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Abstract

Convex geometry has recently attracted great attention as a framework to formulate general prob-
abilistic theories. In this framework, convex sets and affine maps represent the state spaces of physical
systems and the possible dynamics, respectively. In the first part of this paper, we present a result on
separation of simplices and balls (up to affine equivalence) among all compact convex sets in two- and
three-dimensional Euclidean spaces, which focuses on the set of extreme points and the action of affine
transformations on it. Regarding the above-mentioned axiomatization of quantum physics, our result
corresponds to the case of simplest (2-level) quantum system. We also discuss a possible extension to
higher dimensions. In the second part, towards generalizations of the framework of general probabilis-
tic theories and several existing results including ones in the first part from the case of compact and
finite-dimensional physical systems as in most of the literatures to more general cases, we study some
fundamental properties of convex sets and affine maps that are relevant to the above subject.

Keywords: Convex set; ellipsoid; vertex-transitivity; 2-level quantum system

1 Introduction

1.1 Backgrounds and our contributions

Convexity is a ubiquitous notion in mathematics, frequently appearing not only in geometry but also in
other various research areas, including many applications to outside mathematics (see e.g., [23] 28] and ref-
erences therein). Among them, an interesting study of convexity has emerged in the foundations of quantum
mechanics. These activities aim at interpreting quantum physics as an instance of more general physical
theories (called e.g., “general probabilistic theories”), the latter being axiomatized from operational view-
points, using “(physical) states” and “measurements” as the basic notions. Here, probabilistic mixture of
states are formalized as convex combination of states, therefore the notion of convexity is essential in those
studies. A motivation of studying such general theories is to establish a unified theoretical framework to
describe quantum (and classical) physics together with its possible variants or generalizations. Potential ap-
plications of such activities would include cryptography with long-standing security; if one wants to estimate
the security of present cryptographic schemes against attacks using physical devices in the next 100 years,
where the present quantum physics may be improved by some advanced theory, then such an observation
of general physical theories may be of some help. Another motivation is to characterize quantum physics
among such general theories, giving a re-axiomatization of quantum physics based on physical principles,
which is expected to be more physically intuitive than von Neumann’s original axiom based (mysteriously)
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on Hilbert spaces. For more introduction to this subject from physical viewpoints and several preceding
works, see e.g., [2, [0, 14, 19, 2I] and references therein.

A common philosophy in the above-mentioned studies of general physical theories can be understood as
follows: We put mathematical assumptions that are essential (or inevitable) from physical viewpoints, while
the quantity of other “technical” assumptions should be as small as possible. To formulate the state space
(the set of physical states) of such a general physical theory, the state space is conventionally assumed to be
a convex set, reflecting the above-mentioned requirement that any probabilistic mixture of two states should
also be a state.

In the first part of this paper, we investigate finite-dimensional compact state spaces (convex sets)
equipped with symmetry and some additional special properties. In the theory of convex polytopes, the
notion of symmetry (precisely, vertex-transitivity of affine isometric transformation groups) has played one
of the most significant roles and such symmetric convex polytopes have been intensively studied (e.g., [3]).
Here, as usual, we say that a group G acts transitively on a set X, if for any x1,z2 € X, we have g- 1 = 22
for some element ¢ € G. In the studies of general physical theories, the symmetry property [7] can also
be considered as one of physical principles which can be interpreted as a possibility of reversible transfor-
mation between pure states [5] [I1] [22] or as a physical equivalence of pure states [I8] [19]. In this context,
the characterization of a state space under the hypothesis of symmetry becomes an important subject. In
this paper, we give the following characterizations on 2- and 3-dimensional compact convex sets with the
symmetry property:

Theorem 1. Let S be a compact convex subset of a Euclidean space with 2-dimensional affine hull; Aff(S) =
R2. Then the group of bijective affine transformations of S acts transitively on the set Soxy of extreme points
of 8 (see above for the terminology) if and only if S is affine isomorphic to one of the following two kinds
of objects:

1. A symmetric (or vertex-transitive) convex polygon.
2. The (2-dimensional) unit disk.

Theorem 2. Let S be a compact convex subset of a Fuclidean space with 3-dimensional affine hull; Aff(S) =
R3. Then the group of bijective affine transformations of S acts transitively on the set Sexy of extreme points
of S if and only if S is affine isomorphic to one of the following three kinds of objects:

1. A 3-dimensional symmetric (or vertex-transitive) convex polytope.
2. A 3-dimensional circular cylinder {*(z,y,2) € R3 |22 +4?> <1,0< 2 <1}
3. The 3-dimensional unit ball.

Here we give a remark on a related work: In a preceding paper [7], Davies also studied the finite-
dimensional compact convex sets S whose groups G of bijective affine transformations act transitively on the
sets of extreme points, and presented a classification of the convex sets S such that its group G of symmetry
as above is equal to a given compact group, in terms of classification of finite-dimensional subspaces of the
left regular representation of the given compact group. However, in that work any relation between the
symmetric convex sets with different groups of symmetry, and also the concrete shape of a symmetric convex
set induced by each subspace of the regular representation, have not been clarified. Therefore, to classify
all symmetric convex sets based on that result, it is basically required to determine the concrete shape of
every convex set constructed from some representation space of every compact group. On the other hand,
our results above aimed at determining the symmetric convex sets without any restriction for the groups of
symmetry.

Next, we investigate another kind of physically motivated hypothesis, called the spectrality of state spaces.
First, we remind the definition of distinguishability of states in a single shot measurement (see, e.g., [I§] for
its motivation from physical viewpoints):



Definition 1. We say that points s1, s, ..., s, of a convex subset S of a real vector space are distinguishable
if there exists a collection (e;)?_; of n affine functionals e; : S — R such that e; > 0, Y. ; e; = 1 and
ei(s;) =1 for every 1 < i < n.

Note that any non-empty subset of a set of distinguishable points is also distinguishable. Roughly
speaking, if a convex set S has n distinguishable points s1,...,s,, then “lossless” encoding of any n-bit
information into a point of S is (in principle) possible by using these n points. (A geometric interpretation
of this definition will be supplied in Lemma [2 below.) Then we introduce the following definition:

Definition 2 (see e.g., [1,[15]). Let S be a convex subset of a real vector space. We say that S has spectrality
(or, as in [19], S is distinguishably decomposable) if each s € S admits a decomposition s = Zﬁ:l Ajs;j
(1 € ¢ < 00) into distinguishable extreme points s1,...,8s € Sext such that Z§:1 Aj =1land A; > 0 for
every j. Moreover, if the number £ of distinguishable extreme points in each decomposition is bounded above
by k, then we say that S has k-spectrality.

In general physical theories, the spectrality of state spaces can also be one of the physical principles which
can be interpreted as the possibility of state preparation with a probabilistic mixtures of distinguishable pure
states [19]. Here we emphasize that the distinguishable points appearing in Definition 2l should be extreme
points, which rules out, e.g., the square and any regular polygon since a generic point in these convex sets
cannot be decomposed into extreme points (even though such a point can be decomposed into boundary
points; see Corollary 2]). By using this notion, in this paper we give the following enhancement of the above
theorems, the latter of which separates (up to affine equivalence) the 3-simplex and the 3-dimensional ball
among arbitrary 3-dimensional convex sets:

Theorem 3. Let S be a compact convex subset of a Euclidean space with Aff(S) = R2. Then the following
two conditions are equivalent:

1. The set S is affine isomorphic to either a triangle (i.e., 2-simplex) or the unit disk.
2. The group of bijective affine transformations of S acts transitively on Sext, and S has spectrality.

Theorem 4. Let S be a compact convex subset of a Euclidean space with Aff(S) = R3. Then the following
two conditions are equivalent:

1. The set S is affine isomorphic to either a tetrahedron (i.e., 3-simplex) or the unit ball.
2. The group of bijective affine transformations of S acts transitively on Sext, and S has spectrality.

Note that a classical probability theory is characterized by a simplex state space, while in 2-level quantum
systems the state space is affinely isomorphic to a unit ball (called the Bloch ball; see e.g., [I7,[24]). Thus, the
result is physically important since we have shown that in 3-dimensional state space the physical theories are
restricted to be either classical or quantum under the two physical principles of symmetricity and spectrality
[19]. (See [4] 5 1T] 22] for another characterizations of the Bloch ball.) Here we emphasize that the dimension
of a state space S is also (in principle) operationally determined. Indeed, the dimension of § is the minimum
number of two-outcome measurements that are sufficient to identify a state in S uniquely from the outcome
probabilities (cf., [4]). Hence, the restriction of dimensions of the state spaces in our results can also be
regarded as a possible “physical principle”.

For higher (finite) dimensional cases, we also give the following result:

Theorem 5. Let S be a finite-dimensional compact convez set with Aff(S) = R™, n < co. Let G denote the
group of bijective affine transformations of S. Then S is affine isomorphic to the n-dimensional unit ball if
and only if the following two conditions are satisfied:

1. The diagonal action of G on the set of pairs (s1,s2) of distinguishable extreme points s1,S2 € Sext s
transitive.



2. The set S has 2-spectrality.

This result provides a new characterization of finite-dimensional solid ellipsoids among all convex sets in
terms of structure of the set of extreme points.
Moreover, in fact the authors have the following conjecture:

Conjecture 1. We would be able to weaken the first condition in Theorem[d for the diagonal action of G to
the transitivity of G on the extreme points (cf., Lemmald); the transitivity of G on Sext and the 2-spectrality
would characterize the affine isomorphism classes of finite-dimensional unit balls.

By Theorems Bl and Ml this conjecture is true for up to 3-dimensional cases. A study for a general
finite-dimensional case will be a future research topic.

Before explaining our contributions in the second part of the paper, we note that most of the preceding
works on the operational treatments of general physical theories adopted the following two assumptions;
namely that the state space is finite dimensional and compact [4, Bl [IT] 22]. Operationally, the assumption
of compactness is typically justified [2] by the fact that physical measurements have a finite accuracy, and
therefore, it is natural to assume that the limit point of a sequence of physical states is also a physical state.
However, this does not mean that our world indeed has a compact state space, and thus it is still desirable to
describe the general theories without this unnecessary hypothesis (at least from the mathematical point of
view). The second assumption of the finite dimensionality of state space crucially restrict the theories for the
description of physics — for instance, the state space of an electron is infinite dimensional. The aim of the
second part of this paper is thus to investigate the cases where the compactness or finiteness of dimension is
not satisfied (while the part also includes some results on compact and/or finite-dimensional state spaces as
special cases).

Let us give a further explanation of the content of the second part. In the formulation of physical state
spaces using convex sets, the notion of “dynamics” on physical systems can be formulated as affine maps
between convex sets in order to preserve the probabilistic mixtures. To study affine maps between two state
spaces, we introduce compact closures of the state spaces and consider affine maps between the compact
closures, as each of the former affine maps extends uniquely to some of the latter. Hence, if we deal with the
set of affine maps as a plain set, there is no problem to assume the state spaces to be compact. However,
when we define a topology on the set of affine maps like the compact-open topology according to the above-
mentioned common philosophy, we do not want to use information on the boundaries of state spaces, which
are introduced by just technical reasons. From this viewpoint, we introduce a notion of “essential” open or
closed subsets of the compact closure of state space, which means (roughly) that the essential shape of the
subset is not affected by the existence of the boundary of the state space (see Definition [ for the precise
definition). By using the notion of essential subsets, we introduce a topology, which is an analogy of the
compact-open topology, on the set of continuous maps between the compact closures, into which the set of
affine maps between the state spaces is naturally embedded (see Definition [Bl). This new topology also has
desirable properties; for example, the induced topology on the set of affine maps between state spaces is
Hausdorff (Proposition M), relatively compact in finite-dimensional cases (Proposition [7] and Proposition [§]),
and compatible with natural algebraic operations and natural actions. The authors hope that this topology
and the notion of essential subsets are not only physically reasonable but also of purely mathematical interest.

1.2 Related work

Here we compare the present work to some related results. Hardy [I1] characterized the quantum system
by five axioms on probabilistic behaviors, minimality of dimension of the state space (called “the number of
degrees of freedom” in that paper), properties of subsystems and composite systems, and symmetry of states.
In one direction, the result has more generality than our result, since it deals with general quantum systems.
However, those axioms cannot be considered as physical principles as each of them is not directly testable
in experiments. Moreover, one of the starting points in [11] is that the maximum cardinality, denoted here
by ¢, of a set of distinguishable states for such a single system (called “the dimension” in that paper) is
assumed to be two (see, in particular, Axiom 2 and Axiom 3 in [I1]). In contrast, our result (Theorem [



does not introduce any restriction on ¢ at the beginning; a general result (Lemma B]) implies that ¢ < 4 for
a single system in our situation and the case ¢ = 4 corresponds to the classical system, while the case ¢ = 3
is not excluded in the statement and is successfully ruled out in the proof. From the viewpoint, our result
indeed gives a new insight for characterizing the quantum system.

Similar things are also true for other related results: In a result of Masanes and Mueller [22], they
characterized the quantum system by five requirements which would have similar flavor but are different
from those in [T1]. Although their result covers general systems as well as the single one, they also started
the argument from an assumption that the quantity ¢ for a single system (called “the capacity” in their
paper) is two. Daki¢ and Brukner [5] also put an axiom on “the information carrying capacity”, which
means in our terminology here that ¢ < 2 holds for a single system. Moreover, the axiom on the existence
of an “ideal compression scheme” of each state proposed by Chiribella, D’Ariano and Perinotti in [4] (in
particular, the “maximally efficient” condition for the compression scheme), which is different from the
previous work [T}, 22], also implies (together with the other axioms) a constraint on the possibility of the
quantity c. Although these works are more based on physical principles than the one in [I1], we emphasize
again that our present result does not put any restriction on c at the beginning of the argument. We also
note that, in the results above, some conditions for the joint systems are needed even to derive a property
of the single systems; while our argument does not use joint systems and is closed within the single systems.

1.3 Notations and terminology

Unless otherwise specified, in this paper any vector space is considered over the real field R, and symbols
S, So, S1, Sa,. .. denote non-empty convex subsets of some vector spaces. The notation Aff(S) signifies the
affine hull of S. For any pair of topological spaces X and Y, let C'(X,Y) denote the set of all continuous
maps from X to Y. For any subset A C X, let intx(A) and clx(A) denote the interior and the closure of
A relative to X, respectively. When the underlying space X is obvious from the context, we instead write

A° =intx(A), A=clx(A4) and A° = X \ A.

1.4 Organization of the paper

This paper is organized as follows. In Section [2lwe prove the theorems listed in Section [T} some preliminary
observations are provided in Section 2.1} and the bodies of the proofs are given in Sections On the
other hand, towards generalizations of several existing results on general probabilistic theories from the case
of compact and finite-dimensional physical systems as in most of the literatures to more general cases, Section
Blsummarizes some basic definitions and fundamental properties relevant to convex sets, and introduce some
notions for the study of non-compact convex sets. Then in Section M, we study algebraic and topological
properties of the sets of affine maps between convex sets; Section[@T]deals with general (possibly non-compact
and infinite-dimensional) cases and Section is specialized to finite-dimensional cases.

2  On characterizations of solid ellipsoids

In this section, we discuss some characterizing properties of the unit balls up to affine equivalence mentioned
in Section [Tl Throughout this section, we suppose (unless otherwise specified) that S is a convex, compact
and full-dimensional subset of a finite-dimensional Euclidean space denoted by V(S). Let Sext denote the
set of extreme points of S, and let Aut(S) denote the set of bijective affine transformations on S.

2.1 Preliminary observations

First we note that, in the current setting for S, Aut(S) is a compact topological group with respect to the
function composition and the standard compact-open topology, and its natural action on § is continuous
(these facts can also be derived from the generalized argument in Section []). We also note that the action
of Aut(S) preserves the subset Sext of S. Now we have the following fundamental property:



Proposition 1. Suppose that Aut(S) acts transitively on Sext. Then Sext i a compact (hence closed) subset
of S.

Proof. By the assumption, the Aut(S)-orbit of any given sp € Sext coincides with the whole Seyt. Therefore,
the compactness of Sy, follows from the compactness of Aut(S) and the continuity of the Aut(S)-action. O

Note that Sext is not always a closed subset of S; see e.g., [8, Section 2.4, Exercise 2].

Remark 1. We say that a point s € S is exposed if the set {s} forms a face of S. In the current setting, this
is equivalent to that there is an affine functional f : & — R such that f(S) is bounded and s is the unique
point in S to attain the maximum value of f. Any exposed point in § is also an extreme point in S, and
the action of Aut(S) also preserves the set of the exposed points. On the other hand, when the condition
for compactness of S is relaxed, it does not hold in general that every extreme point is exposed (see e.g., [8]
Section 2.4, Exercise 2]). However, every extreme point is exposed if Sext # 0 (which is satisfied when S is
compact) and Aut(S) acts transitively on Sext. Indeed, it is known that the set of exposed points in S is
dense in Sext (see e.g., [8, Theorem 2.4.9]); in particular, an exposed point exists in this case. Let sg be an
exposed point in S, therefore sg € Sext. Then the Aut(S)-orbit of sy consists of exposed points, while this
orbit coincides with Sext by the transitivity assumption, therefore every s € Sex¢ is exposed as desired.

Since Aut(S) is a compact group in the current case, Aut(S) admits the (normalized) Haar integral
Jo f(g)dg (where we put G' = Aut(S)) of continuous real functions f which is invariant under both left-
and right-translations (see e.g., [I3]). By using the Haar integral, it has been shown in [7] Lemma 1] that
such a convex set S has a unique fixed point of the action of Aut(S). (For readers’ convenience, in [A] we
summarize a proof of this fact based on the existence of left-invariant integral for real-valued continuous
functions on compact groups.) From now on, by choosing an appropriate coordinate system of V(S), we
assume without loss of generality that the fixed point is the origin 0 of the vector space V'(S). In this setting,
the group Aut(S) acts on S as bijective linear transformations, which extend uniquely to bijective linear

transformations on V(S). Moreover, the next lemma implies that the origin of V(S) is now an interior point
of S:

Lemma 1. Suppose that Aut(S) acts transitively on Sext. Then a fized point s € S of the Aut(S)-action
satisfies that s € inty (s)(S).

Proof. Assume for contrary that s € dS. Let H C V(S) be a supporting hyperplane of S at s. As H is
convex and H C V(S) = Aff(S), we have Sext ¢ H. Choose a point t € Sext \ H. On the other hand,
choose a convex decomposition s = Zle Ais; of s into extreme points s; € Sy such that A\; > 0 for every
i. Then by the assumption on the Aut(S)-action, we have f(s1) =t for some f € Aut(S). Now we have
s = f(s) = >, Nif(si), f(si;) € Sand A\; > 0 for every i. As H is a supporting hyperplane of S at s, it
follows that f(s;) € H for every i. However, this contradicts the above fact f(s1) =t ¢ H. Hence the claim
holds. o

As mentioned in Section [Tl the symmetry (or vertex-transitivity) property for convex polytopes S is
usually defined as the transitivity of the affine isometry group of S on the vertices (extreme points) of S,
while in our argument the members of Aut(S) are not supposed to be isometric. However, the next result
shows that the two kinds of symmetry are essentially the same (up to affine equivalence):

Proposition 2. Suppose that Aut(S) acts transitively on Sexy and the unique fized point of the Aut(S)-action
is the origin of V(S). Then there exists a bijective linear transformation ¢ on V(S) such that &' = o(S) is
a compact convex subset of V(S) with Aff(S") = V(S), Aut(S’) acts transitively on S..,, and each member
of Aut(S’) is an orthogonal linear transformation (hence an isometry) on V(S) with respect to the standard
inner product (-,-).

Although Proposition 2] would be a consequence of a kind of standard argument (see e.g., [4, [6, 22]), we
give a proof of Proposition [ in [B] for the sake of completeness. An easy but important consequence of the
above observation is the following:



Corollary 1. Suppose that Aut(S) acts transitively on Sext. Then S is affine isomorphic to the unit ball if
and only if every boundary point of S is an extreme point of S.

Proof. As the “only if” part is trivial, we show the “if” part. By virtue of Proposition 2] we may assume
without loss of generality that Aut(S) acts on S as linear isometries (with respect to the Euclidean distance on
V(S)). This implies that every boundary point of S, which is now an extreme point of S by the assumption,
lies in a common sphere S in V(S) with the origin as the center point, hence we have 9§ = S and S is a
ball surrounded by S, as desired. O

On the other hand, we present several properties for the notion of distinguishability introduced in Def-
inition [l First, we give a geometric interpretation of the notion of distinguishability mentioned in Section

LT

Lemma 2. We temporarily relax the assumption that S is compact. Let n > 2. Then points s1,S2,...,Sn of
S are distinguishable (see Definition [l for the terminology) if and only if there exists a collection (H;)'_, of
supporting hyperplanes H; of S such that the set {v1,...,v,} of normal vectors v; of H; is linearly dependent
and we have s; & H; and s; € H; for every i # j.

Proof. Let (-,-) denote the standard inner product on the Euclidean space V(S). First we show the “only
if” part. Choose the affine functionals e; as in Definition[Il For each i, there are a non-zero vector v; € V(S)
and a constant ¢; € R such that e;(s) = (v;,s) + ¢; for every s € S. As Y e; = 1 is constant on S and
Aff(S) = V(S), it follows that Y ;" v; = 0. Put H; = {v € V(S) | e;(v) = 0}, 1 < i < n, where we abuse
the notation e; to denote the affine extension of e; to V(S) = Aff(S). Then we have s, ¢ H; and s; € H;
for every i # j, therefore H; NS # (). As e; > 0 on S, it follows that the H; are supporting hyperplanes of
S. Moreover, v; is proportional to the normal vector of H;, therefore the normal vectors of H; are linearly
dependent. Hence the proof of the “only if” part is concluded.

Secondly, we show the “if” part. Choose coefficients A1,...,\, € R such that > " ; A\;u; = 0 and at
least one )\; is non-zero. Choose a point t; € H; for each i. We define an affine functional e; on V(S) by
ei(v) = (\vi, v —t;) for v € V(S). We have e;(H;) = {0} as v; is orthogonal to H;. On the other hand, by
putting e = Y7 | €;, for each v € V(S) we have

= Zei(v) = Z((Aivi, v) — (v, ;) Z)\ Vi, v Z AV, ti) = —Z(Aivi,ti> ) (1)
; , — =1 i=1

Put ¢ = — Z?ﬂ()\ivi, t;), therefore e is constantly equal to c¢. Now choose an index ¢ such that A;, # 0.
Then, as s;, € H; and e;(H;) = {0} for every j # io, we have e;,(s;,) = e(si,) = ¢. As s, & H;, and
Xip # 0, we have e;,(s;,) = /\m (Vig, Siy — tiy) # 0, therefore ¢ # 0. Now put e, = ¢;/c for each i. Then we
have €] ( ;) ={0}, > el =e/c=1and €(s;) = e;(si)/c = e(s;)/c = 1 for each i. As H; is a supporting
hyperplane of S and s; € S, this implies that S is included in the closed half-space {v € V(S) | €;(v) > 0},

therefore e, > 0 on S. Hence s1, ..., s, are distinguishable, concluding the proof of Lemma O
Remark 2. In the situation of Lemma [2] any proper subset of the set {v1,...,v,} of normal vectors of the

hyperplanes H; is linearly independent. Indeed, when we choose A1,..., A, € R as in the proof of that
lemma, for each ¢ we have e;(s;) = e(s;) = ¢ # 0, while e;(s;) = A\i{v;, 8; — t;). Therefore we have \; # 0 for
every 4, which implies the claim.

Now we give an upper bound of size of a collection of distinguishable points:
Lemma 3. We temporarily relax the assumption that S is compact. Suppose that s1,...,8; € S are distin-

guishable. Then we have k < dim(S)+ 1. Moreover, if in addition k = dim(S) + 1, then S is the convex hull
of {s; }?:1, which is a dim(S)-dimensional simplez.

Proof. Let (ej)?zl be the collection of affine functionals corresponding to (sJ)J 1, therefore e;(s;) = d; ;.
Now if s = Z_];:l Ajs; and Z_];:l Aj = 1, then we have e;(s) = >, Ajei(s;) = Ai for every i, therefore



the decomposition of s into the points s; is uniquely determined. Hence the points si,..., s, are affine
independent, therefore k < dim(S) + 1. Moreover, if k = dim(S) + 1, then we have V(S) = Aff(s1,...,sk)

as the points s1, ..., s are affine independent, therefore each s € S admits a decomposition s = Z?:l Ajsj
such that 3, A; = 1. Now we have \; = ¢;(s) € [0, 1] for every j, therefore this s is contained in the convex
hull of {s1,...,sx}. Hence S is the convex hull of {s1,..., s}, therefore Lemma [ holds. O

Secondly, for the notion of (n-)spectrality introduced in Definition 2] we have the following two properties
(we emphasize again that, as mentioned in the introduction, the distinguishable points in the definition of
spectrality should be extreme points, hence e.g., the square is ruled out):

Lemma 4. We temporarily relax the assumption that S is compact. Suppose that 1 < dim(S) =n < oo and
S has n-spectrality. Then the set Sext is uncountably infinite.

Proof. Assume for contrary that Sexy is at most countable. Let B be the collection of the subsets of Sext
with at most n elements, and let C be the collection of the convex hulls of B € B. Then each member
of C has n-dimensional volume 0, while B (hence C) is at most countable as well as Sext, therefore the
union of all members of C also has n-dimensional volume 0. As the n-dimensional convex set S has positive
n-dimensional volume, there is a point s € S that does not belong to any member of C. However, as S
has n-spectrality, this s admits a convex decomposition s = 25:1 Ajs; into distinguishable extreme points
S1,...,8¢ € Soxt With £ < n, therefore B = {Sj}§:1 € B and the convex hull of B including s belongs to C.
This is a contradiction, hence Lemma [ holds. O

Corollary 2. We temporarily relaz the assumption that S is compact. Suppose that S has spectrality, and
Sext is at most countable. Then S is a dim(S)-simplez.

Proof. By Lemmal S does not have n-spectrality, where n = dim(S), while S has spectrality. This implies
that there is an s € S that admits a convex decomposition into at least n+ 1 distinguishable extreme points.
Therefore Lemma [3] implies that S is an n-simplex. Hence Corollary 2] holds. O

2.2 Proof of Theorem

In this and the following subsections, we give proofs of our main theorems whose statements have been listed
in Section [LTl In this subsection, we prove Theorem Bl First we present the following lemma:

Lemma 5. Suppose that the diagonal action of Aut(S) on the set of pairs (s1, s2) of distinguishable extreme
POints $1, 82 € Sext 18 transitive. Then Aut(S) acts transitively on Sext.

Proof. First we note that, for any extreme point s of S, there is another extreme point s’ for which s and
s’ are distinguishable. Indeed, for any supporting hyperplane H of S containing s, we can take another
supporting hyperplane H' # H of S which is parallel to H. Now any extreme point s’ of SN H’ is also an
extreme point in S, and s and s’ are distinguishable by the choice of H and H’. This implies that, for any two
81, 82 € Sext, there are s}, 85 € Sext for which both the pair (s1,s}) and the pair (sq, s5) are distinguishable,
and the action of some element g of Aut(S) maps (s1, s}) to (s2,s5) by the assumption. Hence the action of
g maps s1 to so, therefore Aut(S) acts transitively on Sext, as desired. O

For the “only if” part of Theorem Bl when S is a finite-dimensional unit ball, it follows from Lemma
that a subset of & of cardinality at least two is a set of distinguishable extreme points if and only if it is
a pair of mutually antipodal points (note that now each supporting hyperplane of S contains precisely one
point of §). This implies that S indeed satisfies the two conditions in Theorem [B as desired.

On the other hand, for the “if” part of Theorem [l it suffices by Corollary[lto show that every boundary
point s of S is an extreme point. Assume for contrary that s &€ Sext. Take a supporting hyperplane H of
S at s. As S has 2-spectrality, we have s = A181 + Ags2 for some distinguishable points s1, s2 € Sexy and
some Ay, A2 > 0 with A\; + A2 = 1. On the other hand, by the same reason, the origin 0 of V(S) (which is
now an interior point of S by Lemma [I]) also admits a decomposition 0 = u1t1 + pats into distinguishable



points t1,ts € Sext with 1, e > 0 and g1 + 2 = 1. Now we have s1,s2 € H by the choice of H and
the decomposition of s. Moreover, by the first condition of Theorem [l there is an f € Aut(S) such that
f(t1) = s1 and f(t2) = s2. Now we have 0 = f(0) = p1f(t1) + pof(te) = p181 + pose, while s1,s0 € H as
above, therefore we have 0 € H. This contradicts the fact that 0 is an interior point of S. Hence we have
s € Sext as desired, concluding the proof of Theorem [l

2.3 Proofs of Theorems [3] and [

In this subsection, we give proofs of Theorems [3] and Ml by assuming Theorems [1 and The proofs of
Theorems [Il and 2] will be supplied in the next subsection.

First, we prove Theorem The implication of the second condition from the first one follows from
Theorem [II Theorem [l and the fact that when S is a triangle, the set of the three vertices of S are
distinguishable. For the other implication of the first condition from the second one, by virtue of Theorem
[0 it suffices to show that any convex polygon having spectrality is a triangle, which is just a consequence of
Corollary 2l Hence the proof of Theorem [ is concluded.

From now, we prove Theorem @l The implication of the second condition from the first one follows from
Theorem [2 Theorem [ and the fact that when S is a tetrahedron, the set of the four vertices of S are
distinguishable. For the other implication of the first condition from the second one, by virtue of Theorem
@l it suffices to show that any 3-dimensional convex polytope having spectrality is a tetrahedron, and the
3-dimensional circular cylinder S specified in the second condition of Theorem [2] does not have spectrality.
The first part is just a consequence of Corollary 2l For the second part, put C, = {!(x,y,2) | 22 +¢y* = 1}
for z € {0,1}. Note that Sexy = CoUC;. We focus on the point v = £(0,0,1/4), and assume for contrary that
v= 2521 Ajs; for some s; € Sext and A; > 0 such that Z?:l Aj =1landsy,..., sy are distinguishable (hence
S1,...,8 are all different). We have k < 3 by Lemma [B] while the case k£ < 2 is impossible by the shape
of Sext = Co U C1, therefore we have k = 3. Now the set {s1, s2, 83} contains at least one point of each C,,
z = 0,1. By symmetry, we may assume without loss of generality that s1,s2 € C; and s3 = ¥(1,0,0) € Cp.
As s1, 89, 83 are distinguishable, Lemma [2] implies that there are supporting hyperplanes H;, Ho of S such
that s1,s3 € Hy and sa,s3 € Ha. In particular, for each j € {1,2}, the line through s; and s3 does not
intersect the interior of S. However, by the shape of S, this is possible only when s; = (1,0, 1), contradicting
the fact s; # sg. Hence this S does not have spectrality, concluding the proof of Theorem [l

2.4 Proofs of Theorems [I and

Finally, in this subsection, we give proofs of Theorems [l and 2 As the “if” part of each theorem is trivial,
we consider the “only if” part from now.

First, for future references, we temporarily consider the case that S has an arbitrary finite (not necessarily
2 or 3) dimension, and Aut(S) acts transitively on Sexs. Then, by the arguments in Section 2] we assume
without loss of generality that the origin 0 of the Euclidean space V(S) is an interior point of S which is
the unique fixed point of the Aut(S)-action, and each member of Aut(S) acts on V(S) as an orthogonal
transformation (hence has determinant +1). Now we have the following result, which will be a key ingredient
of the proofs of the theorems:

Lemma 6. Under the above setting, assume in addition that Aut(S) is an infinite group. Then Aut(S) has
an element of infinite order.

In the proof of Lemma [6l we use the following two theorems. The first theorem is a classical affirmative
solution for a special case of the general Burnside problem given by Schur [27] (see also e.g., [20, Theorem
9.9] for the proof). Recall that a group G is called periodic (or torsion) if every element of G has finite order.
The theorem is the following:

Theorem 6 (Schur). Let K be a field of characteristic zero, 1 < n < oo, and G be a finitely generated
periodic subgroup of GL,(K). Then |G| < co.



The second theorem was proven by Kargapolov [16] and independently by Hall and Kulatilaka [10]. Recall
that a group G is called locally finite if every finitely generated subgroup of G has finite order. The theorem
is the following:

Theorem 7 (Kargapolov, and Hall-Kulatilaka). Every infinite locally finite group contains an infinite
abelian subgroup.

Proof of Lemmal@. Assume for contrary that G = Aut(S) has no elements of infinite order, i.e., G is periodic.
As G acts faithfully on V(S) as a group of orthogonal transformations, G is identified with a subgroup of
O, (R) (hence a subgroup of GL,(R)) where n = dim(S) < co. Then Theorem [l implies that G is locally
finite, therefore Theorem [7] implies that G contains an infinite abelian subgroup H. As each orthogonal
transformation f € H is diagonalizable over C, the members of H are simultaneously diagonalizable over C.

Let vy, ..., v, be the common eigenvectors of the members of H in the complexification V(S)® = C®g V(S)
of V(S), and let aygq,...,a5, € C be the corresponding eigenvalues of f € H. As each f € H is an
orthogonal transformation, we have |ay ;| = 1 for every f € H and 1 < j < n. Note that (o 1,...,0f,) #

(g1, .., 0qy) for any distinct f,g € H.

First, we show that there exist an index 1 < jo < n and an infinite subset Hy C H such that oy , ¢ R
and ay j, # g, j, for any distinct f,g € Hg. To prove this, we consider the following auxiliary condition,
where d is a non-negative integer:

There are distinct indices j1,1,j1,2,72.1,792,2 - - - » Jd,1, Ja,2 in {1,2,...,n} and an infinite subset
H' C H such that ay;,, € R, afj,, = a7j,, and ayfj,, = agj,, for any 1 < ¢ < d and any
distinct f,g € H'.

Take the maximal d > 0 for which this condition holds (hence d < n/2). Then there are an index jg41,1 in
{1,2,...,n} other than j 1,..., jq2 and an infinite subset H] C H’ such that oy j,,, , & R for every f € Hj.
Indeed, otherwise for each index j the variation of the values ay ; for f € H' is finite (as |ay j| = 1), so is the
variation of (ay1,..., ), contradicting the fact that (ayf1,...,apn) # (ag1,...,04,) for any distinct
f,g € H'. Now for each f € Hj, as f is a real transformation and oy j, , = @y j,, for every 1 < ¢ < d, there
is an index j in {1,2,...,n} other than ji1,...,jq2,ja+1,1 such that ay; = @y, . As |[Hj| = oo, there
are an index jgt1,2 in {1,2,...,n} other than j1 1,...,ja,2, ja+1,1 and an infinite subset H) C Hj such that
Qf jas1 = Of jor., for every f € Hy. By the maximality of d, it follows that for each f € Hj, there exist at
most a finite number of g € Hj such that ayfj,, ,, = g j,,,,. This implies that there is an infinite subset
Hjy C Hj such that oy, , , # g, j,,,, for any distinct f,g € Hz. Now jo = jqy1,1 and Hy = Hj satisfy the
desired condition.

In what follows, we write v = v;, and ay = ayj, for each f € Hy. Put ay = exp(2n0s/—1) with
0 < 6 < 1 for each f € Hy (note that ay ¢ R). Then 7 € V(S)® is an eigenvector of each f € Hy with
eigenvalue @y. By putting u = (v—70)/(2y/—1) and w = (v+7)/2, it follows that u,w € V(8S), v = w++/—1u,
f(u) = cos(2més)u+sin(2m0y)w and f(w) = —sin(2m8y)u+ cos(2mfs)w for each f € Hy. Note that v and w
are linearly independent over R, as v and ¥ are linearly independent over C. As 0 € inty(s)(S), by considering
suitable scalar multiplication if necessary, we may assume without loss of generality that u,w € §. On the
other hand, as each f € Hy has finite order by the assumption, we have 6y € Q and we can write 65 = p¢/qy
with py and gy being coprime integers such that 1 < py < gy. Then, as ay,1 # «og4,1 for any distinct f,g € Ho
and |Hy| = oo, for each N > 0 there is an f € Hy such that gf > N.

Now choose an irrational 0 < i < 1 (say, n = 1/v/2). Put ue = cos(2mn)u + sin(27n)w and we, =
— sin(27n)u + cos(2mn)w. Then for each integer k > 1, there is an f, € Hy such that gy, > k as above. Now
there is an integer ry such that |n — ri/qp.| < 1/(2k). As py, and gy, are coprime, there is an integer hy
such that exp(2rhfy, v/—1) = exp(27rivV/—1/qy,). Put g = fi"* € G. Then we have

gr(u) = cos(2mhiby, )u + sin(2wh 0y, )w = cos(2nry /qy, )u + sin(27wrg /qp, )w

(2)

gr(w) = —sin(2whiby, )u + cos(2mh0y, )w = —sin(2nry /gy, )u + cos(2mry /g, )w .

As ri/qy, converges to n when k — 0o, the sequences (gx(u))g>1 and (gr(w))g>1 converges to us and weo,
respectively. On the other hand, it follows from a general result that the compact-open topology on Aut(S)
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is metrizable (see e.g., [I2, Section ¢-20.5]), therefore G is a compact metric space. This implies that the
sequence (gx)k>1 in G has a subsequence (gg,)e>1 that converges to some g € G. As the G-action on § is
continuous and u,w € S, it follows that g(u) = limy_,00 gk, (4) = U and g(w) = limy—_, oo g, (W) = Wso. This

implies that g*(u) = cos(2mkn)u + sin(27kn)w and g*(w) = — sin(27kn)u + cos(2wkn)w for every k > 1,
therefore g*(u) # u as u and w are linearly independent over R and 7 ¢ Q. Hence g has infinite order,
concluding the proof of Lemma O

If Sext is a finite set, then S is a convex polytope, which is symmetric (or vertex-transitive) by the
assumption on the Aut(S)-action. From now, we suppose that Sext is an infinite set, hence Aut(S) is also
infinite as it acts transitively on Sext. Let f € Aut(S) be an element of infinite order whose existence is
proven by LemmalGl We may assume without loss of generality that det(f) = 1, by considering (if necessary)
f? instead of f. Now as f is an orthogonal transformation, it follows that V(S) is the orthogonal direct sum
of the fixed point space of f and 2-dimensional f-invariant subspaces W to which the restriction of f is a
rotation with rotation angle 276 = 2nw0y, Oy € R. Moreover, as f has infinite order, # = Oy is irrational
for at least one such subspace W.

Now we come back to the special case for (the “only if” parts of) Theorems [Il and [ by assuming that
n = dim(S) € {2,3}. First we consider the case that n = 2 (for Theorem [I). Then we have W = V(S),
while the rotation angle of f is not a rational multiple of 27 as above, therefore the (f)-orbit of any extreme
point of § is a dense subset of a circle with the origin of V(S) as center point. As Sext is compact (see
Proposition [Il), this circle is entirely contained in Sext, which implies that S is the disk surrounded by this
circle. Hence the proof of Theorem [ is concluded.

From now, we consider the case that n = 3 (for Theorem 2)). In this case, by counting the dimension, it
follows that V(S) is the orthogonal direct sum of 1-dimensional fixed point space of f and the 2-dimensional
invariant space W as above. By choosing a coordinate system of V(S) = R? according to the decomposition,
we assume without loss of generality that W has orthonormal basis {v; = (1,0,0),v2 = #(0,1,0)} and
vz = %(0,0,1) is fixed by f. Let zmin and zymax be the minimal and the maximal values 2o € R, respectively,
such that the plane H,, = {*(z,¥, 2) | 2 = 20} has non-empty intersection with S. Note that zmin < 0 < Zmax,
as 0 € inty(s)(S). Note also that each H, is invariant under f. Now define I = {z € [2min, Zmax] | H:NSext #
(}. Note that zmin, Zmax € I. Then for each zg € I, as f(H,,) = H.,, the same argument as the case n = 2
implies that H., N Sext = {!(2,9,20) | 22> +y?> = r,,} and H,, NS = {!(x,y,20) | 2* + y*> < r,,} for some
74, > 0. Note that r, > 0 for every z € I \ {zmin, Zmax - We divide the rest of the proof into two cases.

First, we consider the case that I # {Zmin, Zmax}- Then by the above argument, there are a plane H and
a simple closed curve C such that H has non-empty intersection with the interior of & and C' C H N Sext-
Put H' = H,__, which is a supporting hyperplane of S. Then, as Aut(S) acts transitively on Sexs, there
is a g € Aut(S) such that g(C) C Sexy has a point s common to H' N Sexy. Now as g(H) has non-empty
intersection with the interior of S as well as H, we have g(H) # H’, therefore ¢(C) \ H’' has a point s’
This implies that Sext contains a simple curve joining s € H' and s’ ¢ H’, therefore we have s’ € H,, and
[20, Zmax] C I for some 2y < zmax. Moreover, by the convexity of & and the above description of the set
H, N Sext for z € I, this implies further that H, N dS = H, N Sext for every z € (2o, Zmax). Therefore
any point of H,» N Sext, where 2’ = (20 4+ zmax)/2, belongs to the interior of Sext relative to dS. As the
Aut(S)-action is transitive on Syt and continuous on 9S8, it follows that every point of Sext belongs to the
interior of Sext relative to 0S. This implies that Sexy = IS, as S is connected and Sey¢ is compact. Hence
Corollary [l implies that it is in the third case of Theorem [2] as desired.

Secondly, we consider the case that I = {zmin, Zmax }, therefore Sext C H.,,, Note that r,_,, >0
or 7,.. > 0, as 0 € inty(s)(S). Now by the above description of the set H. N Sex; for z € I, it is in the

UH

Zmax *

second case of Theorem @lif r, . =17, . . From now, we assume for contrary that r, . # ... and deduce
a contradiction. By symmetry, we may assume without loss of generality that r, , > r, ... Moreover,
by choosing a suitable coordinate system, we may assume without loss of generality that zmin = —1 and

Topin = 1. PUt Zmax = 2> 0and r,_, =17 < 1. As Aut(S) acts transitively on Sext, there is a g € Aut(S)
such that g(*(1,0,—1)) = *(r,0, 2). Now g permutes the two connected components H_1 NSex; and H, NSext
of Sext. This implies that » > 0 and g(H,) = H_1, as H, and H_; are affine hulls of H, NSext and H_1NSext,
respectively. Put v = #(—2,0,2). Then we have v € H, and v = —z - ¥(1,0, —1), therefore g(v) € H_; and
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g(v) = —z - g(1(1,0,—1)) = *(—rz,0,—2%). Hence we have —z2 = —1, therefore 2 = 1 as z > 0. Moreover,
as r < 1, we have v = /(—1,0,1) € H; \ S and g(v) = !(—r,0,—1) € S, a contradiction. Hence the proof of
Theorem [2] is concluded.

3 Preliminaries for general setting

In the rest of the paper, we study some fundamental properties towards generalizations of the existing
operational arguments on general physical theories, including derivation of quantum theory such as in the
previous section, from the case of compact and finite-dimensional physical systems to more general cases. As
mentioned in the introduction, such a generalized argument would be worthy from the viewpoint of removing
some possibly unnecessary technical assumptions from the study of general physical theories. This section
is devoted to preliminaries for more detailed arguments in Section [4l

For fundamental facts and terminology regarding topological spaces, we refer to [I2] or Prerequisites
in [26]. We refer to [26] for fundamentals of topological vector spaces. First, we introduce the following

terminology, which has been used in the physically motivated preceding works on convex structures mentioned
in Section [T}

Definition 3. We say that a convex set S is separated if for any distinct elements s1,s2 € S, there exists
an affine functional f : S — R such that f(S) is bounded in R and f(s1) # f(s2).

We notice that, when S is a convex subset of a finite-dimensional Euclidean space, S is separated if and
only if S is bounded (see e.g., [8 Lemma 2.5.1 and Section 2.5, Exercise 1]). Now according to a standard
argument (see e.g., [I4]), for our purpose we may assume without loss of generality that a convex set S is
always separated (we describe the argument in [C] for the sake of completeness). In the rest of the paper,
we suppose without loss of generality that any convex set denoted by the symbols S, Sy, 81, So,... is
separated unless otherwise specified. Now we present the following preceding result as the starting point
of our argument, which says intuitively that any separated convex set has compact convex closure in the
completion of the underlying vector space:

Proposition 3 (|25, Theorem 2.1]). For any (separated) convex set S, there exists a unique (up to isomor-
phism,) collection (S,V(S),V(S)) of objects with the following properties:

e V(S) and 17(8) are locally convex Hausdorff topological vector spaces such that V(S) is a dense subspace
of V(S).
e S is a conver subset of V(S) such that Aff(S) =V (S).

e Let L denote the set of all continuous linear functionals on YN/(S) Then the weak topology on 17(8)
induced by the set L of mappings coincides with the original topology of V(S).

e The weak topology on V(S), induced by the set of all linear functionals f on V(S) such that f(S) C R
is bounded, coincides with the original topology of V (S).

e The weak topology on S, induced by the set of all affine functions f : S — [0,1], coincides with the
original topology of S (the subspace topology relative to V(S)).

S = cly s (8), S is conves, compact and complete, and Aff(S) = V(S).

In what follows, we suppose that associated to each convex set S the objects S, V(S) and V(S) as in
Proposition Bl and the induced topology on S are given. Note that V(S) = V(S) and S = S if S is compact.

On the other hand, if S is finite-dimensional, then V(S) = V(S) and it is a Euclidean space of the same
dimension as S.
We present two lemmas for later reference. The first one is the following;:
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Lemma 7. Any continuous affine map f : S; — Sy extends uniquely to an affine map ]7: S — gz, hence

f|31:

Proof. The uniqueness follows from the fact that S, = clg (81) C V(S) is Hausdorff. For the existence, as
Aff(S1) = V(S)), f extends to an affine map g : V(Sy) — V(S,). Choose v € V(S,) such that g + v is a
linear map. Then g 4 v is continuous at a point in V(S8;), namely any point in Si, therefore it is uniformly
continuous on V(S;). As V(S;) contains V(S;) as a dense subspace, the map g + v extends to a unique
continuous linear map h : V(S;) — V(S2) (sce e.g., [26] Section IIL1]). Now f=h —v: V(S;) — V(Sy) is
a continuous affine extension of f. This implies that f(S1) C S, therefore f(S;) C Sy as S = clﬁ(sl)(Sl),

S, is closed and f is continuous. Hence we obtain a continuous affine extension f = f| 5 S =S of f. O

The second lemma below says intuitively that a closed subset C' of an open set U will be still contained
in U after a slight moving toward any point:

Lemma 8. Let C' and U be a closed subset and an open subset of g, respectively, such that C C U. Then
for any x € S, there exists an m € (0,1) such that Ax + (1 — Ny € U for every y € C and 0 < X\ < m.

Proof. First, as S is compact and Hausdorff, S is a normal space and C'is compact. The Urysohn’s Lemma,
implies that there exists a continuous map F : & — [0, 1] such that C C F~1(0) and U¢ C F~1(1). Then
the map ¢ : [0,1] x C' — [0,1], (A, y) = F(Az + (1 — A)y), is also continuous, as the operation of taking a
convex combination of two elements in S is continuous. Note that {0} x C' C ¢1(0) C ¢~1([0,1)), therefore
for each y € C, there are relatively open neighborhoods I, C [0,1] of 0 and W, C C of y, respectively,
such that I, x W, C ¢=1([0,1)). As C is compact, there are finitely many elements y1,. ..,y € C such
that C' = Ule Wy,. Now ﬂi-c:l I, is a relatively open neighborhood of 0 in [0, 1], therefore [0, m] C ﬂle I,
for some 0 < m < 1. We show that this m satisfies the condition. Let y € C' and 0 < A < m. Then we
have y € W, for some 1 < i < k. Now (\,y) € I, x Wy, and ¢(\,y) = F(Ax + (1 — N)y) < 1, therefore
Az + (1 — Ny € U. Hence Lemma B holds. O

For two convex sets S1 and Sa, let A(S1, S2) denote the set of all affine maps f : S; — Sa. Then by Lemma
I3 below, A(S1,S2) can be embedded into the set AC(Al, Ag) of all continuous affine maps f : A — Ay
between compact sets, which would make the situation easier. However, if we endow the set A(S1,S2) with
the subspace topology of the standard compact-open topology on AC(/L, Ag), then to determine the open
subsets of A(S1, S2) we need to consider the behavior of (the extension of) a map f € A(S1,S2) at a subset
of S; which may be even entirely outside the original set S;. To reduce such difficulty, here we define the
notion of “essential” open or closed sets as follows, which means intuitively that the “essential shape” of
such an essential open or closed set is not affected by pasting or detaching, respectively, the “skin” S\ S of
the convex set S. Formally, we present the following definition:

Definition 4. We say that an open subset O of S is essential if intg(OU (S§\8)) = 0. On the other hand,
we say that a closed subset C' of S is essential if clg(C'NS) = C.

Ezample 1. We consider the case that S = {(z,y) € R? | |z| < 1, |y| < 1}. In this case, we have S = {(z,y) €

R2 | |z| < 1,|y| < 1} and V(S) = V(S) = R2. Now {(z, y) €S |y<az}and {(z,y) € R2 | 22 + 42 < 1} are
essential open subsets of S , while § is an open subset of S but is not essential (note that the interior and the
closure in the definition of essential subsets are relative to S rather than the underlying vector space V (S)).

Here we show some basic properties of the essential subsets:
Lemma 9. 1. A subset O ofg is open and essential if and only if O° C S is closed and essential.

2. For any K C S which is closed in S, the set C = clg(K) is an essential closed subset of S and
K=0CnS§S.
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8. For any U C S which is open in S, the set O = intg(U U 8°) is an essential open subset ofg and
U=0nS§.

4. For a closed subset C' of g, the following conditions are equivalent:

(a) C is essential.
(b) C =clz(K) for some K C S which is closed in S.

(c) C is the intersection of all closed subsets K ofg’ such that KNS =CNS.

5. For an open subset O of g, the following conditions are equivalent:

(a) O is essential.
(b) O =intz(U U S®) for some U C S which is open in S.
(¢) O is the union of all open subsets U of 8 such that UUS® = O U S°.

Proof. In the proof, we regard operations A°, A and A as being relative to S.
(@D The claim follows from the relation ((O US€)°)¢ = (0OUS¢)c=0¢NS.
@) Choose a closed subset K’ of S such that K = K'NS. Then we have K Cc KNS C (K/'NS)NS =

K'NS =K, therefore K = K NS and K = K N'S. Hence the claim holds. B

@) The fact that O is essential follows from the claims[land[2l Choose an open subset U’ of S such that
U=U'NS. Then we have ONS C (UNS)NS=U=U'NS, while U' C (U'US?)° =((U' NS)US°)° =
(UUS®)° = O, therefore ONS C U =U'NS € ONS. Hence we have ONS = U, therefore the claim holds.

@) The conditions (a) and (b) are equivalent by the definition and the claim For the implication
(a),(b) = (c), C = K satisfies that if K’ is closed in § and K'NS = C NS, then C NS c K’ and
C =CnNS C K'. Hence this implication holds. For the remaining implication (c) = (a), theset K =CNS
satisfies KNS = C NS by the claim 2 therefore C € CNS. As CNS C C and C is closed, we have
C' NS = C, therefore this implication holds. Hence the three conditions are equivalent.

) By virtue of the claim [ the claim is derived from the claim @] by taking the complement (relative to
S) of the sets appearing in each statement (note that for the condition (b), we have C° = K* = (K°©)° =
(SCU(S\K))° and U =S8\ K is open in S). O

We also give the following two auxiliary results for later use:

Lemma 10. Let O and C be an open and a closed subsets of g‘, respectively, such that O C C. Then there are
an essential open subset O’ and an essential closed subset C' of S, respectively, such that O C O' c C' C C.
Moreover, this C' can be chosen to be convez if C is conver.

Proof. First, put C' = C'NS, which is an essential closed subset (by Lemmal[d]) and satisfies that C’ C C, as
CNS C C and C is closed. If C is convex, then C' NS is also convex, therefore its closure C’ is also convex
(see e.g., [26] Section II.1, Theorem 1.2]). We show that O C C’. Let € O and W an open neighborhood of
x. Put W’ = WNO, which is also an open neighborhood of 2. Then we have W’ C O C C, while W/'NS # 0
as S is dense in S. This implies that ) # W' NS =W'NCNS C WNCNS, therefore W N (CNS) # 0.
Hence we have x € C NS = ', therefore O C C’ as desired. For the remaining claim, by applying the
above argument to the pair C’¢ C O°, we have C'¢ C K C O° for some essential closed subset K, therefore
O C K¢ C ' and O' = K¢ is the desired essential open subset by Lemma O

Lemma 11. Let S € {S, S} Then for any s € S and any open neighborhood U of s in S there is a
conver closed subset C ofS and a convex open subset O ofS such that s € O C C C U. Moreover, in the
case S = S this C' can be chosen to be essential, and there is an essential open subset O’ ofS such that

OCO’CC.
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Proof. Recall that every open subset of R is the union of open intervals. First we consider the case S=8.
By the property of the subspace topology on S relative to V(S) (see Proposition[3)), there are a finite number
(say, k) of affine maps f; : S — [0,1] and intervals I; C [0,1], 1 < i < k, such that I; are relatively open
in [0,1] and s € ﬂi-c:l f7'(I;) € U. Now each I; is non-empty and the two endpoints of I; are different
(as I; is relatively open in [0, 1]), therefore I; contains an interval J; such that J; is also relatively open

n [0, ] fi(s ) € J; and the closure J; of J; relative to [0,1] is also contained in I;. This implies that

seﬂl N )Cﬂl T )CﬂZ Lf7N(I) € U, while f;71(J;) is open and convex and f; ' (;) is
closed and convex (as fi is continuous and affine, and both .J; and J; are convex), therefore C' = ﬂle N
and O = ﬂl L) sat1sfy the desired conditions.

The proof for the case S = & is similar. By the property of the topology on V(S), there are a finite
number (say, k) of continuous linear maps f; : V(S) — R and open intervals I; C R, 1 < < k, such that
sesn ﬂz i ( ;) C U. Now each I; contains an open interval J; such that fi(s) € J; and J; C I;. This
implies that s € SN ﬂl VN C Sn ﬂl LN € U, while f;71(J;) is open and convex and f; ' (J;)

is closed and convex by similar reasons. Therefore C' = 8N ﬂz LN (T) and O = Sn ﬂz LFTH () satisty
that C' is convex and closed, O is convex and open, and s € O C C' C U. The remaining claim now follows
from Lemma [0 O

4 On the sets of affine maps on convex sets in general setting

In this section, we study the structural properties of the set A(S1,Ss) of affine maps from S to S, especially
its topological properties.

4.1 General cases

First, we notice that the set A(S1,S2) also admits a natural convex structure. Namely, for each f,g €
A(81,82) and X € [0,1], we have (Af + (1 — N)g)(s) = Af(s) + (1 — N)g(s) € Sy for every s € Sy, therefore
Af 4+ (1 —=X)g € A(S1,82). This convex structure is compatible with composition of maps, namely we have
ho(Af+(1=Xg)=Ahof)+(1=A)(hog),
(F + (1= N)g) o' = A(f o ) + (1= X)(g o )

for each f,g € A(S1,82), A € [0,1], h € A(S2,S3), and h' € A(Sy, S1). Moreover, each map in A(S1,Sz) is
continuous, namely we have:

Lemma 12. We have A(S1,82) C C(S1,82).

3)

Proof. Recall from Proposition [3] that the topology of S; (i = 1,2) is the weak topology induced by the set
A(S;,[0,1]) of mappings. Let f € A(S1,82). Then for each e € A(Sz,[0,1]), we have eo f € A(Sy,[0,1]),
therefore e o f is continuous. By the definition of weak topology, this implies that f is continuous. Hence
the claim holds. (]

By this lemma, when &; and Sp are compact (hence S =8 and Sy = S2), the set AC(§1,§2) of all
continuous affine maps S, — Sy coincides with A(Sl, Sa).

Let .A(Sl,Sg) denote the set of all f € A%(S;,S,) such that f(81) C S2. Then we have A(S1,8,)
A¢(81,8;) C C(S81,8:) by the definition, while we have A(Sy,S:) = A%(S;,S,) if Sy is compact (i.e.,
S, = S2). Now we have the following property:

Lemma 13. Each f € A(S1,8,) extends to a unique f € A(S1,S,), and every element of A(Sy,S) is
obtained from some f € A(S1,8S2) in this manner.

Proof. By Lemma[7] and Lemma[l2 each f € A(S1,S2) extends to a unique continuous affine map f:8 =
Sy, and we have f(S8;) = f(S1) C Sy. The remaining claim is obvious. O
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Hence the set A(S1,Sz) can be identified via the map f — f with the subset A(S1,S;) of A%(S1,S,).
Note that A(Sl,SQ) also admits a natural convex structure, as f,§ € A(Sl,SQ) and A € [0,1] imply that
M+ (1-Nge A(Sl, 82) (for the continuity of A+ (1 —)\)g, note that £, and the operation on S; taking
a convex combination of two elements are all continuous). By virtue of the uniqueness property in Lemma
I3l this convex structure and the correspondence f fare compatible with convex structure on A(S1, S2),
composition of mappings and some relevant objects. Precisely, the following properties hold:

e Ifh=A+(1=Ng, f,g € A(S1,S,), then we have h = A\f + (1 — A)g.

If f € A(S1,52), g € A(S2,S3) and h = go f, then h =Go f.

Ahof)+ (1 =N(hog) for any f,§ € A(S51,S,), A € [0,1] and

We have h o (Af 4+ (1 — A\)g)

h S A(SQ, 83)

We have (Af + (1= \)g) o h = A(foh)+ (1= \)(Foh) for any f,§ € A(S1,8), A € [0,1] and
hE A(SQ,Sl)

e We have 121; =idg, where idx denotes the identity map on a set X.

If g € A(S2,81) is aright (resp., left) inverse of f € A(S1,S2), namely fog = ids, (resp., go f =ids,),
then g € A(SQ,Sl) is a right (resp., left) inverse of f € A(81,8,). Hence if f € A(Sy,8,) is invertible,
then f € A(Sl,Sg) is also invertible and f L= f- F1.

From now, we define topologies on the sets A(S;,Sy) and A%(S;,S;) which are analogy of the standard
compact-open topology, by using the notion of essential subsets in Definition @

Definition 5. First, we define the topology on the set C’(S‘l, 3’2) to be the topology generated by the family
B(S1,82), referred to as the subbase of the topology, of all subsets of the form

Oxu ={f€C(5,S) | f(K)CU} (4)

such that K is an essential closed (hence compact) subset of Sy and U is an essential open subset of S, (see
Definition Ml for the terminology). Naumely7 the open subsets of C (Sl, 82) are the arbltrary unions of finite
intersections of members Ok 7 of B(Sl,Sg) Then we define the topologies on Ac(Sl, 82) and A(Sl, 82) to
be the subspace topolog1es relative to 0(81,82), and define the topology on A(S1,S2) to be the topology
induced from A(Sl, 82) via the bijection f — f given by Lemma 131

For simplicity, when we are focusing on the set Ac(Sl,Sg) rather than C (g'l, gz), we abuse the notation
to write Ok, instead of O,y N Ac(gl, gg) unless some ambiguity occurs. It is trivial from the definition
that this topology coincides with the compact-open topology when both S; and S are compact (i.e., 3‘1 =&
and 3‘2 = &,), as every open or closed subset is essential in this case. On the other hand, the definition
suggests that the above topology would be in general weaker than the compact-open topology, as not every
open or closed subset is essential. Nevertheless, the following two properties still hold:

Proposition 4. The topological space C(S1,S,) is Hausdorff, hence so are A°(Sy,Sy) and A(Sy,Ss).

Proof. Let f,g € C(gl,gg), f # g. Then we have f|s, # gls,, as S1 is dense in S; and S, is Hausdorff.
Choose an s € S; such that f(s) # g(s). As S, is Hausdorff, we have U;NUs = () for some open neighborhoods
Up,Us in Sy of f(s),g(s), respectively. By Lemma [[I, U; and U can be chosen to be essential, while the
set K = {s} is closed and essential. This implies that f € Oy, € B(S1,82), g € Ox.u, € B(S1,Ss) and
Ok.v, NOk .y, = 0. Hence C’(g‘l, gg) is Hausdorff, as desired. O

Proposition 5. Suppose that S1 is compact, hence S; = &;. Then the topology on A(S1,S2) defined above
coincides with the compact-open topology.
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Proof. In this situation, we have f = f for every f € A(S1,8,), therefore A(S1,S) = A(S1,S,). Now for
each K € & = &1 and each U C Sy, we have

OruNAS,S) ={fcA(S1,S) | f(K)CU} (5)

:{fGA(Sl,82)|f(K)CUﬁSQ} .
As the set UNS, runs over all open subsets of So when U runs over all essential open subsets of gg (see Lemma
[@)), the above relation implies that the subbase of the compact-open topology on A(S7, S2) coincides with
the subbase of the topology on A(S1, S2) defined above. Hence the claim holds. O

For the inclusion relations of the specified sets of mappings, we have the following three properties:
Lemma 14. 1. The subset A°(S1,Ss) of C(S1,S,) is closed in C(Sy,Sy).
2. The subset A(S1,82) of C(S1,82) is closed with respect to the compact-open topology on C(S1,Sa).

Proof. To deal with the two claims in parallel, put (Sy,8,) = (81, S;) and (81, 8,) = (S1,8,) in the case of
claim [I and claim 2] respectively. Let f € C (§1, §2) which is not affine. It suffices to show that there is an
open neighborhood O of f in C(81,8;) such that each g € O is not affine. First, we show that f|s, is not
affine. Assume for contrary that f|s, is affine. Then by Lemmal[l f |31 extends to a continuous affine map
I 81 — 82 Now note that f and f’ are continuous, S; is dense in Sl, and 82 is Hausdorff. Then it follows
that f = f’, a contradiction. Hence f|s, is not affine, therefore there are three elements si, s2, 3 € S and
a A € [0,1] such that s3 = As; 4+ (1 — X)s2 but f(s3) # Af(s1) + (1 — N) f(s2).

As S, is Hausdorff, there are open neighborhoods V4 of f(s3) and V5 of Af(s1)+(1—X)f(s2), respectively,
which are disjoint. Moreover, as the operation of taking a convex combination in §2 is continuous, there
are open neighborhoods Wi of f(s1) and Wa of f(s2), respectively, such that At; + (1 — A)te € Va for every
t1 € Wi and to € Ws. In the case of claim [l Lemma [I1] implies that these open neighborhoods Vi, Wi and
W5 can be chosen to be essential.

Now let O be the intersection of the three members O,y w,, Ofs,},w, and Oy} v, of the subbase of
the topology on C(§1,§2). This O is an open neighborhood of f in 0(31,3\2). If g € O, then we have
g(s1) € W, g(s2) € Wo and g(s3) € Vi, therefore Ag(s1) + (1 — AN)g(s2) € Va by the choice of W7 and W,
and g(s3) # Ag(s1) + (1 — X)g(s2) by the choice of V4 and V. Hence each g € O is not affine, concluding the
proof of Lemma T4 O

Remark 3. More strongly, if Sy is compact, then Lemma [I4] and Proposition Bl imply that A(S1,Sq) is a
closed topological subspace of C(S1,S2) with respect to the compact-open topology.

Lemma 15. 1. The subset of all surjective maps in Ac(gl,gg) 18 closed in Ac(gl,gz).
2. If 8§ 1is compact, then the subset of all surjective maps in A(S1,Sz) is closed in A(S1,S2).

Proof. We prove the two claims in parallel. Let f € A°(Sy,Sy) (resp., f € A(S1,Ss)) which is not surjective.
Then f(Sy) (resp., f(S1)) is a proper and compact subset of Sy (resp., Ss), therefore its complement in S,
(resp S3) is open and non-empty. By Lemma [[] there are a closed subset C' and an open subset W of
S, (resp., Sa), respectively, such that ) # W C C and C' C F(81)° (resp., C C f(S1)°), therefore we have
f(S1) € Cc c We C 8 (resp., f(S1) € C¢ C We C S,). Now we choose a subset U of W€ as follows:
In the case of the clalm Bl we put U = C¢; while in the case of the claim [l by virtue of Lemma [0 we
choose an essential open subset U of Sy such that C¢ € U € W¢. Then we have f(S;) € U C S, (resp.,
f(81) CU € Sy), therefore the member Og ; (resp., Os,,v) of the subbase of the topology on .A° (51,8,)

(resp., A(S1,S2)) is an open neighborhood of f in A%(S;,Sy) (resp., A(Si,Sz)) (this follows from Proposition

for the claim 2l and from the fact that S; = S; is essential for the claim [I). Moreover, each element g of

}?Sde (resp., Os, v) is not surjective, as we have g(S1) C U C Sy (resp., g(S1) C U € Sz). Hence the clairél
olds.

17



Proposition 6. If int;/(SQ)(Sg) # (), then the subset AC(gl,Sg) of all continuous affine maps f : S) — Sy is
dense in A°(Sy,8y). Hence A(S1,Sy) D A%(S1,8s) is dense in A°(Sy,Sy).

Proof. Let Ok, v, (1 < i < k) be members of the subbase of the topology on A¢(81,8,) such that O =
ﬂle Ok, v, # 0. We show that O N A%(S;,S,) # 0. Choose f € O and z € int g, (S2). By applying
Lemma [§ to each pair f(K;) C U; (note that f(K;) is compact as well as K;), there exists an m € (0,1)
such that Az + (1 = ANy € U, for every 1 < i < k, y € f(K;), and 0 < A < m. Now we define a map
g:8 — Sy by g(s) = mz+ (1 —m)f(s) (s €S1). Then g is affine and continuous as well as f. For each
s €8y, we have f(s) € Sy = clﬁ(sz)(Sg) and 0 < m < 1, therefore it follows from [26, Section II.1, Theorem
1.1] that ma + (1 — m) f(s) € Sp. Hence g € A%(S;,S). Moreover, for each 1 < i < k and s € K;, we have
f(s) € f(K;) and g(s) = mx + (1 —m)f(s) € U; by the choice of m. This implies that g € O, therefore
g€ 0N A%(S),8,) as desired. Hence the claim holds. O

The next lemma says that any convex set S and its closure S can be identified with the sets A(x,S)

and Ac(*,g) = A(*,g), respectively, where * denotes the convex set with just one element, hence several
properties of convex sets can be immediately derived from those of the sets A(S1, S2):

Lemma 16. For each s € S (resp., s € g‘), let s denote the map * — S (resp., * — g‘) given by 1s(x) = s.
Then the map ¢ : S — A(x,8S) (resp., p : S = A°(x,8)), v(s) = ts, is an affine homeomorphism.

Proof. First we consider the case of S. Note that ¢, € AC(*, §) for each s € S, therefore ¢ is well-defined. It
is obvious that ¢ is affine and bijective. Moreover, for each member O, iy of B(* S), we have o~} (O, ) =U
which is open in S, therefore ¢ is continuous. As S is compact and A°(x,S) is Hausdorff (by Proposition
M), a famous theorem in general topology implies that ¢ is a homeomorphism, as desired.

Secondly, we consider the case of S. We have t; = 14 for every s € S, therefore A(*,S) is naturally
regarded as a subset of A°(x, S). Now the map & — A(x,S) under consideration is bijective and it is the
restriction to S of the map S = A°(x, S ) spec1ﬁed in the statement. Hence the former map is also affine and
homeomorphic, concluding the proof of Lemma O

Let A*(S1,S,) (resp., A°*(S1,8,)) denote the set of all f € A(Sy,Ss) (vesp., f € A%(S1,S,)) which are
bijective. From now, we show that the topology defined above is compatible with several operations and
objects relevant to the sets of affine maps:

Lemma 17. The map ¢ : [0,1] x A%(S1,S) X A%(S1,Sa) — A°(S1,8y) defined by o(X, f,g) = Af + (1= A)g
is continuous. Namely, the operation of taking convexr combination of two maps is continuous with respect
to the above topology.

Proof. Tt suffices to show that ¢~ (Ok.y) is open for every Ox.y € B(S1,S,). Let A € [0,1] and f,g €
A¢(81,8,) such that (), f,g) € Og.y. Then we construct an open neighborhood O of (A, f, g) such that
O C ¢ YOk ), in the following manner.

For each s € K, we have Af(s) + (1 — N)g(s) = ¢(A, f,9)(s) € U. As the operation of taking a convex
combination of two elements in 3‘2 is continuous, there are an open neighborhood Iy C [0, 1] of A and open
neighborhoods V., V¥ c S, of f(s), g(s), respectively, such that ut/ + (1 —p)t? € U for every pu € I, t/ € VJ
and t9 € V9. By Lemma [[I} these V and V¢ can be chosen to be essential. By Lemma [[1] again, there
are closed subsets N, N9 of S, and open subsets Wi, W9 of S, such that f(s) e Wf ¢ Nf c Vv and
g(s) e W9 C N9 C V9.

Now the map f X g: S — Sy x Sy defined by (f x ¢)(z) = (f(z), g(z)) is continuous as both f and g are
continuous, therefore (f x ¢g)(K) is compact in Sy xSy as K is compact. On the other hand, {WJ x W9} ,c
is an open covering of (f x g)(K) by the choice of W/ and W¢. This implies that there are finitely many

elements s1,. .., s; € K such that (f x ¢)(K) ¢ U, (W{ xWg). We write N/ = N/, N9 = N9, v/ = v/,
and V7 = V¢ for simplicity. Now we have s; € FYWEH ¢ YN and s € g7 H(WE) € g H(NY),
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therefore Lemma [0 implies that we have f~2(W/) c M/ c f~Y(N/) and g~ ' (W?) ¢ M? c g~ (N?) for
some essential closed subsets erf and MJ. We define

0= ﬁ (1 X Oyt s OMg,vg) : (6)

=1

Note that OMf s and Ops o are members of B(81,8,), therefore O is an open neighborhood of (X, f, g)
in [0, 1] X .Ac(Sl,Sg) X .Ac(Sl,Sg).

We show that ¢(O) C Og.y. Let (i, f’,g") € O. Then for each s € K, there is an index i such that
(f(s),9(s)) € W/ x W9, therefore s € f~*(W/) ¢ M/ and s € g~ ' (W?) € M?. Now we have p € I,,,
f'(s) € Vif and ¢'(s) € VY, therefore puf’(s)+ (1 — pu)g’(s) € U by the property mentioned in the second last
paragraph. This implies that ¢(u, f', ¢")(K) C U, therefore ¢(u, f',¢’) € Ok v, as desired. Hence the proof
of Lemma [I7]is concluded. O

Lemma 18. The map ¢ : A°(Sy,Sy) x A%(Sy, S3) — A°(Sy,S3) defined by o(f,g) = go f is continuous.
Namely, the operation of composing two maps is continuous.

Proof. 1t suffices to show that ¢=!(Ok ) is open for every Ok € g(Sl,Sg). Let f € Ac(gl,gg) and
g € A°(S,83) such that go f € Og.y. Then we have f(K) C g~ (U) C S, while f(K) is compact
(as K is compact) and g~}(U) is open. Now for each s € K, Lemma [[1] (applied twice) implies that
there are open subsets Vi, Wy of 3‘2 and closed subsets Mg, N of 3‘2 such that Vj is essential and f(s) €
W, C Ny C V, C MS C g Y(U). As f(K) is compact, there are finitely many elements si,...,s, € K
such that f(K) C UZ 1 Ws,. Write W; = W,,, N; = N,,, Vi = V,,, and M; = M,,. Now we have
si € f7YW;) < f7Y1(N,), therefore Lemma [0 1mphes that there is an essential closed subset N/ such
that f=*(W;) € N/ C f~'(N;). Moreover, we have Ui:l Vi C Ui:l M;, therefore Lemma [I0] implies that
there is an essential closed subset M’ such that Ule Vic M C Ule M;. Now put Oy = ﬂle Onyv,
and Oy = Oppy. Note that Of and O, are open neighborhoods of f and g, respectively. We show that
©(Of x Oy) C Og,py. Let f' € Of and ¢’ € O4. Then for each s € K, there is an index ¢ such that
s € f~Y(W;). Now we have s € N/, therefore f'(s) € V; € M’ and ¢'(f'(s)) € U. This implies that
g (f'(K)) C U, therefore we have ¢(f’,¢g') = ¢’ o f' € Ok.u, as desired. Hence the claim holds. O

Corollary 3. The evaluation map A°(Sy,S2) x Sy — Sa, (f,s) = f(s), is continuous.
Proof. This follows from Lemma [I8 and Lemma O

Lemma 19. The map o : AC*(§1,§2) — AC*(gg,gl), o(f) = f71, is a homeomorphism. Namely, the
operation of taking the inverse of a map is homeomorphic.

Proof. First, for each f € Ac*(gl,gg), f~!is also an affine map, while fis a homeomorphism as fis
a continuous bijection from the compact gl to the Hausdorff 82 Hence we have f~! € A (82,81) and
cp is well-defined. Note that ¢ is obviously a bijection. To prove that ¢ is continuous, we show that

(OK v NA* (82 Sl)) OUC)KC n.A°%* (81,82) for every OK,U € B(SQ, 81) (note that OUc Kec € 8(81,82)
as U° is closed and essential in g'l and K¢ is open and essential in g’g by Lemma []). Indeed, for every
g € Oy NA%(8,,8), we have g(K) C U, therefore g=1(U¢) C K¢ and g~' € Ope g« as g is a bijection.
This implies the inclusion C, and the other inclusion D holds similarly. Therefore ¢ is continuous, and the
same argument shows that ¢! is also continuous. Hence ¢ is a homeomorphism, as desired. O

Corollary 4. The set A*(S,S) (resp., A% (g, g)) forms a topological group with map composition as mul-
tiplication, and this group acts continuously on S (resp., S) by f-s = f(s) for each f € A*(S,S) (resp.,
feA*S,S)) and s €S (resp., s€S).

Proof. This follows from Lemma [I8] Lemma [I9 and Corollary [3 O
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Finally, we discuss the following sort of “coordinate expressions” of affine maps. We choose and fix
any (possibly infinite) subset B C Si, and define an affine map ¢p from A(S1,Sz) (resp., A%(S1,S82)) to
the set SyB (resp., SoB) of all mappings B — S» (vesp., B — S) by 1s(f) = fls, f € A(S1,S:) (resp.,
f € A%(81,8,)). Note that 1p is injective if §; C Aff(B) (see Lemma [7). Now the set SyB (resp., Sp5)
admits a natural topology that is the \geakest topology to make, for every b € B, the “evaluation map”

By frs f(b) €Sy (resp., evy : SoB 3 f f(b) € S2) continuous. This topological space is nothing
but the direct product space of copies of Sy (resp., 82) over b € B, therefore So? (resp., S,B ) is Hausdorff
as well as Sy (resp., 82) By the Tychonoff’s Theorem, 82 is compact, while So? is compact if (and only
if) Sy is compact. Now we have the following property:

Lemma 20. Under the above setting, the map tp s continuous.

Proof. First, we prove that ¢p : Ac(gl, gg) — SoB is continuous. It suffices to show that for each b € B, the
composite map ¢y = evyoip : A° (S1,8;) — 8o given by ¢p(f) = f(b) is continuous. Now by Lemma [T} each
open subset of S is the union of essential open subsets U of Sy, and we have o, '(U) = Omyu € B(S1,85)
for any such U (note that {b} C B C &i, therefore the closed subset {b} is essential). This implies that ¢y
is continuous, as desired.

Secondly, for the map tp : A(S1,S2) — S2P, this map is the composition of the continuous map

A(S1,82) — Ac(gl,gz), f — f given by Lemma [I3} followed by the continuous map Ac(gl,gz) — 8,5,
f — f|p studied in the previous paragraph. Hence ¢p is also continuous. O

4.2 Finite-dimensional cases

In this subsection, we study the case of finite-dimensional convex sets and give some enhancements of the
above general results. First note that, if dim(S) = n < oo, then the locally convex Hausdorfl topological
vector space V/(S) is naturally identified with the n-dimensional Euclidean space R™, we have V(S) = V/(S),
and S is the closure of S in V(S) = R™. Now we have the following three properties for inclusion relations
of the sets of affine maps:

Lemma 21. Suppose that dim(S7) < oo.

1. If A (81, 82) # 0, then we have dim(S1) = dim(S2), every surjective map in A° (81,8,) is a bijection,
and A% (S, S,) is closed in A°(Sy,Ss).

2. If A*(S1,82) # 0, then we have dim(S;) = dim(Sz2) and every surjective map in A(S1, S2) is a bijection.
Moreover, if 81 is compact, then A*(S1,S2) is closed in A(S1,Ss2).

Proof. We prove the two claims in parallel. First note that V(Sy) = V(S;) by the assumption. Take an
f € A*(S81,8,) (resp., f € A*(81,8,)). Then, as the affine hulls of S; and Sy (resp., S and S,) are the
whole underlying spaces, the maps f and g = f~! extend uniquely to affine maps f : V(S1) — ‘7(82) and
K 17(82) — V(S)) (resp., f: V(S)) = V(S2) and G : V(Sy) — V(S1)), respectively. Now we have go f =
idy (s,), as both of the two maps in the left-hand and the right-hand sides are affine extensions of go f = id g
(resp., go f = ids, ). Similarly, we also have fog = idg 7(52) (resp., fog = idy(s,)). Therefore V(S;) and
V(S,) (resp., V(Sy)) are affine isomorphic, hence dim(S,) = dim(8;) < oo (resp., dim(S,) = dim(S;) < o).
This implies that dim(Sy) = dim(S,) and V(S,) = V(Sy), therefore dim(S,) = dim(S,) = dim(S;). Now
cach surjective h € A°(81,S,) (resp., h € A(S1,S,)) extends to an affine map % : V(S1) — V/(Sz), which
is also surjective as the image of h is convex and contains Sz. As V(S1) and V(Sz) have the same finite
dimension, this surjective affine map h is also injective, so is h (hence h is bijective). Finally, the remaining
part of the claim now follows from Lemma O

Corollary 5. Suppose that dim(S) < oco. Then the topological group AC*(g, g) s closed in Ac(g, §)
Moreover, if S is compact, then the topological group A*(S,S) is closed in A(S,S).
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Proof. This follows immediately from Lemma 271 O
Proposition 7. If dim(Sy) < oo, then both A°(Sy,Ss) and A(S1,S,) are dense in A°(Sy,Sy).

Proof. Under the assumption, V(Sy) = V/(Sy) is a finite-dimensional Euclidean space such that Aff(S,) =
V(S2), therefore intg 50)(S2) # () (see e.g., [8, Proposition 2.1.7]). Hence the condition in Proposition [ is
satisfied, therefore the cla1rn follows from Proposition o

When S is finite-dimensional, let ds denote the Euclidean metric on YN/(S) =V(S) = RY4™(S), Then Sis
a compact (hence complete) metric space with respect to ds. Now if both &1 and Ss are finite-dimensional,
then the set C' (81, 82) is also a complete metric space with respect to the metric do, defined by

doc(f,9) = sup ds, (f(s), 9(s)) for f,g € C(81,82) . (7)

sEST

(In fact, for each pair (f, g) the supremum is attained by some s € Sy, as the function s — ds, (f(s),g(s)) is
continuous on the compact space 81 ) For any sequence in C (81 , 82) convergence with respect to the metric
dso 18 equivalent to the uniform convergence of mappings over S;. Note that the topology on C(gl,gg)
determined by d, coincides with the compact- open - topology (see e.g., [12, Section ¢-20.5]). To avoid
confusion, we write Cy__ (81,82) to signify the set 0(81,82) endowed with the topology determined by du
rather than the original topology defined in Definition Bl Note that the topology of C (81, 82) is weaker than
or equal to that of Cy_, (gl,gg), while these are equal if both &; and S; are compact. Now we have the
following fundamental result:

Proposition 8. If both S1 and Sy are finite-dimensional, then the topology on Ac(gl,gg) coincides with
the topology determined by the metric doo (or equivalently, the compact-open topology), and A°(S1,S2) is
compact.

The key fact for the proof is the Arzela-Ascoli Theorem (see e.g., [12] Section ¢-20.6]). The statement of
the theorem relevant to our present situation is the following (note that the other condition for “boundedness”
is now automatically satisfied, as the metric space Sz is compact):

Theorem 8 (Arzela-Ascoli). A subset F of Cy__ (gl,gg) has compact closure if and only if F is equicon-

tinuous, i.e., for any s € S§; and any € > 0, there exists an open neighborhood U of s such that for every
feF, we have ds,(f(s), f(t)) < € whenevert € U.

Proof of Proposition[8 First, we prove that the set F = A€ (81,82) is compact with respect to the metric
ds. Note that the subset F is closed in Cy_, (81,82) as F is closed in 0(81,82) by Lemma [I4] and the
topology on Cy_ (S1,S,) is stronger than (or equal to) that on C/(Sy,S,). Therefore, by Theorem[8) it suffices
to show that F is equicontinuous. Let sy € S; and £ > 0. Choose 81,...,8, € g'l such that {sg,...,sn}
is affine independent and its affine hull is V(S;). Then for each s € 3‘1, there exists a unique expression
s— 380 = iy Ni(8)(si — so) with A\;(s) € R. Note that every ); is a continuous function on Sy, as any
exchange of coordinate systems in a finite-dimensional Euclidean space is a continuous operation. Now let
U be the set of all s € Sy such that ¢, [Ai(s)| < &, where ¢ = sup, , g, ds,(t,t') < oo (the finiteness of ¢

follows from the compactness of S). Then U is open as every \; is continuous, and so € U as A;(so) = 0 for
every i. Moreover, for each f € F and s € U, we have

fls)=1 <<1 - Z /\i(5)> so + Z Ai(5)5i> = (1 - Z /\i($)> f(s0) + Z Ai(s)f(si) (8)
therefore f(s) — f(so) =>_; Ai(s)(f(si) — f(s0)). This implies that

ds, (f(s), f(s0) <Z|)\ Vds, (f(si), f(s0) <CZ|A ) <e . (9)
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Hence F is equicontinuous, therefore F is compact with respect to the metric doo

Let ¢ denote the identity map on the set C (gl, gg) which is regarded as the map between topological
spaces ¢ : Cq_ (gl,gg) — C(gl,gg) This map ¢ is continuous, as the topology of Cy_, (Sl,gg) is stronger
than (or equal to) the topology of C(S,S,). Now F = A¢(S,S,) is Hausdorff with respect to the subspace
topology relative to C (gl, gg) (Proposition M), while F is compact with respect to the metric d as above.
This implies that the restriction ¢|r : F — F of ¢ to F is a homeomorphism as the domain is compact

and the range is Hausdorff, therefore the two topologies on F coincide with each other. Hence Proposition
Bl holds. O

As an application of this result, we study the continuous map ¢p : A (3‘1, 3‘2) — g’gB discussed in Lemma
Let B be a subset of & such that §; C Aff(B), hence ¢p is injective. Suppose that both S&; and S are
finite-dimensional. Then we have the following;:

Corollary 6. Under the above setting, the continuous map Lp : Ac(gl,gg) — ggB is a homeomorphism
onto ils image.

Proof. Now A° (gl, gz) is compact by Proposition [ while ggB is Hausdorff. Hence the continuous injection
tp is a homeomorphism onto its image. O

In particular, when we choose a finite subset B as above, the space 3‘2 is a topological subspace of a
Euclidean space (of finite dimension dim(Sz)|B]), and its Euclidean metric transferred to the set AC(Sl, Ss)
via the above map (g and the metric d., determine the same topology on A€ (81, 82) hence on A(Sl, 82)

Remark 4. Here we give a remark on Lemma This lemma will fail when we replace “surjective” with
“injective” in the statement. Indeed, in the case S = Sz = [0, 1], we define f;(z) = z/i (z € [0,1]) for
integers ¢ > 1. Then each f; is affine and injective, while their limit f = 0 with respect to the metric d is
not injective.

Appendix

A Fixed point of affine automorphisms

In this appendix, we give a proof of the fact (mentioned in Section [21]) that there exists a unique fixed point
of the Aut(S)-action on S under the assumption that the convex set S is compact and finite-dimensional,
and Aut(S) acts transitively on Sext. First, we note that the uniqueness of a fixed point is a consequence of
Lemma [l Indeed, if two distinct fixed points s; and sy exist, then the Aut(S)-action fixes the line through
s1 and sg, which contains a boundary point of §. This contradicts Lemma, [T

From now, we prove the existence of a fixed point. Take a left-invariant integral ¢ — [¢(g)dg on the
compact group G = Aut(S), which is a linear functional on the set of real-valued continuous functions
¢ : G — R satisfying the following conditions:

1. If ¢ is non-negative, then [¢(g)dg > 0.
2. If ¢ = 1 constantly, then [1dg = [¢(g)dg = 1.
3. If h € G, then [¢(hg)dg = [¢(g)dyg

Let ¢; : V(S) — R denote the i-th coordinate function on the Euclidean space V(S) = Aff(S). Fix a point
so € S. Then the map @; : G — R defined by ¢;(g9) = vi(9(s0)) (¢ € G) is continuous by continuity of the
G-action on S. Put v; = [@;(g)dg € R, and let v € V(S) be the unique element such that ¢;(v) = v; for
every i. We prove that v € S and it is a fixed point of G-action.

As V(S) = Aff(S), each f € Aut(S) extends to a bijective affine transformation on V'(S), which is
also denoted by f for simplicity. First we show that f(v) = v for every f € Aut(S). Note that each f is
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represented by a matrix M = (M, ;);; and a vector b = (b;); in such a way that for each x € V(S), we have
pi(f(z)) =22, Mi jp;(x) + b; for every i. Now we have

Al = Y Mgy + 0= Y My G0y + b= 3 M [E(ag+oi [1ag (10

where we used the property 2l above in the last equality. By the linearity, it follows that
ei(f(v)) = / Z M;,j6i(g) +b;i |dg = / ZMi,jS"j(Q(So)) +b; |dg
J J

_ / oi(£(g(50)))dg
- /@(f -g)dg = /@(g)dg = vi = ¢i(v)

where we used the property Bl above in the last row. Hence we have ;(f(v)) = ¢;(v) for every i, therefore
f(v) = v as desired.

Hence it suffices to show that v € S. Assume for contrary that v € S. Then, as S is compact and convex,
there exists an affine functional f on V(S) that is non-negative on S and negative at v. Choose a vector
(m;); and a value b such that f(z) = >, m;jp;(x) + b for every x € V. Then a similar argument as above
implies that

10) = S mjus + 0= [ (S msestotso)) +0) dg = [ statsods - (12)

Now we have f(g(so)) > 0 for every g € G by the choice of f (note that g(s¢) € S), therefore the right-hand
side is non-negative by the property [l above. On the other hand, we have f(v) < 0 by the choice of f again.
This is a contradiction, therefore we have f(v) € S as desired. Hence the claim in this appendix is concluded.

B Proof of Proposition

In this appendix, we give a proof of Proposition 2] for the sake of completeness.

Proof of Proposition[d. Put G = Aut(S) which is compact. Then it is well-known from representation theory
of compact groups that, given an inner product (-,-) on V = V(S§), the map (-,-)g : V x V — R defined by
(v1,v2)6 = [ (g-v1,9-v2) dg (where the right-hand side is the Haar integral) is a G-invariant inner product
on V. Let ey,es,...,e, € V and f1, fo,..., fn € V be orthonormal bases of V with respect to the inner
products (-,-) and (-, )¢, respectively. Now we define a bijective linear transformation ¢ on V by ¢(f;) = e;
for each 1 <i < n. Put &’ = ¢(S). We show that this ¢ satisfies the conditions specified in the statement.
Only the non-trivial part of the claim is that each member of Aut(S’) is an orthogonal transformation with
respect to (-,-). Note that Aut(S') = {¢g¢~! | g € G}. Moreover, we have (¢(v), p(w)) = (v,w)e by the
choice of ¢, as (©(fi), p(f;)) = (ei,e;) = 8ij = (fi, fj)c for the basis elements. Now for each ¢ € G and
v,w € V, we have

(g™ (v), pg9™H(w)) = (g™ (v), g~ H(w))a = (¢~ (v), ¢~ H(w))g = (v, w) (13)

where we used the G-invariance of (-, )¢ in the second equality. Hence the claim holds. (]
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C On the generality of separated spaces

In this appendix, for the sake of completeness, we briefly describe an argument to show that we may assume
without loss of generality that the convex set S is separated, as mentioned at the beginning of Section

For an arbitrary convex set S, we define an equivalence relation on § such that two elements s1,s5 € S
are equivalent if and only if f(s1) = f(s2) for every affine functional f : & — R with bounded image f(S).
Then the corresponding quotient set becomes a separated convex set, with essentially the same set of the
bounded affine functionals as the case of S. Therefore, by considering the quotient set instead of S itself, it
suffices to study convex sets which are separated. Hence the claim of this appendix follows.
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