 〈X〉 is locally finite, then LP(X) is
a locally finite, locally parabolic subgroup of W .

We also have the following result, which shows that the locally parabolic closure coincides with the
parabolic closure provided the latter is effectively defined:

Proposition 4.24. Let (W,S) be a Coxeter system, and let X ⊆W . If X is contained in some finite-rank
parabolic subgroup of W , then we have LP(X) = P(X) and it is a parabolic subgroup of finite rank. The
assumption is in particular satisfied when 〈X〉 is a finite group.

Proof. The former assertion is a part of Lemma 10 of [19], and the latter remark follows from Proposition
4.13.

5 Locally Finite Continuations in Coxeter Groups

Based on the results in the previous sections, here we give two results on locally finite continuations in
Coxeter groups that are of significant importance.

Proposition 5.1. Let (W,S) be a Coxeter system, and let X ⊆ W . If 〈X〉 is locally finite, then the locally
finite continuation LFC(X) = LFCW (X) of X in W is a locally parabolic subgroup of W ; hence LFC(X)
admits (by definition of locally parabolic subgroups) a Coxeter generating set that consists of some reflections
in W with respect to S.

Proof. Under the assumption, Proposition 4.21 implies that the set LFC†(X) defined in Definition 3.2 is the
intersection of locally parabolic subgroups of W , and it is again locally parabolic by Proposition 4.20. Now
the assertion follows from Proposition 3.4.

Proposition 5.2. Let (W,S) be a Coxeter system of finite rank, and let w ∈ W be an element of finite
order. Then LFC(w) is equal to the intersection of all the maximal finite subgroups of W containing w, the
latter being the definition of the finite continuation of w in [11].

Proof. In our notation, the finite continuation of w in [11] is equal to FC†(w) introduced in Section 3.2. Now
by the finite-rank assumption on (W,S), we have FC(w) = FC†(w) by Proposition 3.5 and Proposition 4.15.
Since now LFC(w) = FC(w) by Proposition 3.6, the assertion holds.

We also have the following two properties of locally finite continuations in Coxeter groups.

Proposition 5.3. Let (W,S) be a Coxeter system, and let I ⊆ S be a subset of (−1)-type. Then we have
〈I〉 ≤ LFC(ρI) = LFC(〈I〉).

Proof. Proposition 5.1 implies that LP(ρI) ≤ LFC(ρI), while we have P(ρI) = LP(ρI) = 〈I〉 by Lemma
4.12 and Proposition 4.24. Therefore we have 〈I〉 ≤ LFC(ρI). Now by Lemma 3.7 and Lemma 3.8, we have
LFC(〈I〉) ≤ LFC(LFC(ρI)) = LFC(ρI) ≤ LFC(〈I〉), therefore LFC(ρI) = LFC(〈I〉).

Proposition 5.4. Let (W,S) be a Coxeter system, and let I ⊆ S be a spherical subset. Then we have
LFCW (I) = LFC〈E(I)〉(I), where E(I) ⊆ S is defined by Equation (1) before Lemma 4.16.

Proof. In this case, Lemma 4.16 implies that the subgroup H := 〈E(I)〉 satisfies the assumption in Lemma
3.10. Now the assertion follows immediately from Lemma 3.10.
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Moreover, the following result enables us to reduce a significant part of the analysis of intrinsic reflections
in a Coxeter group W to analyzing intrinsic reflections in locally finite continuations. This result is an analogy
of Lemma 9.3 (ii) in [13] shown for finite continuations in finite rank cases.

Lemma 5.5. Let (W,S) be a Coxeter system of arbitrary rank, and let r be a reflection in W with respect
to S. If r is an intrinsic reflection of LFC(r) (which is a Coxeter group by Proposition 5.1), then r is also
an intrinsic reflection of W .

Proof. Let R ⊆W and suppose that (W,R) is a Coxeter system. Now we note that the definition of LFC(r)
does not depend on the choice of the Coxeter generating set of W . By Proposition 5.1 applied to (W,R)
instead of (W,S), the group LFC(r) admits a Coxeter generating set consisting of reflections in W with
respect to R. Since r is an intrinsic reflection of LFC(r) by the assumption, r is conjugate to an element of
the aforementioned generating set for LFC(r), which is a reflection with respect to R as mentioned above.
This implies that r is also a reflection with respect to R. This completes the proof.

Owing to Lemma 5.5, it is worthwhile for our goal to determine the structure of the locally finite contin-
uations of reflections in Coxeter groups of arbitrary ranks. The following Sections 6 to 9 are devoted to this
purpose.

6 Decomposition of Locally Finite Continuations of Reflections

Let (W,S) be a Coxeter system. In order to determine the locally finite continuation LFC(r) = LFCW (r) of
a reflection r in W , in this section we establish a certain decomposition result which allows us to concentrate
on an “essential” part of the locally finite continuation.

6.1 Definitions

Here we introduce and summarize some relevant definitions and notation mostly following the previous paper
[13]. The odd graph Ω(S) of a Coxeter system (W,S) is the subgraph of the Coxeter graph of (W,S) with
the same vertex set S and in which two distinct vertices s, t ∈ S are joined by an edge if and only if o(st) is
finite and odd. We may write Ω(S) as Ω(W,S) when we emphasize the group W . An odd component of S
is the vertex set of a connected component of Ω(S). It is well-known that two generators s, t ∈ S are in the
same odd component of S if and only if they are conjugate in W . Now by virtue of Lemma 3.7 (4) applied
to the inner automorphisms of W , the problem of determining LFC(r) for reflections r is reduced to the case
where r ∈ S, and to determine LFC(r) for a given r ∈ S, we may consider (instead of r) any element s ∈ S
in the same odd component of S as r that is convenient for our argument.

For any subset J ⊆ S, we define

J⊥ = {s ∈ S | o(st) = 2 for any t ∈ J} ,
J∞ = {s ∈ S | o(st) =∞ for any t ∈ J} .

Now let M be an odd component of S. We define the even closure E(M) of M in S by E(M) := S \M∞.
Note that M is an irreducible subset of E(M). We define the M -principal component of E(M), denoted by
C0(M), to be the irreducible component of E(M) containing M . We call the other irreducible components
of E(M) the M -subsidiary components of E(M).

6.2 The Decomposition

Let (W,S) be a Coxeter system. Let M be an odd component of S and let s ∈ M . We note that the set
E(M) is equal to the set E({s}) defined by Equation (1) preceding Lemma 4.16. Now combining Proposition
5.4 and Lemma 3.11 yields the following:

Lemma 6.1. Let (W,S) be a Coxeter system, M be an odd component of S, and let s ∈M . Then LFCW (s)
is the direct sum of LFC〈C0(M)〉(s) and LFC〈J〉(1) over all the M -subsidiary components J of E(M).
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Hence, the problem of determining LFCW (s) is reduced to determining LFC〈C0(M)〉(s) and also deter-
mining LFC〈J〉(1) for any irreducible subset J of S. The former case is studied in the subsequent sections.
For the latter case, it follows immediately that we have LFC〈J〉(1) = 〈J〉 if J is locally spherical, as 〈J〉 itself
is locally finite in this case. Therefore, it suffices to consider the J that is not locally spherical.

The key step for dealing with this case is the following proposition, which is stated in a somewhat
generalized form for the sake of later references (see Section 4.2 for the definition of the support supp(w) of
an element w):

Lemma 6.2. Let (W,S) be a Coxeter system, and let w ∈ W . Then the following two conditions are
equivalent:

1. There exists a finite subgroup G of W satisfying |〈G ∪ {w}〉| =∞.

2. There exists an irreducible component J of S that is not locally spherical and satisfies J ∩ supp(w) 6= ∅.

Proof. First we show that the negation of Condition 2 implies the negation of Condition 1. Let J1, . . . , Jk
be the irreducible components of S having non-empty intersection with the finite set supp(w), therefore

w ∈
∏k
i=1〈Ji〉. By the negation of Condition 2, each 〈Ji〉 is locally finite. Put K := S \

⋃k
i=1 Ji. Let πJi

and πK denote the projection maps W → WJi and W → WK , respectively. Now we suppose that G ≤ W
is finite, and we show that 〈G ∪ {w}〉 is also finite. By the choice of J1, . . . , Jk, 〈G ∪ {w}〉 is contained in
the direct product of πK(G) and 〈πJi(G)∪ {πJi(w)}〉 for i = 1, . . . , k. Since G is finite, πK(G) is also finite;
while for each i, πJi(G)∪{πJi(w)} is a finite subset of locally finite group 〈Ji〉, therefore 〈πJi(G)∪{πJi(w)}〉
is also finite. This implies that 〈G ∪ {w}〉 is finite as well. Hence the negation of Condition 1 holds.

Secondly, we show that Condition 2 implies Condition 1. Let πJ be the projection map W → WJ .
Now if G is a finite subgroup of WJ and 〈G ∪ {πJ(w)}〉 is not finite, then 〈G ∪ {w}〉 is not finite since
πJ(〈G ∪ {w}〉) = 〈G ∪ {πJ(w)}〉. Due to this fact, we may assume without loss of generality that S = J ,
i.e., S is irreducible and is not locally spherical, and moreover that w 6= 1. Now we can take a finite
irreducible subset K of S that is non-spherical and satisfies w ∈ 〈K〉. Since K is finite, Proposition 4.15
implies that there is a subset L of K for which 〈L〉 is a maximal finite subgroup of 〈K〉. This 〈L〉 satisfies
Condition 1 when w 6∈ 〈L〉; from now, we consider the other case w ∈ 〈L〉. Since L is spherical and K is
non-spherical, L is properly contained in K. Since K is irreducible, there is a finite sequence s1, . . . , s` of
mutually distinct elements of K \ supp(w) satisfying that s1 6∈ supp(w)⊥, si 6∈ supp(w) ∪ {s1, . . . , si−1} and
si 6∈ (supp(w) ∪ {s1, . . . , si−1})⊥ for every 2 ≤ i ≤ `, and s` 6∈ L. Put u := s`s`−1 · · · s2s1 ∈ 〈K〉. Then
by recursively applying Lemma 4.8, we have s` ∈ supp(uwu−1), therefore uwu−1 6∈ 〈L〉. This implies that
w 6∈ G := u−1〈L〉u, while G is a maximal finite subgroup of 〈K〉 as well as 〈L〉, therefore the subgroup G
satisfies Condition 1. This completes the proof.

Corollary 6.3. Let (W,S) be an irreducible Coxeter system that is not locally spherical. Then we have
LFCW (1) = 1.

Proof. For any non-trivial element w ∈ W , Condition 2 in Lemma 6.2 is satisfied (with J = S), therefore
Lemma 6.2 implies that there is a finite subgroup G of W for which H := 〈G ∪ {w}〉 is not finite. In
particular, H is not locally finite. Hence we have w 6∈ LFCW (1) by Definition 3.1, therefore the assertion
holds.

Now by combining Corollary 6.3 to Lemma 6.1 and the argument in the paragraph next to Lemma 6.1,
we have the following decomposition result on the locally finite continuation.

Theorem 6.4. Let (W,S) be a Coxeter system, M be an odd component of S, and let s ∈M . Let Σ(M) be the
union of all locally spherical M -subsidiary components of E(M). Then LFCW (s) = LFC〈C0(M)〉(s)×〈Σ(M)〉.

Since LFC〈C0(M)〉(s) = 〈C0(M)〉 if C0(M) is locally spherical, it suffices due to Theorem 6.4 to determine
LFC〈C0(M)〉(s) for the case where C0(M) is not locally spherical.
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7 Focuses, Half-Focuses and C3-Neighbors

To study the “essential” component LFC〈C0(M)〉(s) of LFCW (s) mentioned in the previous section, in this
section we summarize definitions of some relevant objects, which have played a central role in the preceding
work [11] for the finite rank cases by Franzsen, Howlett and the first author of this paper. According to the
argument in the previous section, here we put the following assumption throughout this section:

Assumption. Throughout this section, we suppose that (W,S) is a Coxeter system, M is an odd component
of S, s ∈ M , S = C0(M), and S is not locally spherical. (In particular, (W,S) is irreducible and non-
spherical.)

7.1 The Definitions

We now record the definitions of a focus, a half-focus and a C3-neighbor of an odd component which has been
introduced in Definitions 4, 5 and 6 of [11]. Due to the assumption on (W,S) in this section, the definitions
given below are slightly different from those given in [11]. But it is straightforward to check that they are
equivalent to those in [11] if (W,S) is as in the assumption above. We also note that there are redundancies
in our set of axioms. These redundancies will facilitate our reasoning later on at various places and will not
be a disadvantage for us. We also give a remark on notations: For a subset J of S, we let Ω(J) denote the
odd graph of the Coxeter system (〈J〉, J) (see Section 6.1).

Definition 7.1. Let a ∈M and b ∈ S\M . We say that (a, b) is a focus of M in S, if the following conditions
are all satisfied:

1. The odd graph Ω(M) is a tree and if {x, y} ⊆M is an edge of Ω(M), then o(xy) = 3.

2. For each c ∈ M , the subset C[b..c] ⊆ S consisting of b and all vertices in the unique path in Ω(M)
joining c and a is of type Ck, where k = |C[b..c]|. (In particular o(ab) = 4.)

3. If c, d ∈M , c 6∈ C[b..d] and d 6∈ C[b..c], then o(cd) =∞.

4. If t ∈ S \ (M ∪ {b}), c ∈ M and o(tc) < ∞, then o(td) = 2 for every d ∈ C[b..c] (in particular
o(tb) = o(tc) = 2 in this case).

Figure 2 shows an example of a focus. In the figure, (a, b) is a focus of M = S \ {b, t}.

i i i i i i
i

i

b a s

t

HH
HH

H
HH

H
HH

@
@

@
@@

�
�
�
��

@
@
@
@@4

∞ ∞ ∞

∞ ∞

Figure 2: Example of a focus; here (a, b) is a focus of M = S \ {b, t}

Definition 7.2. Let a, b ∈ M and suppose that o(ab) = 2. We say that {a, b} is a half-focus of M in S, if
the following conditions are all satisfied:

1. We have o(ta) = o(tb) ∈ {2, 3} for every t ∈ S \ {a, b} and o(ta) = o(tb) = 2 for every t ∈ S \M . (In
particular, the transposition that switches a and b is an automorphism of the Coxeter graph of (W,S).)
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2. The odd graph Ω(M \ {b}) is a tree and if {x, y} ⊆M is an edge of Ω(M), then o(xy) = 3.

3. For each c ∈ M \ {a, b}, the subset D[a, b..c] ⊆ S consisting of b and all vertices in the unique path
in Ω(M \ {b}) joining c and a is of type Dk, where k = |D[a, b..c]| (here type D3 is regarded as type
A3), and the Coxeter graph for (〈D[a, b..c]〉, D[a, b..c]) admits a non-trivial graph automorphism that
switches a and b.

4. If c, d ∈M \ {a, b}, c 6∈ D[a, b..d] and d 6∈ D[a, b..c], then o(cd) =∞.

5. If t ∈ S \M , c ∈ M \ {a, b} and o(tc) < ∞, then o(td) = 2 for every d ∈ D[a, b..c] (in particular
o(ta) = o(tc) = 2 in this case).

Figure 3 shows an example of a half-focus. In the figure, {a, b} is a half-focus of M = S \ {t, t′}.
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Figure 3: Example of a half-focus; here {a, b} is a half-focus of M = S \ {t, t′}

Definition 7.3. Let b ∈ S \M . We say that b is a C3-neighbor of M in S, if we have o(bt) ∈ {2, 4} for
every t ∈ M , o(bt) = 2 for every t ∈ S \ (M ∪ {b}), and for each c ∈ M with o(bc) = 4, there exists an
a = a(b; c) ∈M satisfying the followings:

1. We have o(ca) = 3, o(ba) = 2, and o(ct) =∞ for every t ∈M \ {a, c}.

2. For each t ∈ S \ (M ∪ {b}), we have either o(tc) =∞ or o(tb) = o(tc) = o(ta) = 2.

Figure 4 shows an example of a C3-neighbor. In the figure, we put s := a, and b is a C3-neighbor of
M = {c, a, a′, c′}, with a(b; c) = a and a(b; c′) = a′.
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Figure 4: Example of a C3-neighbor; here b is a C3-neighbor of M = {c, a, a′, c′}, with a(b; c) = a and
a(b; c′) = a′
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7.2 Some Properties

From now, we give some basic properties for the objects defined above, which will be used in our argument
below.

Lemma 7.4. Let {a, b} be a half-focus of M in S. Then the set, say N , of neighbors of a in the odd graph
Ω(M) is non-empty and equal to the set of neighbors of b in Ω(M). Moreover, we have o(at) = o(bt) = 3 for
any t ∈ N , D[b, a..c] = D[a, b..c] for each c ∈ M \ {a, b}, and we have o(tt′) =∞ for any distinct t, t′ ∈ N .
Finally, Ω(M \ {a}) is a tree.

Proof. This is easily deduced by the conditions in the definition of a half-focus (note that the assertion N 6= ∅
follows from the assumptions that {a, b} ⊆M , o(ab) = 2 and Ω(M) is connected).

Lemma 7.5. Let {a, b} ⊆ M be a half-focus of M in S. Suppose that c ∈ M , o(ac) = 3 = o(bc), and
M = {a, b, c}. Then there exists e ∈ S satisfying o(ae) = 2 = o(be) and o(ec) =∞.

Proof. Recall that S = C0(M) and S is not locally spherical by the assumption in this section; in particular,
S is irreducible and S 6= M (note that now M is of type A3 by the assumption of this lemma). Hence there
is a neighbor e ∈ S \M of the set M in the Coxeter graph of (W,S). Now Condition 1 in the definition
of a half-focus implies that o(ea) = o(eb) = 2, therefore e must be adjacent to c in the graph, meaning
that o(ec) ≥ 3. As e ∈ S \M , now Condition 5 (with t = e) implies that o(ec) = ∞ (otherwise we must
have o(ec) = 2 which yields a contradiction), therefore this e satisfies the conditions in the assertion. This
concludes the proof.

Definition 7.6. Let t ∈ M . We say that t is well-positioned in S, if one of the following two conditions is
satisfied:

• There is no C3-neighbor of M in S.

• There are a C3-neighbor b of M in S and an element c ∈ M satisfying that o(bc) = 4 and t is the
element a = a(b; c) of M specified by the condition for b being a C3-neighbor of M in S.

Lemma 7.7. Let t ∈M be a well-positioned element in S. Then t commutes with every C3-neighbor of M
in S.

Proof. The assertion is trivial if no C3-neighbor of M in S exists; from now, we consider the other case. Let
b ∈ S \M and c ∈ M be as in the condition for t being well-positioned in S; hence t = a := a(b; c). Then
t = a commutes with b by the definition of a(b; c). On the other hand, for any other C3-neighbor b′ of M in
S, we have o(b′c) ∈ {2, 4} since b′ is a C3-neighbor of M in S, therefore o(b′b) = o(b′c) = o(b′a) = 2 since
b is a C3-neighbor of M in S. Hence t = a commutes with every C3-neighbor of M in S, concluding the
proof.

8 s-Principal Coxeter Systems

This section summarizes some graph-theoretic arguments related to the objects introduced in the previous
section, which are used in our proof of the main result. In this section, we put the same assumption as the
previous section:

Assumption. Throughout this section, we suppose that (W,S) is a Coxeter system, M is an odd component
of S, s ∈M , S = C0(M), and S is not locally spherical.
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8.1 s-Principal Subsets of S

First of all, we introduce the following terminology:

Definition 8.1. We say that a subset I ⊆ S is s-principal, if I is not locally spherical, s ∈ I, M ∩ I is the
odd component of I containing s, and I is the (M ∩ I)-principal component of I.

We note that, due to the assumption above, the whole set S is also s-principal in the sense above.
The rest of this section is devoted to establish a kind of results, which intuitively says the following: If

there are certain finitely many elements that are relevant to our argument, and if the whole set S admits
some property about (in)existence of focuses, half-focuses or C3-neighbors of M , then we can obtain a
finite s-principal subset of S that involves all the finitely many relevant elements and also inherits from
S the same property about (in)existence of focuses, half-focuses or C3-neighbors. First we introduce some
“closure” operations in order to obtain a new finite s-principal subset of S.

Definition 8.2. Let I ⊆ S be a finite subset with I ∩M 6= ∅. We say that a subset J ⊆ S is an odd
connection of I, if J is finite, I ⊆ J , J \ I ⊆M , and the odd graph Ω(M ∩ J) is connected.

We note that an odd connection of such a set I always exists, since Ω(M) is connected.

Definition 8.3. Let I ⊆ S be a finite non-empty subset. For each t ∈ I \M , let t0 = t, t1, . . . , tk be a
shortest path in the Coxeter graph from t to some element tk of M . Moreover, for each i = 0, 1, . . . , k−1, let
xi be an element of M with o(tixi) <∞. Then we define an even connection of I to be the finite subset of S
obtained by adding to I the elements t1, . . . , tk and x0, . . . , xk−1 specified above for each element t ∈ I \M .

We note that an even connection of such a set I always exists, since S = C0(M). Now the following
property is deduced immediately from the definitions of odd connections and even connections:

Lemma 8.4. Let I ⊆ S be a finite non-spherical subset that contains s. Then an odd connection of an even
connection of I is a finite s-principal subset of S. In particular, any finite subset of S is contained in a finite
s-principal subset of S.

Definition 8.5. For any finite subset I of S, we denote by P(I) the set of all finite s-principal subsets of S
that contain I (which is non-empty by Lemma 8.4).

8.2 (Half-)Focuses and s-Principal Sets

Lemma 8.6. Let I ⊆ J ⊆ S be two s-principal subsets of S, let (a, b) be a focus of M ∩ I in I and let
a′, b′ ∈ J . Then {a′, b′} is not a half-focus of M ∩ J in J and if (a′, b′) is a focus of M ∩ J in J , then
(a, b) = (a′, b′).

Proof. As (a, b) is a focus of M ∩ I in I, we have that b ∈ I ⊆ J and b 6∈ M ∩ I, therefore b 6∈ M and
b ∈ J \ (M ∩ J). As J is s-principal, a ∈ M ∩ J and o(ab) = 4, it follows from Conditions 1 and 5 for a
half-focus, that there cannot be a half-focus of M ∩J in J . Therefore the first assertion holds and we assume
from now on that (a′, b′) is a focus of M ∩ J in J . We have to show that (a, b) = (a′, b′).

Assume, for the contrary, that b 6= b′. Then by Condition 4 for the focus (a′, b′) of M ∩ J in J with
t := b ∈ J \ ((M ∩J)∪{b′}) and c := a ∈M ∩J , we have o(ba) = 2, which contradicts the property o(ab) = 4
mentioned above. Hence we have b = b′.

Now assume, for the contrary, that a 6= a′. Then by Condition 2 for the focus (a′, b) of M ∩ J in J with
c := a ∈M ∩J , the set C[b..a] is of type Ck with some k ≥ 3, therefore we have o(ab) = 2, which contradicts
the property o(ab) = 4 again. Hence we have a = a′. This concludes the proof.

Proposition 8.7. Let I ⊆ J ⊆ S be two s-principal subsets of S, let {a, b} be a half-focus of M ∩ I in I
and let a′, b′ ∈ J . Then (a′, b′) is not a focus of M ∩ J in J and if {a′, b′} is a half-focus of M ∩ J in J ,
then {a, b} = {a′, b′}.
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Proof. In the proof, for K ∈ {I, J} we denote by NK(t) the set of neighbors of t ∈ M ∩ K in the graph
Ω(M ∩K). By Lemma 7.4 applied to the half-focus {a, b} of M ∩ I in I, we have NI(a) = NI(b) and there
exists an element c of M ∩ I with o(ac) = 3 = o(bc). Note that o(ab) = 2 by the definition for the half-focus
{a, b} of M ∩ I in I. From now on, we fix this common neighbor c of a and b throughout this proof.

First, assume for the contrary that (a′, b′) is a focus of M ∩ J in J . As Ω(M ∩ J) is a tree by Condition
1 for the focus (a′, b′) of M ∩ J in J , it follows that NI(a) = NI(b) consists of a single element, therefore
NI(a) = NI(b) = {c}. Now if M ∩ I = {a, b, c}, then by Lemma 7.5 applied to the half-focus {a, b} of M ∩ I
in I, there exists e ∈ I \ (M ∩ I) ⊆ J \ (M ∩ J) with o(ae) = o(be) = 2 and o(ec) =∞. We have e 6= b′, as
otherwise Condition 2 for the focus (a′, b′) of M ∩J in J implies that o(et) ∈ {2, 4} for any t ∈M ∩J , and in
particular o(ec) ∈ {2, 4} which is a contradiction. Moreover, as (a, c, b) forms a path in the tree Ω(M ∩ J),
we must have either c ∈ C[b′..a] or c ∈ C[b′..b]; we assume by symmetry that c ∈ C[b′..a]. Then Condition 4
for the focus (a′, b′) of M ∩ J in J (applied to t := e and the set C[b′..a]) implies that o(ec) = 2. This is a
contradiction. Hence we have M ∩ I 6= {a, b, c}.

Now, as Ω(M ∩ I) is connected and NI(a) = NI(b) = {c} (see above), there exists an element d of NI(c)
other than a and b. By Condition 3 for the half-focus {a, b} of M ∩ I in I, we have D[a, b..d] = {a, c, b, d},
o(ad) = o(bd) = 2 and o(cd) = 3. Now by the shape of the subgraph Ω({a, c, b, d}) of the tree Ω(M ∩ J),
there must be two elements x, y among {a, b, d} satisfying both x 6∈ C[b′..y] and y 6∈ C[b′..x]. Then we have
o(xy) = ∞ by Condition 3 for the focus (a′, b′) of M ∩ J in J , while o(xy) = 2 by the choice of x and y.
This is a contradiction. Hence (a′, b′) is not a focus of M ∩ J in J , as desired.

From now on, we suppose that {a′, b′} is a half-focus of M ∩J in J and prove that {a, b} = {a′, b′}. First,
by Lemma 7.4 applied to the half-focus {a′, b′} of M ∩J in J , we have NJ(a′) = NJ(b′). Now assume for the
contrary that {a, b} 6= {a′, b′}. By symmetry, we assume without loss of generality that b′ 6∈ {a, b}. Now we
have o(ab) = 2 (see the first paragraph of the proof) and a, b ∈ (M ∩ I) \ {b′} ⊆ (M ∩ J) \ {b′}. This implies
that {a, b} 6⊆ NJ(b′), as otherwise we must have o(ab) =∞ by Lemma 7.4 applied to the half-focus {a′, b′} of
M ∩J in J (with t := a and t′ := b) which is a contradiction. In particular b′ 6= c. Moreover, there cannot be
an element t of NI(a) = NI(b) different from c and b′, as otherwise {c, t} ⊆ NI(a) ∩NI(b) ⊆ NJ(a) ∩NJ(b)
and Ω((M ∩ J) \ {b′}) contains a cycle but this contradicts Condition 2 (saying that Ω((M ∩ J) \ {b′}) is a
tree) for the half-focus {a′, b′} of M ∩ J in J . Hence we have NI(a) = NI(b) = {c}.

As o(ab) = 2 and a, b ∈ (M ∩ J) \ {b′} (see above), by Condition 4 for the half-focus {a′, b′} of M ∩ J in
J , we must have either b 6= a′ and a ∈ D[a′, b′..b] (including the case a = a′), or a 6= a′ and b ∈ D[a′, b′..a]
(including the case b = a′). By symmetry, we assume without loss of generality that b 6= a′ and a ∈ D[a′, b′..b].
Now the set D[a′, b′..b] \ {b′} forms a path from b to a′ in Ω((M ∩J) \ {b′}) that contains a, while c 6= b′ and
c ∈ NI(a) ∩NI(b) ⊆ NJ(a) ∩NJ(b). As Ω((M ∩ J) \ {b′}) is acyclic, it follows that the first three vertices
of this path D[a′, b′..b] \ {b′} must be (b, c, a). In particular, we have c ∈ D[a′, b′..b].

Now Condition 5 for the half-focus {a′, b′} of M ∩ J in J (applied to the D[a′, b′..b]) implies that there
cannot be an element t ∈ I \ (M ∩ I) ⊆ J \ (M ∩ J) with o(tb) = 2 and o(tc) = ∞. Hence we have
M ∩ I 6= {a, b, c} by Lemma 7.5 applied to the half-focus {a, b} of M ∩ I in I. As Ω(M ∩ I) is connected
and NI(a) = NI(b) = {c} as shown above, there must be an element d of NI(c) other than a and b. Now
if such d were different from b′, then by the shape of D[a′, b′..b] described above, we have d 6= a′ and
D[a′, b′..d] = (D[a′, b′..b] \ {b}) ∪ {d}, therefore b 6∈ D[a′, b′..d] and d 6∈ D[a′, b′..b]. As b, d 6∈ {a′, b′} (see
above), we have o(bd) = ∞ by Condition 4 for the half-focus {a′, b′} of M ∩ J in J , which contradicts
Condition 1 for the half-focus {a, b} of M ∩ I in I as d ∈ I \ {a, b}. Hence any such d must be b′, which
implies that NI(c) = {a, b, b′} and therefore b′ ∈ I, a = a′ and D[a′, b′..b] = {b, c, a, b′} is of type D4.

Now by both Condition 2 and Lemma 7.4 for the half-focuses {a, b} of M ∩ I in I and {a, b′} of M ∩J in
J , respectively, it follows that both Ω((M ∩ I) \ {b}) and Ω((M ∩ I) \ {b′}) are acyclic, and NI(b) = NI(a) =
NI(b

′). Hence we must have NI(b) = NI(a) = NI(b
′) = {c}, while NI(c) = {a, b, b′} as above, therefore

M ∩ I = {b, c, a, b′} which is of type D4. On the other hand, I is irreducible and not locally spherical as I is
an s-principal subset of S. Hence we have I 6= M ∩ I and there is an element t ∈ I \ (M ∩ I) ⊆ J \ (M ∩ J)
with t 6∈ (M ∩ I)⊥. Now we have o(tb) = 2 by Condition 1 for the half-focus {a, b} of M ∩ I in I, therefore
t ∈ D[a′, b′..b]⊥ = (M ∩ I)⊥ (recall that now D[a′, b′..b] = M ∩ I) by Condition 5 for the half-focus {a′, b′}
of M ∩ J in J . This is a contradiction. Hence we have {a, b} = {a′, b′}. This concludes the proof.
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Now we start to give the results mentioned at the beginning of Section 8.1. We recall Definition 8.5 for
the set P(I), which is in particular non-empty.

Lemma 8.8. Let a ∈ M and b ∈ S \M , and suppose that (a, b) is a focus of M in S. Then for any finite
subset I of S, there exists a finite s-principal subset I† of S satisfying that a ∈M ∩ I†, b ∈ I†, I ⊆ I†, and
(a, b) is a focus of M ∩ I† in I†.

Proof. First we replace I with some (finite) set in P(I ∪ {a, b}), which does not affect the assertion. Now
since Ω(M) is a tree by the definition of a focus, its connected subgraph Ω(M ∩ I) is also a tree. Moreover,
now for each c ∈ M ∩ I, the set C[b..c] with respect to the pair of I and M ∩ I coincides with that with
respect to the pair of S and M . Therefore, all the other conditions for (a, b) being a focus of M ∩ I in I
follow immediately from the corresponding conditions for (a, b) being a focus of M in S. Hence the assertion
holds.

Lemma 8.9. Let a, b ∈ M , and suppose that {a, b} is a half-focus of M in S. Then for any finite subset
I of S, there exists a finite s-principal subset I† of S satisfying that a, b ∈ M ∩ I†, I ⊆ I†, and {a, b} is a
half-focus of M ∩ I† in I†.

Proof. First we replace I with some set in P(I ∪{a, b}), which does not affect the assertion. Moreover, since
Ω(M \ {b}) is connected by the definition of a half-focus, we can add finitely many elements of M to I in a
way that Ω((M ∩ I) \ {b}) becomes connected; we note that this process does not violate the property of I
being s-principal. Now since Ω(M \ {b}) is a tree by the definition of a half-focus, its connected subgraph
Ω((M ∩ I) \ {b}) is also a tree. Moreover, now for each c ∈ (M ∩ I) \ {a, b}, the set D[a, b..c] with respect
to the pair of I and M ∩ I coincides with that with respect to the pair of S and M . Therefore, all the other
conditions for {a, b} being a half-focus of M ∩ I in I follow immediately from the corresponding conditions
for {a, b} being a half-focus of M in S. Hence the assertion holds.

Lemma 8.10. Suppose that there is no focus and no half-focus of M in S. Then for any finite subset I of S,
there exists a finite s-principal subset I† of S satisfying that I ⊆ I† and there is no focus and no half-focus
of M ∩ I† in I†.

Proof. First we replace I with some set in P(I), which does not affect the assertion. We note that the
assertion holds if there is no focus and no half-focus of M ∩ I in I.

First, we consider the case that there is a focus (a, b) of M ∩ I in I. By the assumption that (a, b) is not
a focus of M in S, some of the conditions in the definition is not satisfied. Now we can take a finite subset
J of S in the following manner to ensure that, for I† ∈ P(I ∪ J), (a, b) is not a focus of M ∩ I† in I†:

• If the odd graph Ω(M) is not a tree, then Ω(M) contains a cycle since Ω(M) is connected. Now we
set J to be the vertex set of this cycle; then the same cycle violates Condition 1 for (a, b) to be a focus
of M ∩ I† in I†.

• If an element c ∈ M violates Condition 2 for (a, b) to be a focus of M in S, then we set J := C[b..c].
Now c also violates Condition 2 for (a, b) to be a focus of M ∩ I† in I†.

• If two elements c, d ∈ M violate Condition 3 for (a, b) to be a focus of M in S, then we set J :=
C[b..c] ∪ C[b..d]. Now c and d also violate Condition 3 for (a, b) to be a focus of M ∩ I† in I†.

• Finally, if two elements t ∈ S \ (M ∪ {b}) and c ∈M violate Condition 4 for (a, b) to be a focus of M
in S, then we set J := C[b..c] ∪ {t}. Now t and c also violate Condition 4 for (a, b) to be a focus of
M ∩ I† in I†.

Moreover, Lemma 8.6 (applied to J := I†) implies that there is no focus of M ∩ I† in I† different from (a, b)
and there is no half-focus of M ∩ I† in I†. Hence there is no focus and no half-focus of M ∩ I† in I†, as
desired.

Similarly, we consider the other case that there is a half-focus {a, b} of M ∩ I in I. By the assumption
that {a, b} is not a half-focus of M in S, some of the conditions in the definition is not satisfied. Now we
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can also take a finite subset J of S in the following manner to ensure that, for I† ∈ P(I ∪ J), {a, b} is not a
half-focus of M ∩ I† in I†:

• If an element t ∈ S\M violates Condition 1 for {a, b} to be a half-focus of M in S, then we let J := {t}.

• If Ω(M \ {b}) is not connected, then we let J be the set of two elements of M that are in distinct
connected components of Ω(M \ {b}).

• If Ω(M \ {b}) contains a cycle, then we let J be the vertex set of this cycle.

• If an element c ∈ M \ {b} violates Condition 3 for {a, b} to be a half-focus of M in S, then we let
J := D[a, b..c].

• If elements c, d ∈ M \ {a, b} violate Condition 4 for {a, b} to be a half-focus of M in S, then we let
J := D[a, b..c] ∪D[a, b..d].

• Finally, if elements t ∈ S \M and c ∈ M \ {b} violate Condition 5 for {a, b} to be a half-focus of M
in S, then we let J := {t} ∪D[a, b..c].

Moreover, Proposition 8.7 (applied to J := I†) implies that there is no half-focus of M ∩ I† in I† different
from {a, b} and there is no focus of M ∩ I† in I†. Hence there is no focus and no half-focus of M ∩ I† in I†,
as desired. This concludes the proof.

8.3 C3-Neighbors and s-Principal Sets

For the next result, recall from Section 7.2 the definition of a well-positioned element.

Lemma 8.11. Let b ∈ S\M , and suppose that b is a C3-neighbor of M in S. Let s0 ∈M be a well-positioned
element in S. Then for any finite subset I of S, there exists a finite s-principal subset I† of S satisfying that
s0 ∈M ∩ I†, b ∈ I†, I ⊆ I†, s0 is well-positioned in I†, and b is a C3-neighbor of M ∩ I† in I†.

Proof. Let b′ ∈ S \M and c′ ∈M be the elements specified in the condition for s0 being well-positioned in
S. We replace I with some set in P(I ∪ {s0, b, b

′, c′}), which does not affect the assertion.
First, we add to I an element a′′ = a(b′; c′′) specified in the definition of a C3-neighbor for M in S for

each of (finitely many) generators c′′ ∈ (M ∩ I) \ {c′} with o(b′c′′) = 4. Since o(c′′a′′) = 3 for any such
pair (c′′, a′′), the odd graph Ω(M ∩ I) remains connected during this process, therefore this process does
not violate the property of I being s-principal. Moreover, since o(b′a′′) = 2 for any such pair (c′′, a′′), this
process does not generate any further element c ∈M ∩ I with o(b′c) = 4. Therefore, all the conditions for b′

being a C3-neighbor of M ∩ I in I and for s0 being the element a(b′; c′) with respect to I follow immediately
from the corresponding conditions for b′ being a C3-neighbor of M in S and for s0 being the element a(b′; c′)
with respect to S. Now the assertion holds when b′ = b; from now, we consider the other case b′ 6= b.

In this case, we moreover add to I an element a = a(b; c) ∈M specified in the definition of a C3-neighbor
for M in S for each of (finitely many) generators c ∈ M ∩ I with o(bc) = 4. Since o(ca) = 3 for any such
pair (c, a), the odd graph Ω(M ∩ I) remains connected during this process, therefore this process does not
violate the property of I being s-principal. Moreover, the definition of a C3-neighbor implies that we have
o(ba) = 2 and o(b′c) = o(b′a) = 2 for any such pair (c, a), therefore this process does not generate any further
element c ∈ M ∩ I with o(bc) = 4 or o(b′c) = 4. Hence, b′ is still a C3-neighbor of M ∩ I in I, s0 is still
well-positioned in I, and all the conditions for b being a C3-neighbor of M ∩ I in I follow immediately from
the corresponding conditions for b being a C3-neighbor of M in S. This concludes the proof.

Lemma 8.12. Let b ∈ S \M , and suppose that b is not a C3-neighbor of M in S. Then for any finite subset
I of S, there exists an s-principal subset I† of S satisfying that b ∈ I†, I ⊆ I†, and b is not a C3-neighbor
of M ∩ I† in I†.
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Proof. At the beginning we add the element b to the set I. Now, since b is not a C3-neighbor, some of the
conditions for a C3-neighbor of M in S is not satisfied. First, if o(bt) 6∈ {2, 4} for some t ∈M or if o(bt) 6= 2
for some t ∈ S \ (M ∪ {b}), then we add to I the element t. Secondly, suppose that for some c ∈ M with
o(bc) = 4, the number of elements d ∈M \ {c} with o(cd) <∞ is either zero or at least two. In this case, we
add to I the element c and, in the latter situation above, also add to I two distinct elements d1, d2 ∈M \{c}
with o(cd1), o(cd2) <∞. Finally, suppose that for some c ∈M with o(bc) = 4, there is precisely one element
a ∈ M \ {c} with o(ca) < ∞, and for this element a, we have one of the following properties; o(ca) 6= 3;
o(ba) 6= 2; or there is an element t ∈ S \ (M ∪ {b}) satisfying that o(tc) <∞ and at least one of o(tb), o(tc),
and o(ta) is not equal to 2. In this case, we add to I the elements c, a and, in the last situation above,
also add to I the element t. We note that, since b is not a C3-neighbor of M in S, some of the situations
considered above indeed happens.

After the process of expanding the set I as above, and by taking some I† ∈ P(I) further, the process
above implies that, the elements that were added to the set I also violate the corresponding condition for b
being a C3-neighbor of M ∩ I† in I†. This concludes the proof.

9 On the Main Part of the Locally Finite Continuation

In this section, we state and prove the following result, which in combination with Theorem 6.4 determines
the structure of the locally finite continuation of a reflection in a Coxeter group of arbitrary rank:

Theorem 9.1. Let (W,S) be a Coxeter system, M be an odd component of S, and s ∈ M . Suppose that
S = C0(M) and S is not locally spherical. Then precisely one of the following situations happens:

1. There is a focus (a, b) of M in S. Now we have LFC(a) = 〈a, b〉, o(ab) = 4, and SW ∩LFC(a) contains
no element that commutes with a and is not conjugate to a in LFC(a).

2. There is a half-focus {a, b} of M in S. Now we have LFC(a) = 〈a, b〉, o(ab) = 2, and any element of
SW ∩ LFC(a) is conjugate to a in W .

3. There are no focuses and no half-focuses of M in S. Now there is an element s0 ∈ M that is well-
positioned in S (see Section 7.2 for the terminology); and for any such element s0, LFC(s0) is an
elementary abelian 2-group generated by s0 and all the C3-neighbors of M in S, and s0 is the unique
element of SW ∩ LFC(s0) that is conjugate to s0 in W .

Before proving the theorem, we state an immediate corollary of Theorem 9.1 and Theorem 6.4.

Corollary 9.2. Let (W,S) be an arbitrary Coxeter system, and let M ⊆ S be an odd component of S. Then
there exists an element s ∈M satisfying the following conditions:

• LFCW (s) is a visible subgroup of W ; say, LFCW (s) = 〈I〉 for I ⊆ S.

• Let Σ(M) denote the union of all locally spherical M -subsidiary components of E(M). Then we have
Σ(M) ⊆ I, I \ Σ(M) is a direct factor of I, and 〈I \ Σ(M)〉 = LFC〈C0(M)〉(s).

• If C0(M) is locally spherical, then I \ Σ(M) = C0(M). If C0(M) is not locally spherical, then one of
the following conditions is satisfied;

1. I \ Σ(M) is of type C2;

2. I \ Σ(M) is of type A1 × A1 and the two generators in I \ Σ(M) are conjugate to each other in
W ;

3. I \ Σ(M) consists of s and all the C3-neighbors of M in C0(M), and all elements of I \ Σ(M)
commute with each other.

22



In particular, the locally finite continuation of a reflection has the following property, which is obvious
by the definition of finite continuations in the finite rank cases studied in [11] but is never obvious solely by
the definition of locally finite continuations.

Corollary 9.3. Let (W,S) be an arbitrary Coxeter system. Then the locally finite continuation LFCW (r)
of any reflection r in W is always (not just locally parabolic, but also) a parabolic subgroup of W .

We also have another consequence of the structure of the locally finite continuation determined by
Theorem 9.1 and Theorem 6.4; this is a straightforward generalization of Corollary 9.7 in [13] originally
shown for finite continuations in finite rank cases, and the same proof as [13] works for the present case.

Corollary 9.4. Let (W,S) be a Coxeter system of arbitrary rank, and let M be an odd component of (W,S).
Let s ∈ M , and suppose that LFC(s) = 〈J〉 for some J ⊆ S. If Z(LFC(s)) = 〈s〉, then each component of
(〈J〉, J) of rank at least two is an M -subsidiary component of E(M).

Now we start to prove Theorem 9.1. The important starting point is that the theorem specialized to the
finite rank cases has been proved in [11] (though the description of the statement is slightly different) and
we can efficiently utilize the result for the finite rank cases in our argument below:

Proposition 9.5. Theorem 9.1 is true for the cases where (W,S) has finite rank.

Proof. This is an immediate consequence of the main result (Theorem 7) of [11] for the finite rank cases.

In the rest of this section, we put the same assumption as Theorem 9.1 and also focus on the infinite
rank cases:

Assumption. In the rest of this section, we suppose that (W,S) is a Coxeter system, M is an odd component
of S, s ∈M , S = C0(M), |S| =∞, and S is not locally spherical.

Lemma 9.6. If (a, b) is a focus (respectively, {a, b} is a half-focus) of M in S, then we have LFC(a) = 〈a, b〉.

Proof. First, to show that b ∈ LFC(a), let Z ⊆ W be any subset that contains a and generates a locally
finite subgroup. In order to show that 〈Z ∪ {b}〉 is locally finite (which will imply b ∈ LFC(a) by Definition
3.1), it suffices to prove that |〈Z ′ ∪ {b}〉| <∞ for any finite subset Z ′ of Z. We may assume without loss of
generality that a ∈ Z ′. Now there is a finite subset I of S satisfying Z ′ ⊆ 〈I〉, and for this I, we can take a
finite subset I† ⊆ S as in Lemma 8.8 (respectively, Lemma 8.9). Then, since (a, b) is a focus (respectively,
{a, b} is a half-focus) of M ∩ I† in I†, Theorem 9.1 for the finite rank cases implies that b ∈ LFC〈I†〉(a).

Since a ∈ Z ′ ⊆ 〈I〉 ⊆ 〈I†〉 and 〈Z ′〉 is finite by the choice of Z, it follows that 〈Z ′ ∪ {b}〉 is also finite, as
desired. Hence we have b ∈ LFC(a), therefore 〈a, b〉 ⊆ LFC(a).

On the other hand, let w ∈ LFC(a). We can take a finite subset I ⊆ S satisfying w ∈ 〈I〉, and for this
I, we can take a finite subset I† ⊆ S as in Lemma 8.8 (respectively, Lemma 8.9). Then, since (a, b) is a
focus (respectively, {a, b} is a half-focus) of M ∩ I† in I†, Theorem 9.1 for the finite rank cases implies that
LFC〈I†〉(a) = 〈a, b〉, and we moreover have w ∈ LFC(a) ∩ 〈I†〉 ⊆ LFC〈I†〉(a) = 〈a, b〉 by Lemma 3.9. Hence
we have LFC(a) ⊆ 〈a, b〉 and therefore LFC(a) = 〈a, b〉, concluding the proof.

By virtue of Lemma 9.6, hereafter we focus on the case where there is no focus and no half-focus of M
in S. We write tG = {tw | w ∈ G} for any t ∈W and G ≤W .

Lemma 9.7. Suppose that there is no focus and no half-focus of M in S. If s0 ∈ M is a well-positioned
element in S, and if b is a C3-neighbor of M in S, then we have b ∈ LFC(s0).

Proof. Let Z ⊆W be any subset that contains s0 and generates a locally finite subgroup. In order to show
that 〈Z ∪ {b}〉 is locally finite (which will imply b ∈ LFC(s0)), it suffices to prove that |〈Z ′ ∪ {b}〉| <∞ for
any finite subset Z ′ of Z. We may assume without loss of generality that s0 ∈ Z ′. Now there is a finite
subset I of S satisfying Z ′ ⊆ 〈I〉, and for this I, we can take a finite subset I† ⊆ S as in Lemma 8.11. Then,
since s0 is well-positioned in I† and b is a C3-neighbor of M ∩ I† in I†, Theorem 9.1 for the finite rank cases
implies that b ∈ LFC〈I†〉(s0). Since s0 ∈ Z ′ ⊆ 〈I〉 ⊆ 〈I†〉 and 〈Z ′〉 is finite by the choice of Z, it follows that
〈Z ′ ∪ {b}〉 is also finite, as desired. Hence we have b ∈ LFC(s0). This concludes the proof.
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Lemma 9.8. Suppose that there is no focus and no half-focus of M in S. Let s0 ∈ M be a well-positioned
element in S, and let J denote the set of all C3-neighbors of M in S. Then we have LFC(s0) = 〈J ∪ {s0}〉.

Proof. Since 〈J ∪ {s0}〉 ⊆ LFC(s0) by Lemma 9.7, it suffices to show that LFC(s0) ⊆ 〈J ∪ {s0}〉. Assume
for the contrary that LFC(s0) 6⊆ 〈J ∪{s0}〉. Since LFC(s0) is a reflection subgroup of W by Proposition 5.1,
there is a reflection r ∈ LFC(s0) \ 〈J ∪ {s0}〉.

By Lemma 8.10, there is a finite s-principal subset I ⊆ S satisfying that s0 ∈ M ∩ I, r is a reflection of
(〈I〉, I), and there is no focus and no half-focus of M ∩ I in I. Now Theorem 9.1 for the finite rank cases
implies the following: There is a well-positioned element s1 ∈ M ∩ I in I, and LFC〈I〉(s1) is an elementary
abelian 2-group generated by s1 and the set (say, J1) of all C3-neighbors of M ∩ I in I. In particular, all
vertices in {s1} ∪ J1 are mutually isolated in the Coxeter graph of (〈I〉, I), and we have J1 ∩M = ∅ by the
definition for C3-neighbors of M ∩ I in I.

As Ω(M ∩ I) is connected and s0, s1 ∈ M ∩ I, there is an element w ∈ 〈M ∩ I〉 with s1 = s0
w. Now for

any t ∈ {r} ∪ (J ∩ I), we have tw ∈ LFC(s0)w = LFC(s1) by Lemma 3.7 (4), and tw ∈ LFC(s1) ∩ 〈I〉 ⊆
LFC〈I〉(s1) = 〈{s1} ∪ J1〉 by Lemma 3.9. Hence by Proposition 4.17, the reflection tw of (W,S) is also a
reflection of (〈{s1}∪J1〉, {s1}∪J1). By the shape of {s1}∪J1 mentioned above, it follows that tw ∈ {s1}∪J1,
and in particular tw ∈ J1 since t 6= s0. Moreover, when t ∈ J ∩ I, we also have t ∈ supp(tw) by Lemma 4.7
since t 6∈M (by the definition of C3-neighbors of M in S) and w ∈ 〈M〉, therefore we have tw = t. Now since
r 6∈ J , we have rw 6= tw = t for any t ∈ J ∩ I, therefore rw 6∈ J ∩ I and (since rw ∈ I) we have rw 6∈ J ; that
is, b0 := rw ∈ J1 ⊆ I \M is not a C3-neighbor of M in S. Note that o(b0s1) = 2 by the shape of {s1} ∪ J1

mentioned above.
By Lemma 8.12, there is a finite s-principal subset K ⊆ S satisfying that I ⊆ K and b0 is not a C3-

neighbor of M ∩ K in K. Now we have b0 ∈ LFC(s1) ∩ 〈K〉 ⊆ LFC〈K〉(s1) by Lemma 3.9. Moreover, by
Theorem 9.1 for the finite rank cases, one of the following three possibilities as in the theorem happens where
(〈K〉,K), M ∩K, and s1 play the roles of (W,S), M , and s, respectively:

• There is a focus (a, b) of M ∩K in K; and K〈K〉 ∩LFC〈K〉(a) contains no element that commutes with
a and is not conjugate to a in LFC〈K〉(a). In this case, as Ω(M ∩K) is connected and s1, a ∈M ∩K,
there is an element u ∈ 〈M ∩ K〉 with a = s1

u. Now we have b0
u ∈ LFC〈K〉(s1)u = LFC〈K〉(a) by

Lemma 3.7 (4); we have o(b0
ua) = o(b0s1) = 2; and b0

u is a reflection of (〈K〉,K) and is not conjugate
to a (as b0 ∈ S \ M is not conjugate to s1 ∈ M). The existence of such an element b0

u yields a
contradiction.

• There is a half-focus {a, b} of M ∩K in K; and any element of K〈K〉 ∩ LFC〈K〉(a) is conjugate to a in
〈K〉. In this case, as Ω(M ∩K) is connected and s1, a ∈M ∩K, there is an element u ∈ 〈M ∩K〉 with
a = s1

u. Now we have b0
u ∈ LFC〈K〉(s1)u = LFC〈K〉(a) by Lemma 3.7 (4); and b0

u is a reflection of
(〈K〉,K) and is not conjugate to a (as b0 ∈ S \M is not conjugate to s1 ∈M). The existence of such
an element b0

u yields a contradiction.

• There are no focuses and no half-focuses of M ∩K in K; there is an element s2 ∈M ∩K that is well-
positioned in K; LFC〈K〉(s2) is an elementary abelian 2-group generated by s2 and the set (say, J2) of
all the C3-neighbors of M ∩K in K. In this case, as Ω(M ∩K) is connected and s1, s2 ∈M ∩K, there
is an element u ∈ 〈M ∩K〉 with s2 = s1

u. Now we have b0
u ∈ LFC〈K〉(s1)u = LFC〈K〉(s2) by Lemma

3.7 (4). By a similar argument based on the property LFC〈K〉(s2) = 〈{s2} ∪ J2〉 and Proposition 4.17
used above, it follows that b0

u is a reflection of (〈{s2}∪J2〉, {s2}∪J2) and therefore is an element of J2

(note that b0
u 6= s2 as b0 6= s1). Moreover, as b0 6∈M and u ∈ 〈M〉, we have b0 ∈ supp(b0

u) by Lemma
4.7 and therefore b0 = b0

u ∈ J2. This contradicts the fact that b0 is not a C3-neighbor of M ∩K in K.

Hence a contradiction happens in any possible case, therefore we have LFC(s0) ⊆ 〈J ∪ {s0}〉, as desired.
This concludes the proof.

Proof of Theorem 9.1. First of all, we mention that two or more cases among the three cases in Theorem
9.1 cannot happen simultaneously. It is obvious that the third case (with no focus nor half-focus) cannot
be consistent with the first case (with a focus) nor the second case (with a half-focus). On the other hand,
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when the first case happens, Lemma 8.6 (applied to I = J := S) implies that there cannot be a half-focus,
preventing the second case. This proves the assertion in this paragraph.

If there is a focus (a, b) of M in S, then we have LFC(a) = 〈a, b〉 by Lemma 9.6. Moreover, we have
o(ab) = 4 by Condition 2 for the focus (a, b) of M in S, therefore (LFC(a), {a, b}) is a Coxeter system of
type C2. Now an exhaustive search shows that the reflections in LFC(a) that commute with a are a and ab,
both being conjugate to a in LFC(a). Hence we are in the first case of Theorem 9.1.

If there is a half-focus {a, b} of M in S, then we have LFC(a) = 〈a, b〉 by Lemma 9.6. Moreover, by
the definition for the half-focus {a, b} of M in S, we have o(ab) = 2 and a, b ∈ M . It also follows that the
reflections in LFC(a) are a and b, both being conjugate to a in W as a, b ∈M . Hence we are in the second
case of Theorem 9.1.

Finally, we consider the case where there is no focus and no half-focus of M in S. First we show that there
exists an element of M that is well-positioned in S. By definition, this is trivial if there is no C3-neighbor
of M in S. On the other hand, suppose that there is a C3-neighbor b of M in S. Now by definition, a
well-positioned element exists if o(bc) = 4 for some c ∈ M . Assume for the contrary that o(bc) 6= 4 for any
c ∈M . Then by the definition for the C3-neighbor b of M in S, we have S \ (M ∪{b}) ⊆ {b}⊥ and moreover
M ⊆ {b}⊥, therefore S \{b} ⊆ {b}⊥. This contradicts the assumption that S is irreducible (note that M 6= ∅
and b ∈ S \M , therefore S 6= {b}). Hence there exists an element s0 of M that is well-positioned in S.

For any such s0, Lemma 9.8 implies that LFC(s0) = 〈J ∪ {s0}〉 where J is the set of all C3-neighbors of
M in S. By the definition of C3-neighbors of M in S, we have J ⊆ S \M and therefore o(bb′) = 2 for any
distinct b, b′ ∈ J . Moreover, we have J ⊆ {s0}⊥ by Lemma 7.7. This implies that all elements of J ∪ {s0}
commute with each other and hence LFC(s0) = 〈J ∪ {s0}〉 is an elementary abelian 2-group. Finally, this
structure of LFC(s0) implies that the reflections in LFC(s0) are the elements of J ∪{s0}; while no element of
J is conjugate to s0 as J ⊆ S \M and s0 ∈M . Hence s0 is the unique reflection in LFC(s0) that is conjugate
to s0. Summarizing, we are in the third case of Theorem 9.1. This concludes the proof of Theorem 9.1.

10 On Direct Sum Decompositions of Coxeter Groups

In this section, we summarize some properties of direct sum decompositions of Coxeter groups of arbitrary
rank. We note that the Krull–Remak–Schmidt Theorem is in general not applicable here since the Coxeter
groups are not necessarily of finite rank.

Proposition 10.1. Let (W,S) be an irreducible Coxeter system of arbitrary rank. If (W,S) is not of type
Ck, I2(2k) for odd integer k ≥ 3, E7 nor H3, then W is directly indecomposable as abstract group. If (W,S)
is of type Ck (respectively, I2(2k)) for odd integer k ≥ 3, then W is isomorphic to W1 ×W2 where W1 and
W2 are Coxeter groups of types A1 and Dk (respectively, I2(k)). If (W,S) is of type E7 or H3, then we have
|Z(W )| = 2, W = Z(W )×W+ where W+ denotes the normal subgroup of W of even-length elements, and
W+ is not a Coxeter group. All the possibilities of direct product decompositions of W are listed above.

Proof. This follows from the results obtained in [17]. More presicsely, the Proposition is a combination of
Theorem 2.17, Lemma 2.18, and Theorem 3.3 in [17].

We introduce some notation that is used in the rest of this section. Let G denote the class of nontrivial
groups consisting of irreducible Coxeter groups that are directly indecomposable (see Proposition 10.1 above)
and also subgroups W+ of Coxeter groups W of type E7 or H3. Proposition 10.1 implies that any group
in the class G is directly indecomposable and any Coxeter group is decomposed into the direct sum of some
groups in the class G. On the other hand, for a family {Gλ}λ∈Λ of groups in the class G, we define

ΛA1
= {λ ∈ Λ | Gλ is a Coxeter group of type A1} ,

Λ−1 = {λ ∈ Λ | Gλ is a Coxeter group of (−1)-type} .

Then a straightforward translation of Theorem 3.9 in [17] (combined with Lemma 3.7 in the same paper)
applied to the current situation yields the following result.
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Proposition 10.2. Let G =
⊕

λ∈ΛGλ and G′ =
⊕

λ′∈Λ′ G
′
λ′ be direct sums of groups Gλ, G

′
λ′ in the class

G. Let πλ : G → Gλ (λ ∈ Λ) and π′λ′ : G
′ → G′λ′ (λ′ ∈ Λ′) be the projections. Let f : G

∼→ G′ be a group
isomorphism from G onto G′. Then:

1. There is a bijection ϕ : Λ → Λ′ satisfying Gλ ' G′ϕ(λ) for all λ ∈ Λ. Moreover, for each λ ∈ Λ \ ΛA1 ,

the map gλ : Gλ → G′ϕ(λ) given by gλ(w) = π′ϕ(λ)(f(w)) for w ∈ Gλ is an isomorphism.

2. There is a homomorphism gZ : G→ Z(G′) satisfying

f(w) =

{
gλ(w)gZ(w) if w ∈ Gλ with λ ∈ Λ \ ΛA1

gZ(w) if w ∈ Gλ with λ ∈ ΛA1

and π′ϕ(λ)(gZ(Gλ)) = 1 for all λ ∈ Λ \ ΛA1 .

3. If Λ−1 ⊆ Λ† ⊆ Λ, then we have Λ′−1 ⊆ ϕ(Λ†) and f(
⊕

λ∈Λ† Gλ) =
⊕

λ′∈ϕ(Λ†)G
′
λ′ .

Proposition 10.2 implies the following result, which is also of independent interest.

Corollary 10.3. Let (W,S) be an arbitrary Coxeter system with |Z(W )| = 1. Then a direct sum de-
composition of W into irreducible Coxeter groups is unique. More precisely, for any two decompositions
W =

⊕
λ∈Λ Vλ and W =

⊕
λ′∈Λ′ V

′
λ′ of W into direct sums of subgroups Vλ and V ′λ′ all of those are irre-

ducible Coxeter groups, there is a bijection ϕ : Λ→ Λ′ satisfying Vλ = V ′ϕ(λ) for all λ ∈ Λ.

Proof. Since the center of W is trivial by the hypothesis, none of the Coxeter groups Vλ, V
′
λ′ are of (−1)-type.

Hence all of Vλ and V ′λ′ are directly indecomposable by Proposition 10.1 and therefore belong to the class
G. To apply Proposition 10.2 for G = G′ = W , Gλ = Vλ, G′λ′ = V ′λ′ , and f = idW , we note that Λ−1 = ∅
since W has trivial center. Therefore, for the bijection ϕ : Λ→ Λ′ yielded by Proposition 10.2 (1), for each
λ ∈ Λ, Proposition 10.2 (3) applied to Λ† = {λ} implies that Vλ = V ′ϕ(λ) (recall that now f = idW ). This
completes the proof.

Proposition 10.2 also implies the following fact that we shall need later.

Corollary 10.4. Let (W,S) be a Coxeter system of arbitrary rank. Let I ⊆ S be an irreducible component
of (−1)-type, and suppose that any other irreducible component of S is not of (−1)-type. Suppose moreover
that the following conditions are satisfied:

• I is not of type Ck nor I2(2k) with odd integer k ≥ 3.

• If I is of type A1, then S has no component of type Dk or I2(k) with odd integer k ≥ 3.

Let W =
⊕

λ∈Λ Vλ be any decomposition into direct sum of subgroups Vλ that are irreducible Coxeter groups.
Then we have 〈I〉 = Vλ for some λ ∈ Λ.

Proof. First of all, from the decomposition W =
⊕

λ∈Λ Vλ we obtain a direct sum decomposition of the
form W =

⊕
λ′∈Λ′ V

′
λ′ into subgroups belonging to the class G by subdividing each component Vλ that is

directly decomposable into its direct factors. Namely, each V ′λ′ is either some of Vλ where Vλ is directly
indecomposable, or a nontrivial direct factor of some Vλ where Vλ is directly decomposable.

We consider first the case where I is not of type E7 nor H3. Then by the hypothesis and Proposition
10.1, all the irreducible components of W belong to the class G. Now we apply Proposition 10.2 to the case
where f = idW and the set Λ† in Proposition 10.2 (3) indicates the unique irreducible component 〈I〉 of
(−1)-type. It follows that 〈I〉 = V ′λ′ for some λ′ ∈ Λ′. The assertion in this case holds if V ′λ′ is equal to some
Vλ. Assume for the contrary that V ′λ′ is not equal to any of Vλ, therefore V ′λ′ is a nontrivial direct factor of
some Vλ. Since 〈I〉 = V ′λ′ has nontrivial center, Proposition 10.1 implies that, the only possibility is that I
is of type A1 and Vλ is of type Ck, I2(2k) with odd integer k ≥ 3, E7, or H3. We write Vλ = V ′λ′ × V ′λ′′ with
λ′′ ∈ Λ′. Now Proposition 10.2 (3) applied to the set Λ† indicating the pair of two direct factors V ′λ′ and
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V ′λ′′ implies that we have V ′λ′ × V ′λ′′ = 〈I〉 × 〈J〉 for some irreducible component J of S. This implies that
〈J〉 ' V ′λ′′ , while V ′λ′′ is either a Coxeter group of type Dk or I2(k) with odd integer k ≥ 3, or isomorphic to
W0

+ for a Coxeter group W0 of type E7 or H3. This contradicts the hypothesis; note that two irreducible
spherical Coxeter groups of different types cannot be isomorphic, as shown in e.g., Proposition 6.1 of [13].
Hence the assertion holds in this case.

Now we consider the other case where I is of type E7 or H3. By Proposition 10.1, we have 〈I〉 = 〈ρI〉×〈I〉+
and both 〈ρI〉 and 〈I〉+ belong to the class G as well as the other irreducible components of (W,S). We
apply Proposition 10.2 to the case where f = idW . By Proposition 10.2 (1), 〈I〉+ is isomorphic to some
V ′λ′1

, therefore this V ′λ′1
is not a Coxeter group. Hence, V ′λ′1

must be a nontrivial direct factor of some Vλ1
,

therefore this Vλ1
has the same type as 〈I〉 and we have Vλ1

= V ′λ′2
×V ′λ′1 for some λ′2 ∈ Λ′ with V ′λ′2

= Z(Vλ1
)

being the group of order two. Now by the hypothesis that 〈I〉 is the unique irreducible component of (W,S)
of (−1)-type, no factors Vλ with λ ∈ Λ other than Vλ1

are of (−1)-type; in particular, no such Vλ is of the
same type as 〈I〉. Then it follows that V ′λ′1

is the only factor V ′λ′ isomorphic to 〈I〉+ and V ′λ′2
is the only

factor V ′λ′ isomorphic to 〈ρI〉. Now the bijection yielded by Proposition 10.2 (1) maps the factors 〈ρI〉 and
〈I〉+ to V ′λ′2

and V ′λ′1
, respectively; then we have 〈I〉 = 〈ρI〉 × 〈I〉+ = V ′λ′2

× V ′λ′1 = Vλ1
by Proposition 10.2

(3) for the set Λ† indicating the pair of 〈ρI〉 and 〈I〉+. This completes the proof.

The following technical Lemma will be used in the proof of Proposition 11.2 below.

Lemma 10.5. Let G =
⊕

λ∈ΛGλ be the direct sum of nontrivial, directly indecomposable groups Gλ. Sup-
pose that the center of G is trivial. Moreover, suppose that G = H1 × H2, H1 6= 1, and H1 is directly
indecomposable. Then there is an index λ ∈ Λ satisfying that H1 = Gλ and H2 =

⊕
λ′ 6=λGλ′ .

Proof. By the hypothesis, all of the groups Gλ, H1, and H2 have trivial center. For any direct factor V of
G, let πV denote the projection G→ V .

Since H1 6= 1, there is an index λ0 ∈ Λ with πH1(Gλ0) 6= 1. We write G′ =
⊕

λ6=λ0
Gλ, therefore

G = Gλ0
×G′. Now H1 is a central product of πH1

(Gλ0
) and πH1

(G′) (i.e., πH1
(Gλ0

) and πH1
(G′) commute

with each other, H1 = πH1
(Gλ0

)πH1
(G′), and πH1

(Gλ0
) ∩ πH1

(G′) ⊆ Z(H1)), and the fact Z(H1) = 1
implies moreover that H1 = πH1

(Gλ0
) × πH1

(G′). Since H1 is directly indecomposable by the hypothesis,
and πH1(Gλ0) 6= 1 as above, it follows that H1 = πH1(Gλ0) and πH1(G′) = 1, therefore G′ ≤ H2.

Similarly, for each λ ∈ Λ, Gλ is a central product of πGλ(H1) and πGλ(H2), and the fact Z(Gλ) = 1
implies that Gλ = πGλ(H1) × πGλ(H2). Since Gλ is directly indecomposable by the hypothesis, there is a
unique index iλ ∈ {1, 2} satisfying Gλ = πGλ(Hiλ) and πGλ(H3−iλ) = 1. Now for each λ 6= λ0, we have
1 6= Gλ ≤ G′ ≤ H2, therefore πGλ(H2) 6= 1. This implies that iλ 6= 1 and hence iλ = 2, therefore we have
πGλ(H1) = 1 for every λ 6= λ0. Hence we have πG′(H1) = 1 and H1 ≤ Gλ0 .

Moreover, the fact 1 6= H1 ≤ Gλ0 implies that πGλ0 (H1) 6= 1. Therefore, we have iλ0 6= 2 and iλ0 = 1.
Hence we have πGλ0 (H2) = 1 and H2 ≤ G′, therefore H2 = G′. Now the facts G = H1 ×H2 = Gλ0

× G′,
H1 ≤ Gλ0

, and H2 = G′ imply that H1 = Gλ0
. This completes the proof.

11 On Centers of Locally Finite Continuations

In this section, we give generalizations of the results in Section 11 of [13] originally shown for finite rank
cases to the present case of arbitrary rank. First, the following lemma is a counterpart of Lemma 11.1 in
[13].

Lemma 11.1. Let (W,S) be a Coxeter system of arbitrary rank and let s ∈ S. Let R ⊆ W be a Coxeter
generating set for W . Then there exist a Coxeter generating set R1 for W and L ⊆ K ⊆ R1 with the
following properties:

1. R1 = Rw for some w ∈W ;

2. LFC(s) = 〈K〉;
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3. (〈L〉, L) is of (−1)-type and s = ρL.

Proof. If (W,S) is of finite rank and we consider FC(s) instead of LFC(s) then the resulting statement is
precisely Lemma 11.1 of [13]. Now a careful reading of the proof of that lemma in [13] shows that, the only
typical properties of FC(s) used in the proof are that s ∈ FC(s) and that FC(s) is a parabolic subgroup with
respect to any Coxeter generating set for W . Those typical properties needed in the proof are also possessed
by LFC(s) owing to Corollary 9.3, and the finiteness of the rank of (W,S) was used in the proof of Lemma
11.1 in [13] only for defining FC(s) and was not used in any other place during the proof of that lemma.
This implies that our statement here concerning LFC(s) instead of FC(s) is also true.

The next proposition is a counterpart of Proposition 11.2 in [13].

Proposition 11.2. Let (W,S) be a Coxeter system of arbitrary rank, and let s ∈ S. Suppose that
Z(LFC(s)) = 〈s〉. Then one of the following holds:

1. s is an intrinsic reflection of W ;

2. s is a right-angled generator in S.

Proof. If (W,S) is of finite rank and we consider FC(s) instead of LFC(s) then the resulting statement is
precisely Proposition 11.2 of [13]. Now a careful reading of the proof of that proposition in [13] shows that,
the typical properties of FC(s) and the finiteness assumption on the rank of (W,S) are used only at the
following points during the proof of that proposition in [13]:

• The original proof used the fact that FC(s) is a parabolic subgroup of W . The same property is
possessed by LFC(s) as shown in Corollary 9.3.

• The original proof used Lemma 11.1 and Corollary 9.7 of the same paper [13] stated for finite continu-
ations in finite rank cases. Their generalizations to locally finite continuations in arbitrary rank cases
hold as Lemma 11.1 and Corollary 9.4 above, respectively.

• The original proof considered the following situation: J ′ ⊆ J ⊆ S, r ∈ J , FC(r) = 〈r〉 × 〈J ′〉,
and 〈J ′〉 has trivial center; a certain subgroup of W denoted by X is a nontrivial direct factor of
a certain irreducible spherical Coxeter group, and X is not a Coxeter group of type A1; and X is
also a direct factor of 〈J ′〉. The original proof for finite rank cases concluded that this X coincides
with an irreducible component of (〈J ′〉, J ′), by using a variation of Krull–Remak–Schmidt Theorem
(Proposition 10.4 of [13]). On the other hand, the same conclusion follows in the present case (where
we consider LFC(r) instead of FC(r)) from Lemma 10.5 above, since by Proposition 10.1 the group X
as well as all irreducible components of (〈J ′〉, J ′) are directly indecomposable.

As a consequence, essentially the same proof as Proposition 11.2 of [13] shows that our statement here is
also true.

The next proposition is a counterpart of Proposition 11.3 in [13].

Proposition 11.3. Let (W,S) be a Coxeter system of arbitrary rank, and let s ∈ S. Suppose that
Z(LFC(s)) = 〈s, t〉 for some t 6= s with the property that t is conjugate to s in W . Then s is an intrinsic
reflection of W .

Proof. If (W,S) is of finite rank and we consider FC(s) instead of LFC(s) then the resulting statement is
precisely Proposition 11.3 of [13]. Now a careful reading of the proof of that proposition in [13] shows that,
only the typical properties of FC(s) and the finiteness assumption on the rank of (W,S) used during the
proof is that, the original proof used Lemma 11.1 of the same paper [13] stated for finite continuations in
finite rank cases. Its generalization to locally finite continuations in arbitrary rank cases holds as Lemma
11.1 above. As a consequence, essentially the same proof as Proposition 11.3 of [13] shows that our statement
here is also true.
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12 The Locally Spherical Cases

In this section, we study intrinsic reflections of locally spherical Coxeter groups. First we consider the
case that (W,S) is an irreducible and locally spherical Coxeter system. As the finite rank cases have been
discussed in Section 6 of [13], it remains to consider the infinite rank cases; that is, (W,S) is of type A∞,
A±∞, C∞, or D∞.

Here we give some definitions and relevant properties. Let (W,S) be an arbitrary Coxeter system and let
s ∈ S. Let W⊥s denote the subgroup of W generated by all reflections other than s itself that commute with
s. This group W⊥s generated by reflections is, as mentioned in Section 4.5, a Coxeter group with a certain
Coxeter generating set. Let (W⊥s)fin denote the direct sum of all the spherical components of the Coxeter
group W⊥s; it is known (by e.g., Theorem 3.4 of [17]) that the subset (W⊥s)fin of W⊥s does not depend on
the choice of the Coxeter generating set for W⊥s. Then Theorem 3.7 of [18] shows (in our terminology) the
following:

Proposition 12.1. Let (W,S) be an arbitrary Coxeter system, and let s ∈ S. Suppose that the subgroup
(W⊥s)fin of W is either trivial or generated by a single reflection conjugate to s in W . Then s is an intrinsic
reflection of W .

On the other hand, the result of [4] by Brink and Howlett enables us to determine the structure of W⊥s

for Coxeter systems (W,S) of type A∞, A±∞, C∞, and D∞ in the following manner, where we denote by si
the generator in S numbered as i in Figure 1.

Proposition 12.2. Let (W,S) be a Coxeter system of type A∞, A±∞, C∞, or D∞ as in Figure 1.

1. For type A∞, we have W⊥s1 = 〈S \ {s1, s2}〉 which is of type A∞.

2. For type A±∞, we have W⊥s0 = 〈(S \ {s−1, s0, s1}) ∪ {s−1s1s0s1s−1}〉 which is of type A±∞.

3. For type C∞, we have W⊥s0 = 〈(S \ {s0, s1})∪{s1s0s1}〉 which is of type C∞, and W⊥s1 = 〈s0s1s0〉×
〈(S \ {s0, s1, s2}) ∪ {s2s1s0s1s2}〉 which is of type A1 × C∞.

4. For type D∞, we have W⊥s0 = 〈s0′〉 × 〈(S \ {s0, s0′ , s1}) ∪ {s1s0′s0s1s2s1s0s0′s1}〉 which is of type
A1 ×D∞.

Now we have the following result:

Proposition 12.3. Let (W,S) be an irreducible, locally spherical Coxeter system that is not of (−1)-type
nor of type A5. Then all reflections of (W,S) are intrinsic reflections of W .

Proof. When (W,S) has finite rank, the assertion follows immediately from Corollary 6.6 of [13]. We consider
the remaining case, that is, (W,S) is of type A∞, A±∞, C∞, or D∞. Then for each s ∈ S, Proposition 12.2
implies that (W⊥s)fin is either trivial or generated by a single reflection conjugate to s in W (note that,
for the case of type C∞, the reflection s0s1s0 is conjugate to s1 in W ; and for the case of type D∞, the
reflection s0′ is conjugate to s0 in W ). Now Proposition 12.1 shows that s is an intrinsic reflection of W .
This completes the proof.

We also give the following two results. The first result is a generalization of (a part of) Proposition 10.7
in [13]; we note that the basic idea of the proof is also the same.

Proposition 12.4. Let (W,S) be a locally spherical Coxeter system, M be an odd component of (W,S),
and let s ∈M . If |Z(W )| = 1 and the M -principal component of S is not of type A5, then s is an intrinsic
reflection of W .

Proof. Let J = C0(M) denote the M -principal component of E(M) = S (note that now S is locally
spherical). Let R ⊆ W be any Coxeter generating set. Since |Z(W )| = 1 by our hypothesis, Corollary 10.3
implies that 〈J〉 = 〈K〉 for some irreducible component K of R. Moreover, by our hypothesis, J is irreducible
and locally spherical, and J is not of (−1)-type nor of type A5. Then Proposition 12.3 implies that s is
an intrinsic reflection of 〈J〉 = 〈K〉, therefore s is conjugate to an element of K ⊆ R. This completes the
proof.
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The second result is a generalization of (a part of) Proposition 10.10 in [13]; again, the basic idea of the
proof is also the same.

Proposition 12.5. Let (W,S) be a locally spherical Coxeter system with |Z(W )| = 2, M be an odd compo-

nent of (W,S), and let s ∈M . Let Ĵ be the M -principal component of S.

1. If Ĵ is of type C2, H3, E7, or I2(4k) with k ≥ 2, then s is an intrinsic reflection of W .

2. If Ĵ is of type A1 and S has no component of type Dk or I2(k) with odd integer k ≥ 3, then s is an
intrinsic reflection of W .

Proof. Let R ⊆ W be any Coxeter generating set. By the hypothesis, Ĵ is the only component of S of
(−1)-type, therefore Ĵ ⊆ S satisfies the hypothesis of Corollary 10.4 (where I = Ĵ). Then Corollary 10.4

implies that 〈Ĵ〉 = 〈K〉 for some irreducible component K of R. Moreover, by the hypothesis and Proposition

6.5 of [13], all reflections of (〈Ĵ〉, Ĵ) are intrinsic reflections of 〈Ĵ〉 = 〈K〉. This implies that s is conjugate
to some element of K ⊆ R. Hence s is an intrinsic reflection of W , concluding the proof.

13 Proof of Theorem 2.2

As already explained, in order to prove Theorem 2.2, the remaining task is to prove Proposition 2.5. As
in Proposition 2.5, let (W,S) be a Coxeter system, let s ∈ S, and let M be the odd component of (W,S)
containing s. Let J = C0(M). Since the statement does not depend on the choice of s among the generators
in M , we may assume without loss of generality (owing to Corollary 9.2) that the conditions in Corollary
9.2 are all satisfied. In particular, we have LFCW (s) = LFC〈J〉(s)× 〈Σ(M)〉 and LFC〈J〉(s) = 〈K〉 for some
K ⊆ J = C0(M) ⊆ S, where Σ(M) is the union of all locally spherical M -subsidiary components of E(M).
Moreover, owing to Lemma 5.5, the problem is also reduced to proving that s is an intrinsic reflection of
LFCW (s) in the current situation. By the hypothesis of Proposition 2.5, M is not mutable, therefore Σ(M)
has no component of (−1)-type.

We consider the first case of Proposition 2.5 where J is of type C2, H3, E7, or I2(4k) for some k ≥ 2. Then
we have LFC〈J〉(s) = 〈J〉 and LFCW (s) = 〈J〉×〈Σ(M)〉, therefore the Coxeter system (LFCW (s), J∪Σ(M))
satisfies the hypothesis of Proposition 12.5. Hence by Proposition 12.5, s is an intrinsic reflection of LFCW (s),
as desired.

We consider the second case of Proposition 2.5 where J is locally spherical and is not of (−1)-type nor
of type A5. Then we have LFC〈J〉(s) = 〈J〉 and LFCW (s) = 〈J〉 × 〈Σ(M)〉, therefore the Coxeter system
(LFCW (s), J∪Σ(M)) satisfies the hypothesis of Proposition 12.4. Hence by Proposition 12.4, s is an intrinsic
reflection of LFCW (s), as desired.

From now, we consider the remaining (i.e., the third) case of Proposition 2.5 where J is not locally
spherical and M has no C3-neighbors. By Corollary 9.2 and the assumption that M has no C3-neighbors,
there are the following three possibilities for LFC〈J〉(s) = 〈K〉:

1. K is of type C2;

2. K is of type A1 ×A1 and the two generators in K are conjugate to each other in W ;

3. K = {s}.

In the first case, the Coxeter system (LFCW (s),K ∪ Σ(M)) satisfies the hypothesis of Proposition 12.5.
Hence by Proposition 12.5, s is an intrinsic reflection of LFCW (s), as desired. In the second case, we have
Z(LFCW (s)) = 〈K〉 and now the hypothesis of Proposition 11.3 is satisfied. Hence s is an intrinsic reflection
of W by Proposition 11.3. Moreover, in the third case, we have Z(LFCW (s)) = 〈s〉 and now the hypothesis
of Proposition 11.2 is satisfied. Hence by Proposition 11.2, s is either an intrinsic reflection of W or a
right-angled generator in S. Now if s were a right-angled generator in S then we would have C0(M) = {s},
which contradicts the current assumption that J = C0(M) is not locally spherical. Hence s is an intrinsic
reflection of W .

30



Summarizing, s is an intrinsic reflection of W for all cases owing to Lemma 5.5. This completes the proof
of Proposition 2.5, hence completes the proof of Theorem 2.2 as well.

14 On Reflection Independent Coxeter Groups

Following the terminology introduced by Bahls in [1], a Coxeter group W is called reflection independent if
we have SW = RW for any two Coxeter generating sets S,R of W . In this section, we give some results
on reflection independent Coxeter groups of arbitrary ranks as an application of our results given in the
previous part of this paper.

We start with the following fundamental property that relates intrinsic reflections to reflection indepen-
dent Coxeter groups. Here we give a proof for the sake of completeness; see also Lemma 3.7 of the paper [3]
by Brady, McCammond, Neumann, and the first author of this paper for another argument for this result.

Proposition 14.1. Let (W,S) be a Coxeter system of arbitrary rank.

1. If R ⊆W is a Coxeter generating set for W and S ⊆ RW , then we have SW = RW .

2. The Coxeter group W is reflection independent if and only if all generators in S are intrinsic reflections
of W .

Proof. For the first assertion, a general result of Dyer in Corollary 3.11 (ii) of [9] implies, when specialized
to the Coxeter system (W,R) in our notation, the following: For any T ⊆ RW and G = 〈T 〉, we have
G ∩ RW = TG. Now applying this result to S = T gives the desired relation RW = SW since 〈S〉 = W .
For the second assertion, the “only if” part is obvious from the definition of reflection independent Coxeter
groups, while the “if” part follows from the first assertion. This completes the proof.

From now, we consider two natural classes of Coxeter systems to which Proposition 14.1 is applicable. For
the first of the two classes, we recall that a Coxeter system (W,S) is called 2-spherical if we have o(st) <∞
for any s, t ∈ S. In this case we also say that S is 2-spherical. Then we have the following result.

Proposition 14.2. Let (W,S) be a 2-spherical and irreducible Coxeter system of arbitrary rank.

1. If (W,S) is not locally spherical, then we have LFC(s) = 〈s〉 for any s ∈ S.

2. If |W | =∞, then all generators in S are intrinsic reflections of W , hence W is reflection independent.

Proof. For the first assertion, let s ∈ S, and let M denote the odd component of (W,S) containing s. We
have E(M) = S since S is 2-spherical and C0(M) = S since S is irreducible. Now owing to Theorem 9.1, it
suffices to show that there is no focus, no half-focus and no C3-neighbor of M in S.

First, assume for the contrary that there is either a focus (a, b) or a half-focus {a, b} of M in S. Since
S = C0(M) and (W,S) is 2-spherical, we have S \ {b} ⊆M by Condition 4 in Definition 7.1 or Conditions 1
and 5 in Definition 7.2, respectively. Then the odd graph Ω(S \{b}) is a tree, by Condition 1 in Definition 7.1
or Condition 2 in Definition 7.2, respectively. Moreover, this tree Ω(S \ {b}) is in fact a path, by Condition
3 in Definition 7.1 or Condition 4 in Definition 7.2, respectively. Then Condition 2 in Definition 7.1 or
Condition 3 in Definition 7.2, respectively, implies that (W,S) is of type Cn with 2 ≤ n ≤ ∞ or Dn with
3 ≤ n ≤ ∞, respectively. This contradicts the hypothesis that (W,S) is not locally spherical. Hence there is
no focus and no half-focus of M in S.

Secondly, assume for the contrary that there is a C3-neighbor b of M in S. Note that we have o(bc) = 4
for some c ∈ M by Definition 7.3; let a := a(b; c). Then we have M = {a, c} by Condition 1 in Definition
7.3. On the other hand, Condition 2 in Definition 7.3 implies that {a, b, c} ⊆ (S \ {a, b, c})⊥ (recall that
S = C0(M)), therefore S = {a, b, c} since S is irreducible. Moreover, Condition 1 in Definition 7.3 implies
that S = {a, b, c} is of type C3. This contradicts the hypothesis that (W,S) is not locally spherical. Hence
there is no C3-neighbor of M in S. This proves the first assertion.

For the second assertion, we note that s is not a right-angled generator since (W,S) is 2-spherical and non-
spherical. Then, owing to Proposition 14.1, the assertion follows from the first assertion and Proposition
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11.2 if (W,S) is not locally spherical, and the assertion follows from Proposition 12.3 if (W,S) is locally
spherical. This completes the proof.

Our second class of Coxeter systems considered here consists of Coxeter systems (W,S) for which the
odd graph Ω(S) is connected, or equivalently (W,S) has a unique odd component S. In this case, we have
the following result.

Proposition 14.3. Let (W,S) be a Coxeter system of arbitrary rank that is not locally spherical. Suppose
that the odd graph for (W,S) is connected. Then we have either LFC(s) = 〈s〉 for any s ∈ S, or there is a
half-focus {a, b} of S and we have LFC(a) = 〈a, b〉. Moreover, all generators in S are intrinsic reflections of
W , hence W is reflection independent.

Proof. By the hypothesis that S is the unique odd component of (W,S), it follows immediately from definition
that there is no focus or no C3-neighbor of S. Since S = C0(S) is not locally spherical by the hypothesis, the
former assertion follows from Theorem 9.1. On the other hand, we note that s is not a right-angled generator
since Ω(S) is connected and (W,S) is non-spherical. Now owing to Proposition 14.1, the latter assertion
follows from the former assertion, Proposition 11.2, and Proposition 11.3. This completes the proof.

15 Local Strong Rigidity of 2-spherical Coxeter Groups

Recall that a Coxeter group W is called strongly rigid if for any two Coxeter generating sets S,R of W , we
have R = Sw for some w ∈W . One of the most remarkable results on the isomorphism problem for Coxeter
groups known so far states that, if a Coxeter system (W,S) of finite rank is 2-spherical (see Section 14 for
the terminology), irreducible, and non-spherical, then W is strongly rigid (see Proposition 15.7 below). In
this section, we consider the question to which extent this result can be generalized to 2-spherical Coxeter
systems of arbitrary rank. In particular, we prove Rigidity-Theorem stated in the introduction which shows
(as a part of the result) that, for any such (W,S) of arbitrary rank except ones of types A∞ and A±∞, any
other Coxeter generating set R for W is locally conjugate to S in W . Part (a) of that theorem has already
been settled in Proposition 14.2, so we are left with the proof of Part (b) and Part (c).

We start with a proof of Part (b) of Rigidity-Theorem for the case where (W,S) is locally spherical not
of type A∞ nor A±∞, i.e., (W,S) is of type C∞ or D∞. This is given by the following proposition.

Proposition 15.1. Let (W,S) be a Coxeter system of type C∞ or D∞ and let R ⊆W be a Coxeter generating
set for W . Then R is locally conjugate to S in W .

Proof. By Proposition 14.2 we know that RW = SW . By Proposition 10.1, W does not admit a proper
decomposition as a direct product and therefore (W,R) is irreducible. As (W,S) is assumed to be of type
C∞ or D∞, the group W is locally finite. Since (W,R) is irreducible, it follows from Proposition 4.2 that
it is of type A∞, A±∞, C∞, or D∞. As RW = SW it follows from Lemma 4.3 that (W,R) is of type C∞
(respectively, D∞) if (W,S) is of type C∞ (respectively, D∞). Now we write elements of S and of R as si
and ti, respectively, where the numberings are as in Figure 1. Then α : S → R defined by α(si) = ti is a
bijection as (W,S) and (W,R) have the same type. Now Lemma 4.4 (respectively, Lemma 4.5) implies that
S and R are locally conjugate via the map α if (W,S) is of type C∞ (respectively, D∞) by noting that any
finite subset of S is included in some finite subset of type Cn (respectively, Dn) for a sufficiently large n.

In view of Proposition 15.1, it remains to prove Parts (b) and (c) of Rigidity-Theorem for the case where
(W,S) is not locally spherical.

15.1 Property (FA)

Following Serre [21] we say that a group G has property (FA), if any action of G on a tree has a fixed point.
We will apply the following result of Mihalik and Tschantz in [15].
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Proposition 15.2. Let (W,S) be a Coxeter system of finite rank. If G is a subgroup of W having property
(FA) then there exist w ∈ W and J ⊆ S satisfying that Gw ≤ 〈J〉 and J is 2-spherical. Moreover, 〈K〉 has
property (FA) for any 2-spherical subset K of S.

Proof. The former assertion is Lemma 25 of [15] and the latter assertion is Proposition 24 of [15].

Corollary 15.3. Let (W,S) be a 2-spherical Coxeter system of arbitrary rank and let R be a Coxeter
generating set of W . Then (W,R) is 2-spherical.

Proof. It suffices to show that xy has finite order for any x, y ∈ R. There exists a finite subset J of S
with x, y ∈ 〈J〉, and there exists a finite subset K of R with J ⊆ 〈K〉. As J is finite and 2-spherical, the
group 〈J〉 has property (FA) by Proposition 15.2. Again by Proposition 15.2 applied to the Coxeter system
(〈K〉,K) of finite rank, there exist L ⊆ K and w ∈ 〈K〉 satisfying that L is 2-spherical and 〈J〉w ≤ 〈L〉.
Thus {x, y}w ⊆ 〈L〉. Now, since x, y ∈ R and L ⊆ R, Lemma 4.10 implies that {x, y}wu ⊆ L for some
u ∈ 〈L〉. As L is 2-spherical, it follows that o(xy) <∞. This completes the proof.

15.2 On Reflection Subgroups

It was mentioned in Section 4.5 that any reflection subgroup of a Coxeter group is again a Coxeter group.
Here we need the following, more refined result on Coxeter generating sets for reflection subgroups, which
has been obtained independently by V. Deodhar and M. Dyer.

Proposition 15.4. Let (W,S) be a Coxeter system, and let G be a reflection subgroup of (W,S). Then there
exists R ⊆ G ∩ SW such that (G,R) is a Coxeter system and S ∩G ⊆ R.

Proof. The first part of the assertion is the main result of [8] and Theorem 3.3 in [9]. The second part is an
immediate consequence of the concrete description of the Coxeter generating set for G given in Theorem 3.3
of [9] (see also the first paragraph of the introduction of loc. cit.).

Corollary 15.5. Let (W,S) be a Coxeter system, let G be a reflection subgroup of (W,S), and let R be a
Coxeter generating set for G. If G is strongly rigid, then (S ∩G)u ⊆ R for some u ∈ G.

Proof. By Proposition 15.4, there exists a Coxeter generating set R′ for G with S ∩ G ⊆ R′. As (G,R) is
assumed to be strongly rigid, R′ and R are conjugate in G, yielding the assertion.

15.3 The Rigidity Results

Lemma 15.6. Let (W,S) be a 2-spherical irreducible Coxeter system that is not locally spherical, and let I
be a finite subset of S. Then there exists a finite, irreducible and 2-spherical subset J of S satisfying that
I ⊆ J and J is non-spherical.

Proof. As (W,S) is not locally spherical, there is a finite non-spherical subset K of S. We put L := I ∪K
and note that L is finite and non-spherical. As (W,S) is irreducible we can choose for any pair of elements
in L a path joining them and define J to be the union of these paths.

Proposition 15.7. Let (W,S) be a 2-spherical irreducible Coxeter system of finite rank that is non-spherical.
Then W is strongly rigid.

Proof. This is Theorem 1 in [11] and Theorem 1.2 in [5]; see also Corollary 1.3 in [6].

Lemma 15.8. Let (W,S) be a 2-spherical irreducible Coxeter system that is not locally spherical, and let R
be a Coxeter generating set for W . Then (W,R) is also a 2-spherical irreducible Coxeter system that is not
locally spherical, and SW = RW .
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Proof. By the hypothesis, Proposition 10.1 implies that the group W is directly indecomposable and hence
(W,R) is also irreducible. Corollary 15.3 implies that (W,R) is also 2-spherical. As (W,S) is not locally
spherical, W is not a locally finite group which implies that (W,R) is not locally spherical. Finally, Propo-
sition 14.2 implies that W is reflection independent, therefore SW = RW . This completes the proof.

Proposition 15.9. Let (W,S) be a 2-spherical irreducible Coxeter system that is not locally spherical. Let
R be a Coxeter generating set for W , and let J be a finite subset of S. Then Jw ⊆ R for some w ∈W .

Proof. By Lemma 15.8 the Coxeter system (W,R) is 2-spherical, irreducible and not locally spherical. As
J is a finite subset of S, there exists a finite subset K ′ of R satisfying that J ⊆ 〈K ′〉. Applying Lemma
15.6 to the Coxeter system (W,R) (with I := K ′) we have a finite, irreducible and 2-spherical subset K of
R satisfying that J ⊆ 〈K〉 and that K is non-spherical. As K is finite, it follows from Proposition 15.7 that
the Coxeter system (〈K〉,K) is strongly rigid. Moreover, as SW = RW (by Lemma 15.8), 〈K〉 is a reflection
subgroup of (W,S). Now Corollary 15.5 implies that (S ∩ 〈K〉)w ⊆ K for some w ∈ 〈K〉. As J ⊆ S ∩ 〈K〉
and K ⊆ R we have Jw ⊆ R. This completes the proof.

Lemma 15.10. Let (W,S) be a Coxeter system, and let R be a Coxeter generating set for W . Let J be an
irreducible, non-spherical subset of S, and let w, v ∈W satisfy Jw ⊆ R and Jv ⊆ R. Then sw = sv for each
s ∈ J .

Proof. We put K := Jw, L := Jv, and u := w−1v ∈ W . Then K,L ⊆ R and L = Ku. On the other hand,
as J ⊆ S is irreducible and non-spherical, both K and L are irreducible, non-spherical subsets of R. Now
Lemma 4.9 applied to the Coxeter system (W,R) and two subsets L and K = uLu−1 implies that K = L
and the element in u〈K〉 of minimal length (with respect to the Coxeter generating set R), say uv with

v ∈ 〈K〉, centralizes K. Now we have tu = t(uv)v−1

= tv
−1

for each t ∈ K, therefore the map t 7→ tv
−1

with
v−1 ∈ 〈K〉 gives a bijection K → K. As K is irreducible and non-spherical, it follows that v−1 must be the
identity element, therefore uv = u centralizes K. Now sv = swu = sw for each s ∈ J , as desired.

Proposition 15.11. Let (W,S) be a 2-spherical irreducible Coxeter system that is not locally spherical.
Let R be a Coxeter generating set for W . Then there exists an injective mapping α : S → R satisfying the
following condition (LC):

(LC) For each finite subset J of S, there exists an element cJ ∈W satisfying α(s) = scJ for every s ∈ J .

Proof. Let I denote the set of finite subsets of S that are irreducible and non-spherical. By Lemma 15.6,
each finite subset of S is included in some member of I; in particular S =

⋃
I. Therefore, it suffices to verify

the condition (LC) only for each J ∈ I.
Let J ∈ I. By Proposition 15.9, there exists cJ ∈W satisfying JcJ ⊆ R. Moreover, by Lemma 15.10 we

have su = scJ for any u ∈ W with Ju ⊆ R and any s ∈ J . This provides a canonical mapping αJ : J → R
with the property that αJ(s) = su for any u ∈W with Ju ⊆ R and any s ∈ J .

Moreover, let J,K ∈ I. Then Lemma 15.6 applied to J ∪ K implies that J ∪ K ⊆ L for some L ∈ I.
Now by the results in the previous paragraph, we have LcL ⊆ R, therefore JcL ⊆ R and KcL ⊆ R; and we
have αJ(s) = scL = αK(s) for any s ∈ J ∩ K. This enables us to define a mapping α : S → R in a way
that, for each s ∈ S, α(s) = αJ(s) for some (or equivalently, any) J ∈ I with s ∈ J . Now it is obvious by
the definition of α that the condition (LC) holds. Finally, for any distinct s, t ∈ S, by taking J ∈ I with
s, t ∈ J owing to Lemma 15.6, we have α(s) = αJ(s) = scJ 6= tcJ = αJ(t) = α(t). Hence α is injective. This
completes the proof.

Now we are ready to give proofs of Part (b) and Part (c) of Rigidity-Theorem. As in the common
hypothesis of these parts, let (W,S) be a 2-spherical irreducible Coxeter system that is non-spherical, and
let R be a Coxeter generating set for W . Owing to Proposition 15.1, we may also assume that (W,S) is
not locally spherical. By Lemma 15.8, (W,R) is also 2-spherical, irreducible and is not locally spherical.
Proposition 15.11 applied to (W,S) and to (W,R) yields injective mappings α : S → R and β : R → S
satisfying the corresponding conditions (LC). Now let s ∈ R, and owing to Lemma 15.6 take a finite,
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irreducible, and non-spherical subset K of R containing s. Then β(K) is also a finite, irreducible, and
non-spherical subset of S since β(K) is conjugate to K in W , therefore α(β(K)) ⊆ R. Moreover, by the
choice of α and β, there exist u ∈ W and v ∈ W satisfying that β(t) = tu and α(β(t)) = tuv for any t ∈ K.
Now Lemma 15.10 applied to R playing the role of S and to two elements 1, uv ∈ W implies that tuv = t
for each t ∈ K, and in particular α(β(s)) = suv = s. Hence the injection α is also surjective, therefore it is
bijective. This completes the proof of Part (b) of the theorem.

For Part (c) of the theorem, let a subset J ⊆ S be as in the statement. By replacing J with a subset of
S yielded by Lemma 15.6 if necessary, we may assume without loss of generality that J is irreducible. Let
α : S → R be a bijection given by Part (b). By the condition (LC), there exists u ∈W satisfying α(s) = su

for each s ∈ J . We show that α(t) = tu for any t ∈ S. By the condition (LC) applied to J ∪{t}, there exists
v ∈W satisfying α(s) = sv for each s ∈ J ∪{t}. It follows that su = α(s) = sv for any s ∈ J , therefore uv−1

centralizes J . On the other hand, J is irreducible and non-spherical and J⊥ = ∅ by the current assumption.
Now the main result of [4] implies that the centralizer of J in W is trivial, therefore we have u = v and
hence α(t) = tv = tu as desired. This completes the proof of Part (c) of the theorem.

Acknowledgements. A large portion of the present work was done when the second author was with
National Institute of Advanced Industrial Science and Technology. A part of this work was supported
by JST PRESTO Grant Number JPMJPR14E8, JST CREST Grant Number JPMJCR14D6, and JSPS
KAKENHI Grant Number JP19H01804 to the second author. The discussion for one of the main parts of
this work was undertaken at Tambara Institute of Mathematical Sciences, The University of Tokyo. The
authors would like to thank Itaru Terada for kindly organizing our discussion in Tambara and giving helpful
comments.

References

[1] P. Bahls, A new class of rigid Coxeter groups, Int. J. Algebra Comput. 13 (2003) 87–94

[2] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Springer (2005)
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