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ON THE DIRECT INDECOMPOSABILITY OF INFINITE
IRREDUCIBLE COXETER GROUPS AND THE ISOMORPHISM
PROBLEM OF COXETER GROUPS

KOJI NUIDA

ABSTRACT. In this paper we prove that any irreducible Coxeter group of infi-
nite order is directly indecomposable as an abstract group, without the finite
rank assumption. The key ingredient of the proof is that we can determine, for
an irreducible Coxeter group W, the centralizers in W of the normal subgroups
of W that are generated by involutions. As a consequence, we show that the
problem of deciding whether two general Coxeter groups are isomorphic, as
abstract groups, is reduced to the case of irreducible Coxeter groups, without
assuming the finiteness of the number of the irreducible components or their
ranks. We also give a description of the automorphism group of a general
Coxeter group in terms of those of its irreducible components.

1. INTRODUCTION

In this paper, we prove that all infinite irreducible Coxeter groups are directly
indecomposable as abstract groups (Theorem B3).

Regarding direct indecomposability of Coxeter groups, it is well known that there
exist finite irreducible Coxeter groups which are directly decomposable (such as the
Weyl group G2). On the other hand, for infinite irreducible Coxeter groups, no gen-
eral result has been known until recently. In a recent paper [9], L. Paris proved
the direct indecomposability of all infinite irreducible Coxeter groups of finite rank,
by using certain special elements called essential elements which are examined also
in [6]. However, by definition, a Coxeter group of infinite rank never possesses an
essential element, so that the proof cannot be applied directly to the case of infinite
rank.

Our result here is obtained by a different approach. Let W be an irreducible
Coxeter group whose order is infinite, possibly of infinite rank. We give a complete
description of the centralizer C' of any normal subgroup N of W which are generated
by involutions (Theorem Bl). From the description it follows that, unless N = {1}
or C' = {1}, there is a subgroup H C W which contains both N and C. Once this
is proved, the direct indecomposability of W is clear, since any direct factor of W
is a normal subgroup and is generated by involutions (since it is a quotient of W),
and its centralizer contains the complementary factor.

As a consequence of the direct indecomposability of infinite irreducible Coxeter
groups, we give results on the isomorphisms between two Coxeter groups (Theorem
B4). Since we also know how each finite irreducible Coxeter group decomposes into
directly indecomposable factors, our results imply that we can determine whether
or not two given Coxeter groups are isomorphic if we can determine which infinite
irreducible Coxeter groups are isomorphic. In addition, our results also give cer-
tain decompositions of an automorphism of a general Coxeter group W (Theorem
BId). One decomposition describes its form from the viewpoint of the directly in-
decomposable decomposition of W; another decomposition describes its form from
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the viewpoint of the decomposition W = Wy, X Wiy, where Wsy, (resp. Wine) is
the product of the finite (resp. infinite) irreducible components of W in the given
Coxeter system. Note that these results can also be deduced from the Krull-Remak-
Schmidt Theorem in group theory, if the Coxeter group has a composition series.
Theorem B4l is also a generalization of Theorem 2.1 of [0]; our proof here is similar
to, but slightly more delicate than that in [9], by the lack of finiteness of the ranks.
Note also that, in another recent paper [1], M. Mihalik, J. Ratcliffe and S. Tschantz
also examined the “Isomorphism Problem” (namely, the problem of deciding which
Coxeter groups are isomorphic) for the case of finite ranks, by a highly different
approach.

Contents. Section B collects the preliminary facts and results. In Section 21
we give some remarks on general groups, especially on the definition and proper-
ties of the core subgroups. Sections and summarize definitions, notations
and properties of Coxeter systems, Coxeter graphs and root systems of Coxeter
groups. In Section 4 we recall a method, given by V. Deodhar [2], for decompos-
ing the longest element of any finite parabolic subgroup into pairwise commuting
reflections. Owing to this decomposition, we can compute easily the action of the
longest element on a root, even if it is not contained in the root system of the
parabolic subgroup. As an application, in Section X, we determines all irreducible
Coxeter groups of which the center is a nontrivial direct factor. (This is not a new
result, but is included there since the result is used in the following sections.) Some
properties of normalizers of parabolic subgroups are summarized as Section 20

Our main results are stated and proved in Section Bl The direct indecompos-
ability of infinite irreducible Coxeter groups is shown in Section Bl (Theorem B3).
Note that the theorem also determines all nontrivial direct product decompositions
of finite irreducible Coxeter groups. In Section B2 we reduce the Isomorphism
Problem of general Coxeter groups to the case of infinite irreducible ones (Theorem
B3). In the proof, we consider such a problem in a slightly wider context (Theorem
B3) and then our result is deduced. Moreover, another result in Section de-
scribes the automorphism group of a general Coxeter group in terms of those of the
irreducible components (Theorem B0 (ii)). Note that a Coxeter group possesses
some ‘natural’ automorphisms, which map each irreducible component onto a com-
ponent isomorphic to the original one. We also give a characterization of Coxeter
groups for which the group of the ‘natural’ automorphisms has finite index in the
whole automorphism group (Theorem B0 (iii)).

Our proof of Theorem is based on our description of the centralizers of the
normal subgroups, which are generated by involutions, in irreducible Coxeter groups
(Theorem Bl). This theorem is proved in Section EET] by using a description (given
in Sections E2HAL) of core subgroups of normalizers of parabolic subgroups.

Acknowledgement. I would like to express my deep gratitude especially to
Itaru Terada and Kazuhiko Koike, for their precious advice and encouragement.

2. PRELIMINARIES

2.1. Notes on general groups. In this paper, we treat two kinds of direct prod-
ucts of groups G with (possibly infinite) index set A; the complete direct product
(whose elements (g )x are all the maps A — | |,c, Gy, A +— gx such that gy € Gi)
and the restricted direct product (consisting of all the elements (gx)x such that gy
is the unit element of G for all but finitely many A € A). Note that these two
products coincide if |[A| < oo. Since here we treat mainly the latter type rather
than the former one, we let the term “direct product” alone and the symbol [ mean
the restricted direct product throughout this paper. (The complete one also appears
in this paper, always together with notification.)
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For two groups G, G’, let Hom(G, G"), Isom(G, G’) denote the sets of all ho-
momorphisms, isomorphisms G — G’ respectively. Put End(G) = Hom(G, G) and
Aut(G) = Isom(G, G). The following lemma is easy, but will be referred later.

Lemma 2.1. Assume that the center Z(G) of a group G is either trivial or a cyclic
group of prime order. Then the following three conditions are equivalent:

) Z(G) =1 or Z(G) is not a direct factor of G.

(II) If f € Hom(G, Z(G)), then f(Z(G)) = 1.

(ITX) If G’ is a direct product of (arbitrarily many) cyclic groups of prime order
and f € Hom(G,G"), then f(Z(G)) = 1.

Proof. This is trivial if Z(G) = 1, so that we assume that Z(G) is a cyclic group
of prime order. Note that the implication (III) = (II) is obvious.

(I) & (II): If (I) is not satisfied, and G = Z(G) x H, then the projection G —
Z(@G) does not satisfy the conclusion of (II). Conversely, if f € Hom(G, Z(G)) and
f(Z(GQ)) # 1, then f(Z(G)) = Z(G), ker f N Z(G) =1 (since Z(Q) is simple) and
so we have G = Z(G) x ker f.

(IT) = (III): This is clear if G’ itself is a cyclic group of prime order (by noting
that Hom(Z/pZ,7Z/¢Z) = 1 for distinct primes p, £). For a general case, apply it to
the composite map 7o f for every projection 7 from G’ to one of its factors. O

Here we define the following multiplication for the set Hom(G, Z(G)) by which
it forms a monoid. First, we define a map Hom(G, Z(G)) — End(G), f — f° by

fo(w) = wf(w)™! for all w e G.

This is well defined since Z(G) is abelian. The image of H C Hom(G, Z(G))
by the map is denoted by H”. Now define the product f * ¢ of two elements
f,9 € Hom(G, Z(G)) by

(f * 9)(w) = f(w)g(w)f o g(w)™! for all w € G.

This is also well defined, and then Hom(G, Z(G)) forms a monoid with the trivial
map (denoted by 1) as the unit element (for example, we have the associativity

((f +g) = h)(w) = (f * (g 1)) (w)
(1) = f(w)g(w)h(w)f o g(w) ™ f o h(w) ™ g o h(w)™'f o goh(w)
= (fxh)w)f* 0 goh’(w)
for f,g,h € Hom(G, Z(@G))). Let Hom(G, Z(G))* denote the group of invertible
elements of Hom(G, Z(G)) with respect to the multiplication *. On the other hand,
End(@G) also forms a monoid with composition of maps as multiplication; then the

group of invertible elements in the monoid End(G) is precisely the group Aut(G).
Moreover, the group Aut(G) acts on the monoids Hom(G, Z(G)) and End(G) by

h-f=hofoh™ for h € Aut(G), f € Hom(G, Z(G)) or End(G).

Lemma 2.2. (i) The map f — f is an injective homomorphism Hom(G, Z(G)) —
End(G) of monoids compatible with the action of Aut(G).
(ii) For f € Hom(G, Z(Q)), the following three conditions are equivalent:

(1) f € Hom(G, Z(G))*.  (II) f* € Aut(G).

(III) The restriction f°|z(q) is an automorphism of Z(G).
(iii) If H C Hom(G, Z(G))* is a subgroup invariant under the action of Aut(G),
then its image H® is a normal subgroup of Aut(G).

Proof. The claim (i) is straightforward, while (iii) follows from (i), (ii) and definition

of the action of Aut(G). From now, we prove (ii). The implication (I) = (II) is

obvious. On the other hand, (II) implies (III) since any automorphism preserves
3



the center. Moreover, if (III) is satisfied, then we can construct the inverse element

f'of f € Hom(G, Z(G)) by f'(w) = (f’|26)) " (f()) ™" (w € G); we have
(f"* Hw) = f'(w) fw) f' (fw)™" = f(wf(w)™)f (
=(flz@) " (flw 1) L (w)
=(f |Z(G) 1(fb w))) ' f(w)
flw)™ fw) =
so that f/ % f = 1. Similarly, we have f x f’ = 1. Hence the claim holds. O

Lemma 2.3. If a group G is abelian, then the embedding Hom(G, Z(G)) — End(G),
f— f°, is an isomorphism with inverse map f — f°. Moreover, its restriction is
an isomorphism Hom(G, Z(G))* — Aut(G).

Proof. Note that Z(G) = G, so that Hom(G, Z(G)) = End(G) as sets. Thus the
map End(G) — Hom(G, Z(G)), f — f° is well defined. Now we have (f*)’(w) =
wf®(w)™' = f(w) for all f € End(G) and w € G, so that (f°)* = f. Thus the first
claim holds. Now the second one follows from Lemma (ii). O

Note that, if G = G; x Ga, then the sets Hom(G;, Z(G)) (i = 1,2) are em-
bedded into Hom(G, Z(G)) via the map f — f om; (where m; is the projection
G — G;). Each Hom(G;, Z(G)) forms a submonoid of Hom(G, Z(G)). Moreover,
the above formula of the inverse element f’ of f € Hom(G, Z(G)) implies that,
f € Hom(G;, Z(@)) is invertible in Hom(G;, Z(G)) if and only if it is invertible in
Hom(G, Z(@G)). Thus the notation Hom(G;, Z(G))* is unambiguous.

Lemma 2.4. (i) Let f,g € Hom(G, Z(Q)) such that f(Z(GQ)) = g(Z(G)) = 1.
Then f,g € Hom(G, Z(G))* and (f * g)(w) = f(w)g(w) for all w € G (so that
fxg=gxf by symmetry). Moreover, the map w — f(w)~?! is the inverse element
of f in Hom(G, Z(G))*

(i) Suppose that G = Gy x Gy and Z(G2) = 1. Then Hom(G, Z(G))* = H; X Ho
where Hy = Hom(G2, Z(G)), Hy = Hom(G1, Z(G1))*. Moreover, Hy is abelian,
(f +9)(w) = Fw)g(w) for frg € Hy and fx g% f' = f*ogo (f)" for f € Hy and
g € Hi, where [’ is the inverse element of f € Hs.

Proof. (i) By the hypothesis, f° is identity on Z(G), so that f is invertible by
Lemma (ii) (and g is so). The other claims follow from definition (note that
now fog=1).
(ii) Note that Z(G) = Z(G1) by the hypothesis. Then by (i), H; is an abelian
subgroup of Hom(G, Z(G))* in which the multiplication is as in the statement.
For f € Hy and g € Hy, the formula ([l) implies that fxgxf’ is as in the statement
(note that f* f' =1 and f’b = (f*)~Y). In particular, we have f * g * f'(G1) C
fog(G1) =1, since f’ € Hy and so f’b(Gl) C G1. This means that fxgx* f' € Hy.
Since obviously Hy N Hy = 1, we have HyHy = H1 X Hs.
Finally, let f € Hom(G, Z(G))*. Take g € H; such that g(w) = f o ma(w)~!
where 7y is the projection G — G (this is the inverse element of f o my € Hy).
Then for w € G2, we have

(9% N)(w) = glw)fw)g(Fw) ™ = f(w) ™ f(w) =1
since ¢g(Z(G)) = 1. This means that g * f € Hom(G1, Z(G1)), while it is invertible
since both f and g are so. Thus we have g f € Hy and f = (foma)*gx f € H1Ho.
Hence Hom(G, Z(G))* = Hy x Hs. O

In the proof of our results, we use the following notion. For a group G, we write
H < G, H <G if H is a subgroup, normal subgroup of G, respectively.
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Definition 2.5. For H < G, define the core Coreg(H) of H in G to be the unique
mazimal normal subgroup of G contained in H (namely, N, cqwHw™").

The following properties are deduced immediately from definition:
(2) If H < Hy < @G, then Coreg(Hy) C Coreg(Hs).
(3) If Coreq(H) < Hy < G, then Coreg(H) C Coreg(H).

(4) If Hy <G (A € A), then Coreg( ﬂ H)) = ﬂ Coreg(Hy).
AEA AEA

(5) If Hy < Hy <G, we G and wHyw ' N Hy =1, then H; N Coreg(Hy) = 1.

Lemma 2.6. Let Gy < Gy < ---, Hi < Hs < --- be two infinite chains of
subgroups of the same group such that G;NH; = H; for alli < j. Put G =J;2, G;
and H =J;2, H;. Then Corec(H) C |J;=, Coreg, (H;).

Proof. It is enough to show that Coreq(H) N H; C Coreg, (H;) (or more strongly,
Coreg(H)NH; <G;) for all i. Note that the hypothesis implies G;NH = H;. Then
for g € G; and h € Coreg(H) N H;, we have ghg~! € Coreg(H) and ghg™! € G,
so that ghg™' € G; N H = H;. Thus the claim holds. (I

The next lemma describes the centralizers of normal subgroups in terms of the
cores of certain subgroups. Before stating this, note the following easy facts:

(6) If H <G, then the centralizer Zg(H) of H is also normal in G.
(7) If X1, X2 C G are subsets and X7 C Zg(X3), then Xy C Zg(X1).

Lemma 2.7. Let H be the smallest normal subgroup of G containing a subset
X CG. Then Zg(H) = Coreg(Za(X)) = e x Corea(Za(x)).

Proof. The second equality follows from (#). For the first one, the inclusion C is
deduced from (@) (since Zg(H) C Zg(X)). For the other inclusion, the centralizer
of Coreq(Z¢(X)) in G is normal in G (by (@) and contains X, so that it also
contains H. Thus the claim follows from (). O

2.2. Coxeter groups and Coxeter graphs. Here we refer to [5] for basic defi-
nitions and properties. A pair (W, S) of a group W and its generating set S is a
Coxeter system (and W itself is a Cozeter group) if W has the presentation

W = (S| (st)™" =1if s,t € S and m(s,t) < o)

where m : S x S — {1,2,...} U {oo} is a symmetric map such that m(s,t) = 1
if and only if s = t. (W, S) is said to be finite (infinite) if the group W is finite
(infinite, respectively). The cardinality of S is called the rank of (W, S) (or even of
W). Throughout this paper, we do not assume, unless otherwise noticed, that the
rank of (W, S) is finite (or even countable). Note that, owing to the well-known
fact that the element st € W above has precisely order m(s,t) in W, this map m
can be recovered uniquely from the Coxeter system (W, .5).

Two Coxeter systems (W,S) and (W', S’") are said to be isomorphic if there
is some f € Isom(W,W’) such that f(S) = S’. Then there is a one-to-one
correspondence (up to isomorphism) between Coxeter systems and the Cozeter
graphs; which are simple(, loopless), undirected, edge-labelled graphs with labels in
{3,4,...}U{oo}. The Coxeter graph I" corresponding to (W, S) has the vertex set
S, and two vertices s,t € S are joined in I" by an edge with label m(s, t) if and only
if m(s,t) > 3 (by convention, the labels ‘3’ are usually omitted). I" (or (W,S5)) is
said to be of finite type if W is finite. It is also well known that a full subgraph I
of I' with vertex set I C S corresponds to a parabolic subgroup W; of W generated
by I (or more precisely, to a Coxeter system (W, I)).
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I'Ax) = o—o—o0—o0— I'(Bx) = o—o0—o0—o0—
1 2 3 4 1 2 3 4
2
1 oy
I'(Dy) = He o0o—o0— I'(Eg) = o—o—o0—o0o—o0—0—o0
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I'(Fy) = o—o0o—o0—o0 I'(Hy) = o—o—o—o I'(Iz(m)) = o—o
1 2 3 4 1 2 3 4 1 2
IN'Aw,cc) = -+ —o0o—0—o0—o0—o0o—o—o— --- D I[(Ay)

-3 -2 -1 0 1 2 3

FIGURE 1. Some connected Coxeter graphs

A Coxeter system (W, S) is called irreducible if the corresponding Coxeter graph
I is connected. In this case, W is also said to be irreducible. As is well known,
W is decomposed as the direct product of its irreducible components, which are the
parabolic subgroups W; of W corresponding to the connected components I of
I' (in this case, each subset I is also said to be an rreducible component of S). A
parabolic subgroup W; C W is said to be irreducible if the Coxeter system (W7j,T)
is irreducible. As we mentioned in Introduction, an irreducible Coxeter group may
be directly decomposable (as an abstract group) in general. Our main result deter-
mines which irreducible Coxeter group is indeed directly indecomposable.

In this paper, we use the following notations for some Coxeter graphs.

Definition 2.8. We use the notations in Fig. 1. For each of the Cozeter graphs,
let s; denote the vertex having label i. Moreover, for each Coxeter graph I'(7,) in
Fig. 1 (T=A, B, D, E, F, H), let I'(T};) (k <n) be the full subgraph of I'(7y)
on vertex set {s; | 1 <i <k}. For any T, let (W (T),S(T)) be the Coxeter system
corresponding to the Coxeter graph I'(T).

By definition, I'(7s) (T = A,B,D) and I'(Ax, ) are Coxeter graphs with
countable (infinite) vertex sets. On the other hand, it is well known that the
Coxeter graphs I'(A,) (1 <n < o0), I'(By,) (2 < n < ), I'(D,) (4 <n < ),
F(EG), F(E7), F(Eg), F(F4), F(Hg), F(H4) and F(Ig(m)) (5 <m < OO) are
all the connected Coxeter graphs of finite type (up to isomorphism). Note that
F(Bl) = F(Dl) = F(Al), while F(DQ) ~ F(Al X Al) and F(Dg) ~ F(Ag) (but
the vertex labels are different).

2.3. Root systems of Coxeter groups. For a Coxeter system (W, S), let II be
the set of symbols a (s € S) and V the vector space over R containing the set IT
as a basis. We define the symmetric bilinear form (, ) on V for the basis by

(s, o) = — cos(m/m(s,t)) if m(s,t) < oo, (as,a:) = —11if m(s,t) = .

Then W acts faithfully on the space V by s-v = v — 2{as, v)as (s € S, v € V). Let

® = W -1I, the root system of (W, S). The above rule implies that the action of

W preserves the bilinear form; as a consequence, any element (root) of ® is a unit

vector. It is a crucial fact that ® is a disjoint union of the set ®* of positive roots

(i.e. roots in which the coefficient of every a;; € Il is > 0) and the set &~ = —®T of
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negative roots. It is known that the set ® [w] = {y € ® | w-y € &~} characterizes
the element w € W; namely,

(8) ifw,ue W and @ [w] = ®[u], then w=u

(cf. Lemma 2.9 of [§], etc. for the proof). Moreover, it is also well known that the
cardinality of the set ® [w] is (finite and) equal to the length ¢(w) of w € W with
respect to the generating set S.

The reflection along a root v = w - oy € ® is defined by s, = wsw™! € W.
This definition does not depend on the choice of w and s, and s, indeed acts as a
reflection on the space V; sy - v = v — 2(7,v)y for v € V. Note that s,, = s for
s € S. The following fact is easy to show (by the fact that ® = & LU ®~):

(9) if s€S,v€®" and (as,7) >0, then s, - a5 € &,
For v € V, put
v= Z([as] v)as and supp(v) = {s € S| [as] v # 0}.
seS

For I C S, let V; be the subspace of V spanned by the set II; = {as | s € I}
and ®; = ® NV; (namely, the set of all v € ® such that supp(y) C I). Then it is
well known that ®; coincides with the root system Wi - II; of the Coxeter system
(Wr,I) (cf. Lemma 4 of [3], etc. for the proof). This fact yields the following:

(10)  If y € @, then (v € Pgypp(y) and so) the set supp(y) is connected in I
Moreover, it is well known (cf. [5], Section 5.8, Exercise 4, etc.) that:
(11) If I C Sand~ye®, then s, € Wy if and only if v € ®;.
For I C S, let
I*"={seS~I|st=tsforalltecl}

={s e S~ 1|sisadjacent in I' to no element of I}

= {s € S| as is orthogonal to every a; € Ily}.
Then we have the following properties:
(12)  Ify € ®* and supp(y) ¢ I C S, then w-v € ®* for all w € Wy,
(13) Ifye ® 1 =supp(y)and s € S~ (I UI™"), then supp(s-7y) = I U {s}.
(For (I3, take some t € supp(y) \ I, then w - v has the same (positive) coefficient

of ot as 7. For (@), note that {as,~y) < 0 by the hypothesis.)
For I C Sandw € W, let ®f = &;N®d*+, &, = &;Nd~ and &; [w] = ;NP [w].

Lemma 2.9. Letw € W, I,J C S and suppose that INJ =0, w-II; = II; and
w-1I; Cd. Then‘b]UJ[w]:(b}"_U‘]\@[.

Proof. Let v € ®F; such that [o]y > 0 for at least one s € J (note that w- a, €
®). Now if w-ay € ®7, then oy = w™! - (w - as) must be a linear combination
of IT; (since w - II; = IIj), but this is impossible. Thus we have [oy] (w - as) < 0
for some t € S\ I. Moreover, the hypothesis implies that [ay] (w - as) = 0 for all
s’ €T and [oy] (w- ay) <0 for all s € J. Thus we have

il (w0 ) =lad] (1w 3 (fawln)a

s'eluJ

= > (vl fad (w-ay) < o] vlad (w-as) <0.

s'€IUJ
Hence the claim holds, since w - <I>}L C ®* by the hypothesis. (]
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Definition 2.10. For a Cozxeter system (W,S), we define the odd Coxeter graph
redd of (W, S) to be the subgraph of I' obtained by removing all edges labelled by
an even number or co.

It is well known (cf. [B], Section 5.3, Exercise, etc.) that, for s,t € S,
(14) oy € W-ay if and only if s,t are in the same connected component of redd,

Moreover, the following lemma is deduced immediately from the definition that all
fundamental relations of W are of the form (st)™®%) =1 (s,t € 9).

Lemma 2.11. Any f € Hom(W,{£1}) assigns the same value to every vertex
s € S of a connected component of I'°. Conversely, any mapping S — {1}
having this property extends uniquely to a homomorphism W — {£1}.

2.4. Reflection decompositions of longest elements. If W; is a finite para-
bolic subgroup of a Coxeter group W, then let wo(I) denote the longest element of
Wi. This element is an involution and maps the set II; onto —II, so that there is
an involutive graph automorphism oy of the Coxeter graph I'7 such that

wo(l) - ag = —g () for all s € 1.

It is well known that, for an irreducible Coxeter system (W, .S), we have Z(W) # 1
if and only if W ~ W/(T) for one of T = A;, B, (n < o), Dy (k > 4 even),
E;, Es, Fy, H3, Hy and I;(m) (m > 6 even). This condition is also equivalent to
that |W| < oo and og = idg. Moreover, Z(W) = {1,wo(S)} if Z(W) # 1, while
ogs is determined as the unique non-identical automorphism of I" whenever W is
finite, irreducible and Z (W) = 1. Note that any automorphism 7 € Aut(I") induces
naturally an automorphism of W, which maps each element wo(I) to wo(7(I)).

In the paper [2], Deodhar established a method (in the proof of Theorem 5.4) for
decomposing any involution w € W as a product of commuting reflections. From
now, we apply this method and then obtain a decomposition of any longest element
wo(I), which we call here a reflection decomposition. First, to each finite irreducible
Coxeter system (W, S) = (W(T), S(7T)) of type T, we associate a (or two) positive

root(s) ar = 54(7}) (and 54(7%)), as follows (where we abbreviate ciaq + cocs + -+ - +

cnyn €V to (e1,co,...,cy) in some cases):
n n—1
&An:Zai (1<n<o0), &Dn:a1+a2+22ai+an (4 <n <o),
i=1 i=3

n n—1
&gi :al—l—Zﬁai, &gz :ﬁal—i—ZQai—i—an (2 <n< o),
i=2

=2
&EG = (1325233523 1); EY1E7 = (232533453325 1)7 &Es = (233543655345372)5

ap) = (2,3,2V2,V2), af) = (V2,2V72,3,2),
am, = (c+1,2¢,¢), ag, = (Bc+2,4¢+2,3c+1,2¢) (where ¢ = 2cosg),

1 1
o = > 5 odd
Aa(m) = 5 sin(7/2m) @ty sin(7/2m) az (mz5odd),
() cos(m/m) 1 S ,
= i —i >5 i =1,2).
L(m) " sin(7 /m) sin(mw/m) as (m ever )
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To check that each of these is actually a root of (W(7),S(7)), note the equality
c? = ¢+ 1 and the following formula for the root system of type I5(m):

If w=(-5928182) € W(IQ( )) (k elements), then

T sin(w/m) a1 + sin(r/m) if kis Odd,
1= sm((k-‘rl)ﬂ'/m) sin(kw/m)

sin(mw/m) o + sin (7 /m) a3 if k is even.

For example, we have

gl _ ~(2)
Qp, = 51525354828382 - (1, (Qp = 54535251835283 * Oy,

Qg = 5251528518382 - 1, QpH, = 54535251525153525154535251525354 * f5,
o — ~(1) k—1
ary(2k41) = (- - 825182) - a1 (k elements), O, 4k = = (83-48;)" " "83—; - .

By @), if T # By, Fu, Iz(m) (m even), then ® consists of a single orbit W(7T) -y
(and so it contains &r). On the other hand, if T = B, Fy or Iz(4k), then ()
implies that ® consists of two orbits (namely, W-«; and W - g if T = B, I2(4k),
and W .oy and W - oy if 7 = Fy). In these case, &(7}) lies in the orbit W - a7 and
&g) lies in the other one.

In contrast with the above cases, if 7 = I5(4k + 2), then ® consists of two orbits
W(T)-a; and W(T) - az, and now we have ozT) € W(T) - az (and O‘(T) lies in the
other orbit). In fact, we have a§2)(4k+2) = (s3-45)% - az_; for i = 1,2.

To simplify the description, we denote the reflection along the root &(71;) by 7(7T ,1).
If we have only one root &l ), namely 7 # B, Fy, Io(m) (m even), then we also
write ¥(7) =7(7,1).

Remark 2.12. By the above observation, if T = B, Fy or I2(4k), then ¥(T,1) is
conjugate to s1, and 7(T,2) is conjugate to so (if T = By, or I2(4k)) or to s4 (if
T = Fy). On the other hand, if T = Iy(4dk+2), then 7(7T,1), 7(7,2) are conjugate
to sa, s1, respectively.
Lemma 2.13. (i) If T # A, (n > 2), Io(m) (m odd), then for the root a( D there
is an index N (7 ,i) such that (&(73), a;) =0 for all j # N(T,i). Moreover, we have
(&gf),aN(Tﬁi)) >0 and ®[7(7,1)] = & P5(T){snr.}- (If we have only one
root a( " then we also write N(T)=N(T,1).)
(ii) If’T Ay, (n>2) or Ia(m) (m odd), then there are two indices N1(T ), No(T)
such that (a1, an, (1)) >0 for j = 1,2 and (a7,a;) = 0 for all j # N1(7T), No(T).
Moreover, we have ® [7(T,4)] = ®T \ P 5 (T){sn, (1)255g (1)}
Proof. (i) The first claim follows from a direct computation, by putting
N(A)) =1, N(Bnp,1)=n, N(Bp,2)=n—-1, ND,)=n-1,
N(Eg) =2, N(E7;)=1, N(FEg)=8, N(Fy,1)=1, N(Fy2)=4,
N(Hs) =2, N(H;) =4, N(I(2k),1)=2, N(I»(2k),2)=1.

(@) ~(l)>

For the second one, expand the equality (& = 1 and use the first claim.

Now the third one follows from (@) and Lemma
(ii) The former claim also follows from a direct computation, by putting

Ni(An) =1, Na(An) =n, Ni(I2(2k+1)) =1, Na(I2(2k+ 1)) = 2.
The remaining proof is similar to (i). (]
Now Deodhar’s method can be described, for the element wg(I), as follows:

(I) If I = 0, then this algorithm finishes with the (trivial) decomposition wy(I) =
9



1. If I # 0, choose an irreducible component J of I. Let J = S(7).

(ID) If T # A, (n > 2), Iz(m) (m odd), take the (or one of the two) root(s) &gz—).
By Lemma (i), 7(7,i) commutes with all elements of K = I \ {sy(7,;)}, and
we have wo(I) = (7 ,4)wo(K) (since both sides map II; into ®~; cf. [&)). Then
apply this algorithm inductively to the (smaller) set K.

(IIT) If 7 = A,, (n >2) or I3(m) (m odd), then similarly, ¥(7) commutes with
all elements of K = I\ {sn, (1), 5n,(7)} and wo(!) = 7(7, 1)wo (K ) by Lemma T3
(ii). Then apply this algorithm inductively to the (smaller) set K.

By collecting the subset K C I appearing in the step (II) or (III) of every turn,
we obtain a decreasing sequence (Ko = I,) Ki,...,K,_1, K, = 0. We call this a
generator sequence (of length r) for the set I.

Example 2.14. Let (W,S) = (W(D,),S(D,,)). By using a reflection decomposi-
tion of wo(S(D;)), we compute the root s;1wo(S(D;))siy1 - (3 < i< mn). First,
assume that i is odd. By the algorithm, we have a decomposition

’LU()(S(Dl)) = F(Di)SiF(Di_Q)Si_Q s 'F(D5)S5F(D3)Sg

(where we put 7(D3) = Sa;+astas; note that I'(Ds) ~ I'(As)). The corresponding
generator sequence is

S(Di-2)U{si}, S(Di-2), S(Di—a) U{si—2}, S(Di-4),-
, S(Ds), S(D3)U{ss}, S(D3 {s3}, 0.
Now since Us(Di)(Si) = s;, we have
wo(S(D;))sit1 - o = wo(S(Dy)) - (@i + aitr)
= wo(S(D;)) - i +wo(S(Dy)) - i1 = —ai +wo(S(Dy)) - i1

Since all the reflections except 7(D;), s; in the decomposition fix the root a1, and
all roots corresponding to the reflections are orthogonal (by definition), we have

wo(S(Di)) - it1 = aip1 — 2(@p,, diy1)ap, — 2(qi, Qiy1)i = ap,,,
(where we put ap, = a1 + ae + a3). Thus we have
5i1wo(S(Dj))sit1 - 0 = Sip1 - (Qp,,, — ;) = ap,.
On the other hand, if i > 3 is even, then we have a different decomposition
wo(S(D;)) = 7(D;)s;iT(Di—2)8i—2 - - - T(D4)848281.
However, we obtain the same result; namely, we have
Si+1wo(S(D;))Sit1 - s = ap,.

By a similar argument, it can be checked that s;11wo(S(D;))si+1 (¢ > 3) maps
the roots a;y1, o, a (j <) to —ap,,,, ap,, —aj (where j' is the index such that
sy = 0g(p;)(85)) respectively. The element wq(S(D;—1))wo(S(D;))wo(S(Diy1))
has the same property. Thus we have

si+1wo(S(Di))sit1 = wo(S(Di-1))wo(S(Di))wo(S(Dit1)) (i = 3).
Similarly, we have the following relations:
si+1w0(S(Bi))si+1 = wo(S(Bi—1))wo(S(Bi))wo(S(Bit1)) (i = 2),
$28182 = s1wo(S(B2)),
sswo(S(D2))ss = wo(S(D2))wo(S(Ds)),
wo(S(Di))wo(S(D;)) = wo(S(D;))wo(S(Ds)) (2 <i <),

s1wo (S (Dag+1))s1 = s2wo(S(Dakt1))s2 = wo(S(Da2))wo(S(Dak+1))-
10



(The last row follows from the relations wo(S(Dak+1)) - o = —ag—; (1 = 1,2).)
Moreover, note that wo(S(B;)) € Z(W(B;)) and wo(S(D2x)) € Z(W(D2g)), and
wo(S(Dak+1)) commutes with all s; (3 < j < 2k+1).

By these relations, we have the following:

Lemma 2.15. (See Definition[Z8 for notations.)

(1) Let 1 <n < 0. Then the subgroup G, of W(B,) generated by all wo(S(B;))
(1 <i<m,i<oo)isnormal in W(By).

(ii) Let 1 <n < co. Then the smallest normal subgroup Gp, of W(D,,) containing
all wo(S(Dak)) (1 < k < o0, 2k < n) is the subgroup generated by all wo(S(D;))
2<i<n,i<o).

(iii) Moreover, each of the above normal subgroups is an elementary abelian 2-group
with the generating set given there as the basis.

These normal subgroups Gg, , Gp, will appear in later sections.

2.5. Direct product decompositions of finite Coxeter groups. Owing to the
reflection decomposition given in Section Z4] we can determine easily which finite
irreducible Coxeter groups have the center as a nontrivial direct factor. (This is
never a new result, but we restate it here since the result is used in later sections.)

For a Coxeter system (W, S), let W™ denote the normal subgroup of W (of index
two) consisting of elements of even length. This coincides with the kernel of the
map sgn € Hom(W, {#1}) such that sgn(w) = (—1)“*). Since any reflection in W
has odd length, the following lemma follows from (the proof of) Lemma Tt

Lemma 2.16. If (W, S) is a finite irreducible Cozeter system and Z(W') # 1, then
we have W = Z(W) x W if and only if some (or equivalently, any) generator
sequence for S (cf. Section[ZZ) has odd length.

Theorem 2.17. Let (W, S) be an irreducible Cozeter system such that Z(W) # 1
(so that |W| < 00). Then Z(W) (~ W(A;)) is a proper direct factor of W if and
only if W ~W(T) for T = Bagy1, I2(4dk+2) (k> 1), E7 or Hs. In the first two
cases, W is isomorphic to W (A1) X W (Dag1), W (A1) x W(I2(2k+1)) respectively.
In the last two cases, we have W = Z(W) x WT.

Proof. Note that Z(W) ~ {£1} by the hypothesis. Since Z(W(A;1)) = W(41), we
may assume W # W (Ay).

Case 1. W = W(B,,) (n > 2): First, we have Hom(W, {£1}) = {1,sgn, e1,e2}
by Lemma[ZTIl where 1 denotes the trivial map, e1(s1) = —1,e1(s;) = 1, €2(s1) =1
and e2(s;) = —1 (i # 1). Now we consider the following reflection decomposition:

’LU()(S> = ?(Bn, 1)’7:(an1, 1) N '?(BQ, 1)51

By Remark T2 each reflection 7(By, 1) is conjugate to s1. This implies that any
expression of 7(Bg, 1) as a product of generators contains an odd number of s; and
an even number of s; (i # 1). Thus we have

sen(7(Bg, 1)) = e1(7(Bk, 1)) = —1 and eo(7(Bg, 1)) = 1.

If n is even, then all f € Hom(W, {£1}) maps wy(S) to 1 by the above property.
Thus by Lemma Il Z(W) is not a direct factor.

On the other hand, if n is odd, then we have 1(w(S)) = —1 and so W =
Z(W) x kere; by the proof of Lemma Il Note that kere; consists of elements
in which s; appears an even number of times. Since s; commutes with all s;
(3 <i < n), it can be deduced directly that kere; is generated by s] = s15251 and
all s, = s; (2 <i <mn). Moreover, kere; forms a Coxeter group of type D,,; in fact,
s, ..., s satisfy the fundamental relations of type D,, (so that kere; is a quotient
of W(D,,)), while the order |W(B,)|/2 of kere; coincides with |W(D,)|. Hence
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the claim holds in this case.

Case 2. W = W(7) for T = Dy, (k > 2), Er, Es, Hs, Hy: Since I'°% is
connected in this case, we have Hom(W, {£1}) = {1,sgn} by Lemma EZTTl Thus
the claim follows from Lemmas Bl and EZT6 by taking the following generator

sequence for S (where we abbreviate the set {si,, Siy, .., Si.} 10 G182+ iy):
S(Dak—2) U{sak}, S(Dak—2),..., S(Da), 124, 12, 1, O if T = Dy,
S(E7), 234567, 23457, 2345, 235, 23, 2, 0 if T = Eg,
934567, 23457, 2345, 235, 23, 2, 0 T = B,
S(H;), 13, 1, 0 if T = Hy,
13,1, 0 if 7 =H;s

(note that the first sequence consists of 2k terms).

Case 3. W = W(F}y): We have a generator sequence 234, 23, 2, () for S and
the corresponding decomposition of wg(S) into four reflections, all of which are
conjugate to s; and sz (cf. Remark ZT2). This (and Lemma ZTTl) implies that any
f € Hom(W, {£1}) maps all the four reflections to the same element f(s1), so that
f(wo(S)) = 1. Hence the claim follows from Lemma ET1

Case 4. W = W(I2(2k)) (k > 3): We have a reflection decomposition wg(S) =
7(I2(2k),1)s1. If k is even, then 7(I2(2k),1) is conjugate to s; (cf. Remark ZZT9).
Now by a similar argument to the previous case, any f € Hom(W,{%1}) maps
wp(S) to 1. Thus Z(W) is not a direct factor by Lemma 2Tl

On the other hand, if & is odd, then 7(I2(2k), 1) is conjugate to sz (cf. Remark
ET2). Thus e; € Hom(W, {£1}) (e(s1) = —1, &(s2) = 1) sends wp(S) to —1, so
that W = Z(W) x kere; by the proof of Lemma Il Moreover, kere; is generated
by two reflections s1s281 and s2, and so kere; is a Coxeter system of type I(k)
(since $1525182 has order k). Hence the claim holds in all cases. O

Since the groups W(E;)" and W (H;)t are known to (be isomorphic to) the
well-examined simple groups Sg(2) and As respectively (cf. [B], Sections 2.12-13,
etc.), we omit the proof of the following properties of these groups. Note that these
properties can also be proved by using Theorems 2T and below.

Lemma 2.18. Let G = W(T)", T € {FE7,Hs}. Then G has trivial center, is
directly indecomposable and is generated by involutions. Moreover, G is not iso-
morphic to a Cozeter group.

2.6. Notes on normalizers in Coxeter groups. In this subsection, we summa-
rize some properties of normalizers Ny, (W) of parabolic subgroups W; in Coxeter
groups W. In the paper [I] (or [E], for the case |W| < 00), the structure of Ny, (W)
is well examined so that we can in fact determine the precise structure of the nor-
malizer. In particular, here we use the following results in those papers:

Proposition 2.19 ([I], Proposition 2.1). If I C S, then Ny (W) is the semidirect
product of Wi by the group Ny ={w e W | w-II; =1I;}.

Proposition 2.20 ([1], remarked between Theorems A and B). If I C J C S and
Wi is an infinite irreducible component of Wy, then Nyw (Wy) C Wiy .

By using these, we can prove the following corollary. (This is also a consequence
of a result in [I], but we include the proof here since it is sufficiently short.)

In the proof, we also use the following result. (This result was originally given
by Deodhar [2], in the proof of Proposition 4.2, for the case |S| < co. See also [8],
Proposition 2.14, etc. for the case |S| = c0.)

Proposition 2.21. If (W, S) is irreducible and |W| = oo, then |® \ ®;| = oo for

all proper subsets I C S.
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Corollary 2.22. Let s € S and I = S~ {s}.

(i) If 1 # w € Ny, then ®[w] = ®* \ ®;. Hence by @), such an element w is
unique if it exists.

(li) ]f |W| < 00 and ’LU()(S) S Nw(W[), then Nw(W[) =Wrx {1,’LU0(S)}.

(iii) If (W, S) is irreducible and |W| = oo, then N; =1 and Nyw (W) = Wr.

Proof. (i) In this case, we have w - ag € ®~ (otherwise, we have w - ®T C ®* but
this is a contradiction). Now the claim follows from Lemma 20

(ii) Note that wo(S) &€ Wy, while |N;| < 2 by (i). Thus by Proposion 2T Ny, (W)
is generated by W; and wg(S). Now the claim holds, since wg(S)? = 1.

(iii) In this case, we have |\ ®;| = co by Proposition ZZI} Thus we have Ny = 1
by (i), since the set ® [w] is always finite. Hence the claim holds. O

Owing to this description, we have the following:

Corollary 2.23. (i) If W = W(B,), 2 < n < oo, then (), Nw(Ws(s,)) = G5
(i) If W = W(Dn), 3 < n < oo, then ;=) Nw(Ws(p,)) = Gp, x (s1).

Proof. Note that, by Lemma T8 Gp, is generated by all wo(S(Bg)) (1 <k < n).
On the other hand, by Lemma ZTH again, the product Gp, (s1) is a semidirect
product with Gp, normal, and it is generated by all wo(S(Dy)) (1 < k < n).

We prove the two claims in parallel. Let 7 = B and L = 1 (for (i)), 7 = D
and L = 2 (for (ii)), respectively. By the above remark, it is enough to show
that the group in the left side is generated by all wo(S(7%)) (1 < k < n). We use
induction on n. First, note that wo(S(7,)) € Nw(Wg(z,)) forall L <i <n—1. Put
W' = Wg(z,_,). Then by Corollary 222 (ii), we have Ny (W') = W' x(wo(S(7,)))-
Thus the claim holds if n = L + 1; in fact, in this case, W' = Wg(7, ) is generated
by all wo(S(7;)) (1 <i < L).

If n > L + 1, then the above equality implies that

"

) Mo (W) = (ﬂ NW<Ws<m>> 0 (W' (wo(S(T)))

i=L i=L

= (ﬂ NW/(WS(Ti))> x (wo(S(77)))

i=L

since wo(S(7,)) € ﬂ?:_f Nw(Wg(z,)). By the induction, the first factor of the
semidirect product is generated by all w(S(7;)) (1 < i < n —1). Thus the claim
also holds in this case. Hence the proof is concluded. O

On the other hand, we have some more properties of the normalizers, which can
be deduced without results in [1] and [@]. First, we have:

(15) If I,J C.S, then Nw(W]) n Nw(WJ) C Nw(W]m.]).
(16) For I C S,w € Ny (W) if and only if w - &7 = ®;.

(@) follows from the well-known fact Wy N W; = Winy. [[H) follows immediately
from ([J).) Moreover, we have the following;:

Lemma 2.24. Let I C J C S such that J~ I C I*+. Then
NW(WJ) n Nw(W]) C NW(WJ\]).

Proof. Let w € Nw(Wy) N Nyw(Wr) and s € J~I. Then w-®; = &; and
w- Py = &; by ([[H), so that we have w - as € ®; and w - a5 € ;. Now by the
hypothesis and (), we have supp(w - ) C J I and so w - a; € &5 ;. Hence
the claim follows from ([IH). O
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3. MAIN RESULTS

3.1. Direct indecomposability. In this subsection, we give the main result of
this paper that all infinite irreducible Coxeter groups are in fact directly indecom-
posable, even if it has infinite rank (TheoremB3)). As is mentioned in Introduction,
this result was already shown in [9] for the case of finite rank, in which the finiteness
of the ranks is essential and so cannot be removed immediately.

Our proof is based on the following complete description (proved in later sec-
tions) of the centralizers of normal subgroups, which are generated by involutions,
in irreducible Coxeter groups (possibly of infinite rank):

Theorem 3.1. (c¢f. Definition [Z8 for notations.) Let (W,S) be an irreducible
Cozeter system of an arbitrary rank, and H <W a normal subgroup generated by
involutions. Then:

() If H C Z(W), then ZW(H) —W.

(ii) If W, S) = (W(B,),S(Bp)), 2 <n < oo, 7 € Aut(I'(By)), H ¢ Z(W) and
H C 7(Gp,), then Zw(H) = 7(Gp,). (¢f. LemmaZIA for definition of G, .)
(iii) If (W, S) = W(D,,),S(Dr)), 3<n < oo, 7 € Awt(I'(Dy)), H ¢ Z(W) and
H c7(Gp,), then Zw(H) =7(Gp,,). (¢f. LemmaZIA for definition of Gp,, .)
(iv) Otherwise, Zyw (H) = Z(W).

This theorem yields the following corollary. A group G is said to be a central
product of two subgroups Hy, Hs if G = H1H2 and Hs C Zg(Hy) (or equivalently
H, C Zg(Hs)). Note that H; N Hy C Z(G) in this case.

Corollary 3.2. Let (W, S) be an irreducible Cozxeter system of an arbitrary rank,
and suppose that W s a central product of two subgroups Gi1,Go generated by
involutions. Then either G1 C Z(W) or Go C Z(W).

Proof. By definition, we have Go C Zyw (G1), W = G1Zw (G1) and G <W. Now if
G satisfies the condition of cases (ii) or (iii) of Theorem Bl then Gy and Zw (G1)
are contained in the same proper subgroup of W. This is impossible, so that we
have G; C Z(W) (case (1)) or G2 C Zw (G1) = Z(W) (case (iv)). O

Now our main result follows immediately:

Theorem 3.3. The only nontrivial direct product decompositions of an irreducible
Cozeter group W (of an arbitrary rank) are the ones given in Theorem [Z17 In
particular, W is directly indecomposable if and only if W % W(T) for T = Bagt1,
I,(4k+2) (k > 1), E7, Hs.

Proof. Assume that W = G1 x G4 for nontrivial subgroups G1,Gs C W. Then
both G; and G4 are generated by involutions, since W is so. Thus by Corollary
B2 we have either G; = Z(W) or Gy = Z(W) (since G1,G2 # 1 and |Z(W)| < 2).
Hence Z(W) # 1 and so the claim follows from Theorem EZT17 O

3.2. The Isomorphism Problem. By using these results, we give some results
on the Isomorphism Problem of general Coxeter groups. Let (W, S) be a Coxeter
system with canonical direct product decomposition W = [ W, into irreducible
components W,,. Then we put

Qin = {w € Q| W] <0}, Yine = AN Qin, Wein = [[ Woo, Wine = [ We
WEin WEint

(Note that W = Wg, X Wins.) Moreover, we write Q7 = {w € Q | W, ~ W(7)}

for any type 7. Now our result (proved later) is as follows:

Theorem 3.4. (See notations above.) Let (W, S), (W', S") be two Coxeter systems

with the decompositions W = [[,cqWo, W' = [1,cq W, into irreducible com-

ponents. Let m, : W — W, «/, : W' — W/, denote the projections.
14
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(i) W =~ W' if and only if the following two conditions are satisfied:
(I) There is a bijection ¢ : Qins — Q¢ such that W, ~ W;(w) for all w € Qiyt.
(IT) Each of the following subsets of Q has the same cardinality as the corre-
sponding subset of V':

Qa, U (U 982 0) UQE U, U (| Qarsn), 28, UQa,,
k>1 k>1
DBy UDoy s Qo) U4y Qnaret2) U Qi) (B> 2),
Qr forT=A, (4<n< ), B, (n< o0 even), Dy (4 <n < oo even),
Eg, E7, Es, Fy, Hs, Hy, I2(4k) (2 < k < 0).

(ii) Suppose that W ~ W' and let f € Isom(W,W'). Then:

(X) f(Wan) = WL, (and so the map gan defined by gan = flwy, i an isomor-
phism Wg, — WL ).

(ITI) There is a bijection @ : Qing — QL such that for all w € Qing, the map
Jw = ﬂfp(w) o flw.,, is an isomorphism W, — W;(w).

(III) Moreover, there is a map gz € Hom(Wine, Z(W')) such that

f(w _ gw(w)gZ(w) ifw S Qinf7 we W,
gfin (W) if w € Whn.

Note that this is an analogue of the Krull-Remak-Schmidt Theorem on direct
product decompositions of groups, and follows from that (and Theorem B3) if W
has a composition series. (More precisely, the key property in the proof of the
K-R-S Theorem, which follows from the existence of composition series, is that any
surjective normal endomorphism of an indecomposable factor is either nilpotent or
isomorphic. However, it is not clear whether or not an irreducible Coxeter group
has this property.) Our result here is also a generalization of a result of [9].

In order to prove this theorem, we introduce the following “modified version” of
irreducible components. Here a group G is said to be admissible if either G is a
nontrivial directly indecomposable irreducible Coxeter group (cf. Theorem B3) or
G is isomorphic to one of W(E7)™, W (Hs)™".

Remark 3.5. Let W =[] .o W, be the usual decomposition of a Coxeter group
W into irreducible components. Then, by subdividing every directly decomposable
W, into the direct factors (cf. Theorem[Z3), we can obtain another decomposition
W = []xen G into admissible subgroups Gx. Moreover, since any infinite W, is
directly indecomposable, we can take the index set A so that Qins C A and G, = W,
for all w € Q.

From now, we consider a family G of groups which includes all the components
of given direct product decompositions. In our argument below, this family G is
assumed to satisfy the following conditions:

IfG= H Gy, GA,G' € G (A€ A) and f € Hom(G,G') is surjective,
(17) AEA
then f maps a G onto G’ (so that it maps all other G, into Z(G")).

(18) If G € G, then Z(G) =1 or Z(QG) is a cyclic group of prime order.

(Actually, the condition [I¥) can be slightly weakened to the form that Z(G) is
either trivial or a finite elementary abelian p-group with p prime. But we omit the
detail here, since we do not need such a generalization in this paper.)

Remark 3.6. (i) If G satisfies [I7), then all groups G € G are directly indecompos-
able. In fact, if G admits a nontrivial decomposition G = G1 X G with projections
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m G — G (i =1,2), then the map Gx G — G, (w,u) — 71 (w)me(u) is surjective
but does not satisfy the conclusion of {I7).

(ii) If G satisfies [I4) and {I3), then any G € G has the three properties (1)—(III)
in Lemma 2 whenever Z(G) # G. This follows immediately from (i).

Lemma 3.7. Any family G of admissible groups satisfies the two conditions.

Proof. The condition ([[J) follows from Lemma EZI8 For (@), we may assume
G' # W(Ay) (so that Z(G') # G’), since otherwise the conclusion is obvious.
Then there is an index A € A such that f(G)) ¢ Z(G'). Put G; = G and
Gy = Hue/\\{/\} G,. Then the hypothesis of () implies that G’ is a central
product (cf. Section Bl of f(G:) and f(Gz), so that f(Gi) N f(G2) C Z(G).
Thus the conclusion follows from Lemma if @ ~ W(FE7)" or W(Hs)" (in
fact, the central product is a direct product since Z(G’) = 1, while G’ is directly
indecomposable).

On the other hand, suppose that G’ is a directly indecomposable irreducible
Coxeter group. Since both G; and G2 are generated by involutions (cf. Lemma
1Y), f(Gy) and f(G2) also have this property. Thus we have f(G2) C Z(G')
by Corollary B2 (since f(G1) ¢ Z(G")). Now if Z(G') ¢ f(G1) (so that f(G1)N
Z(G') = 1 since |Z(G")| < 2), then the central product becomes a (nontrivial)
direct product, but this is impossible. This implies that f(G2) C Z(G') C f(G1)
and so f(G1) = G’'. Hence the claim holds. O

Remark 3.8. By a similar argument, it is deduced that any family G, consisting of
cyclic groups of prime order and directly indecomposable groups with trivial center,

also satisfies the conditions [{I7) and [IJ).

We prepare some more notations. For a decomposition G = [],., Ga of G, put

Ga = [] G (for N CA), Az ={\| Z(Gr) = Ga}, Anz = AN Ag,
(19) AEN

Ay ={N|Z(GN)| =p},Azp=AzNAp, Az, = Az N A, (p prime or 1).
Note that the proof of the following theorem is essentially the same as the proof of
Theorem 2.1 of [9], but slightly more delicate by lack of the assumption on finiteness
of the index sets (not only by generality of the context). Note also that this is also
an analogue of the Krull-Remak-Schmidt Theorem.

Theorem 3.9. (See notations above.) Let G = [ cp Gr, G' = [y G be
decompositions of two groups G, G' into nontrivial subgroups. Let ) : G — G and
7y, G' — G, be the projections. Suppose that G = {Gx | X € A}U{G), | N € A’}
satisfies the conditions {I7) and (I8). Let f € Isom(G,G’). Then:

(i) There is a bijection ¢ : A — A’ such that Gy ~ Gfp(/\) for all A € A. Moreover,

for any \ € Az, the map gx = ﬁ;()\) o fla, is an isomorphism G — GZP(/\).
(ii) Moreover, there is a map gz € Hom(G, Z(G')) such that

flw) = a(w)gz(w) if A€ Az, weQG),
gz(w) if w e Gy,
and that ﬂ';()\) 0gz(Gy) =1 forall A € A_z.
(i) If Upsy Ap C A" C A, then Upa1 A} C ©(A) and f(Gy:) = G;(M).
Proof. Note that |J,,; Ap = {A € A| Z(G\) # 1}. Then the claim (iii) is deduced
from the other claims (since now Z(G) C Gy and Z(G') C G;(M)).
From now, we prove the claims (i) and (ii). First, we put (symmetrically)

fv =7k o f € Hom(G,GA) (N € N), fi =m0 f~' € Hom(G',Gy) (A € M),
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and define (symmetrically)
{)\IEA |f)\/(G)\)¢ ( )}CA ZfOI‘/\EAﬂz,
A/\r:{)\EA|fA( N g Z(Gy)} C Az for N e A,

Note that A} # 0 since f(Gy) ¢ Z(G') (and Ay # 0 by symmetry). Moreover,
since fy : G — G, is surjective, the condition ([[1) implies that

ifAIEA&, then f,\/(G)\): // and f)\/( )CZ( )fOI‘ alluGA\{)\}

By symmetry, a similar property holds for A € Ay, (with respect to the map f3).
We prove the following claims:
Claim 1: If A\, u € A-z and X # p, then A\ NAj, = 0.
Claim 2: If X € A}, then A € Ay.. (Thus |[A}| =1 for all A € Az, by Claim
1 and symmetry. Moreover, by symmetry, the map ¢ : Aoz — A’ , defined by
= {p()\)} is a bijection with inverse map satisfying Ay = {¢~1(\')}.)
Claim 3: The map gx (A € A-z) in (i) is an isomorphism G\ — G|,
Claim 4: f(Z(Gx_,,)) = (G;\, ) for all primes p.

Claim 5: For each prime p, Az, and A 7 p have the same cardinality.

Proof of Claim 1: Assume contrary that A€ Ay N Aj,. Then the relation
X € A, means that fx (Gx) ¢ Z(G'A,) while the relation \' € Aj, implies (by the
above property) that fx (G\) C Z(GY) (since A # ). This is a contradiction.

Proof of Claim 2: Since G, # Z(G,), we can take an element w € G}, \

Z(G%)). Put u,L fu(w) € G, for p € A, so that we have w = f([],c wu). Now
fa(uy,) € Z(GYy,)) for all p e A ~ {A}, while w = 7, (w) & Z(G),). Thus we have
fa(uy) & Z(G'A,) and so uy € Z(G») (since fa(Gx) = GY,). Hence A € Ay.

Proof of Claim 3: Note that g\ : Gy — G;(A) is surjective (as above). Now
the following equivalence holds for all w € Gx:

Foon(w) € Z(Gln) <= flw) € Z(G') <= w € Z(Q) <= w € Z(G))

(we use the fact Ay = {@(N\)} for the first equivalence). This implies that ker gy is

contained in the simple group Z(G)) (cf. [[{¥)), so that ker gy =1 or Z(G»). Thus

gx is injective (and so an isomorphism) if Z(G\) = 1. Moreover, if Z(G,,)) = 1,

then f/\|GL,<A) is an isomorphism Gw(A) — G by symmetry, so that we have
Z(Gy) = 1. Thus g, is injective (as above) also in this case.

On the other hand, suppose Z ( ) = 1. Then by the above equivalence, there
is an element w € Z(G)) such that g,\( ) # 1 (since gy is surjective). Thus we
have ker gy # Z(G») and so ker gy = 1. Hence g is an isomorphism.

Proof of Claim 4: Note that Z(G) = [],; Z(Ga,) and each Z(G,,) is an
elementary abelian p-group, by [[¥). Z(G’) also admits a similar decomposition.
Thus the isomorphism f|z ) : Z(G) — Z(G') maps each Z(Gx,) onto Z( j\;)

Moreover, for any A € A-z,, the composite homomorphism G ERYE/. G\,
Z,p

(where the latter map is the projection) maps Z(G,) to 1, by Remark B (ii) (noﬁe
that Z(G;vz ) = Gﬁ\, ) Thus we have f(Z(G))) C GA, for any A € A—z, and

S0 f(Z(GA;;p)) C Z(Gj\, ) Now this claim holds by symmetry

Proof of Claim 5: Note that Z(Ga,) = Ga,, x Z(Gr_,,) and Z(G'y,)
admits a similar decomposition. Moreover, we have f(Z(Ga,)) = Z(G',) and
f(Z(Gr_y,)) = Z( ;\Lz,p) by Claim 4. Thus the complementary factors pGAZ’p,
Gj\, ) which are elementary abelian p-groups with basis having the same cardi-

nahty as Az p, A'Z’p respectively, are also isomorphic. Now this claim follows from
uniqueness of the dimension of a vector space.
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Conclusion. Since Az, A, are disjoint unions of Az,, A%, respectively (cf.
(X)), Claim 5 implies that this ¢ extends (not uniquely) to a bijection ¢ : A — A’
satisfying (i) (note that Az1 = A%, = () by the hypothesis). Moreover, define a
map gz : G — Z(G') componentwise by

g2(w) = [vea ooy fr(w) %f AcAz,we Gy,
fw) ifwe Ga,.

Note that Gp, C Z(G), while in the above definition, we have fy (w) € Z(G),)
by the fact A} = {©(\)}. Since Z(G’) is abelian, these facts imply that gz is a
well-defined group homomorphism. Now the claim (ii) follows from definition. O

Proof of Theorem[37]. Let W = [[ ca Gx, W' = [[yen G\ be the decomposi-
tions into admissible groups given in Remark B3l

(i) Each of the sets in the condition (II), except Qg, and Qg, in the last row, has
the same cardinality as the set {\ € A | Gy =~ W(7T")} where 7' = Ay, As, Dajy1,
Ag, Ir(2k + 1) and 7, respectively (note that no two admissible finite groups of
distinct types are isomorphic; cf. Lemma [ZT8). Moreover, each of Qp, and Q g, has
the same cardinality as {\ € A | Gy ~ W(T')"} for T/ = E7 and Hj, respectively.
Similar relations also hold for W’. Thus the two conditions (I), (II) are satisfied
if and only if there is a bijection ¥ : A — A’ such that G ~ Gip(/\) for all A € A.
Hence the claim follows from Theorem (i) (which can be applied indeed to the
case, by Lemma B1).

(ii) Take ¢ : A — A/, g € Isom(Gk,G;(/\)) (A € A_z) and g7, € Hom(W, Z(W"))
as in the conclusion of Theorem B0 By Remark BX g, € Isom(W,,, W; (w)) for all
w € Qing, so that the claim (IT) holds. The claim (I) follows from Theorem B (iii)
(by putting A% = A\ Qiut). Moreover, the claim (III) also follows from Theorem
B3 by putting gz = g%|w,,,. Hence the proof is concluded. O

3.3. Automorphism groups. Owing to Theorems B4 and B9 we can examine
the automorphism groups of W = [, W and G =[], G respectively (The-
orem BI0), under the hypothesis in Section In this subsection, the complete
direct product of groups is denoted by a symbol ﬁ

As is remarked in Section 1 if G', G” are groups and G’ = G| x G%, then the
set Hom(G%, G") is embedded naturally into Hom(G’, G"). In this manner, each
Aut(Gy), Aut(W,) is embedded into Aut(G), Aut(W) respectively. The group
Aut(Why) is also embedded into Aut(W).

On the other hand, the symmetric group on each isomorphism class of compo-
nents of G or W is also embedded into the automorphism group, as follows. For the
case of G, we partition the index set Az into subsets A¢ (€ € E) so that A, N € Az
are in the same subset if and only if Gy ~ G)/. Moreover, for £ € =, we choose
an “identity map” id, » € Isom(Gx,G,,) for each A\, u € A¢ so that idy » = idg,,
idy,, =id, "' and id, , oid, y = id,  for all A\, u, v € A¢. (This can be done by
taking a maximal tree in the category of groups G (A € A¢) and group isomor-
phisms.) Then each element 7 of the symmetric group Sym(A¢) on A¢ induces an
automorphism of the factor G, of G; namely,

T(w) = id'r()\),A(w) € GT(A) fOI' )\ c Ag and w e G)\.

In this manner, Sym(A¢) is embedded into Aut(Gj,), and so also into Aut(G).
Similarly, we write Q = | |, o €, choose “identity maps” id, ., € Isom(W,,, W)
and then embed every symmetric group Sym(€,) into Aut(W). Moreover, put

Tan ={v e ||W,| <o for we Q,} and Tinsr =T \ Thn.
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For a group G’, recall (Section EZTJ) the structure of the monoid Hom(G’, Z(G")),
the action of Aut(G’) on it and the embedding f — f° into the monoid End(G")
compatible with the action of Aut(G’). By this map, the group Hom(G', Z(G'))*
of invertible elements of Hom(G’, Z(G")) is embedded into Aut(G’).

Now for the group G, let

Hom(G, Z(G))o = {f € Hom(G, Z(G)) |f(Ga,) = 1,
f(G,\) C Z(G)\) for all A € Aﬂz}

(cf. (@) for notations). Since we assumed that each G\ (A € A_z) satisfies the
three conditions in Lemma Tl (cf. Remark B8 (ii)), we have f(Z(G)) = 1forall f €
Hom(G, Z(G)),. Thus by Lemma 24 (i), Hom(G, Z(G)), is an abelian subgroup of
Hom(G, Z(G))* with multiplication (f*g)(w) = f(w)g(w) (f, g € Hom(G, Z(QG)),,
w € Q).

On the other hand, since Z(Wiyt) = 1, Lemma B4 (ii) implies that the set
Hom(Wing, Z(W)) forms an abelian normal subgroup of Hom(W, Z(W))* with mul-
tiplication (f * g)(w) = f(w)g(w) (f,g € Hom(Wine, Z(W)), w € Wint). Since now
Z(W) is an elementary abelian 2-group, Hom(Win¢, Z(W)) is also an elementary
abelian 2-group.

Now our result is stated as follows:

Theorem 3.10. (See notations above.)
(i) Put Hy = Hom(G, Z(G))*", Hy = [Iyes_, Aut(Gr), Hs = [[ec=Sym(A¢) and
Hy = Hom(G, Z(@))". Then

o

Aut(G) = (HlHQ) X Hg, H, « Aut(G), Hy <« 1121137 H N Hy=H,.

(ii) Put H; = Hom(Win, Z(W))?, Hj = Aut(Wsy), H; =[] Aut(W,,) and
H = ﬁveTi‘]fSym(Qv). Then

Aut(W) = H! x (H} x Hy) x H},, HyH}, = H} x H},, H}H} = H} x H).

WEnt

(iii) The subgroup H = (HweQAut(Ww)) (HUeTSym(Qv)) has finite index in
Aut(W) if and only if, either Z(W) = 1 or the odd Coxeter graph (cf. Definition
Z10) 1°% of W consists of only finitely many connected components. (Hence the
index is finite whenever W has finite rank.)

From now, we prove this theorem. First, we prove (i) and (ii). Note that
HLH, = H) x Hy and HyH) = HS x Hj by definition. Moreover, by definition,

Hy = {f € Aut(G) | f(w) = w (w € Ga,), f(Gr) =G (A€ A-z)},
Hé = {f S AUt(W) | f(w) =w (w S Wﬁn)7 f(Ww) = Ww (W S Qinf)}-
Claim 1. (i) Auwt(G) = HyHoHs. (ii) Aut(W) = H/ H,H,H),.

(20)

Proof. (i) Let f € Aut(G), and take ¢, g, gz as in Theorem Note that
©(Ag) = A¢ for all £ € E. Now define f1 € Hom(G, Z(G)) by

fl(w) _ QZOQ;}l(A)(w)*l fOF)\GAﬂz, U)GG)\,
wf(w)™ for w € Gy,

(this is well defined since Go, C Z(G)). Then by definition and Theorem B, we
have f = flb o fa 0 f3, where

J2 = (gp—100 0idg—1y 2 )rers, € Ha, f3= (| )eez € Hs.

Moreover, we have f,” = f o fitofy! € Aut(G) and so f; € Hom(G, Z(G))* by
Lemma 22 (ii). Hence f1b € Hy and so f € HiH>Hs.
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(ii) Let f € Aut(W), and take ¢, gfin, gx, gz as in Theorem B4 (ii). Note that
©(Qy,) =, for all v € Y. Now define f; € Hom(Wipne, Z(W)) by

filw) =gz og;ll(w)(w)*1 for w € Qiue, w e W,,.
Then we have (by definition and Theorem B4 (ii))
f= flb © gfin © (ggp*l(w) 0 id@*l(w),w)WGQinf ° (90|Qu )UGTinf € H{HéHéHz/l

Hence the proof is concluded.

Claim 2. (i) If f* € Hy, \,u € A_z and f°(G\) C Gy, then A = p and f(G)) C
Z(G)).
(ii) If f* € H}, w,w’ € Qins and f°(W,,) C W, then w = o’ and f(W,,) = 1.

Proof. (i) By the choice of A\, we can take w € G\ \ Z(G). Now we have
7a(f(w)) € Z(Gy) (where 7y is the projection G — Gy) and so my(f’(w)) =
wry(f(w))~! # 1. Since f’(w) € G,,, this implies that 4 = X\. Now the latter part
follows from definition of the map f”.

(ii) By a similar argument to (i), we have w = w’ and f(W,,) C Z(W,,). Hence the
claim holds since Z(W,,) = 1. O

Claim 3. (i) (H1H,) N Hs = 1. (ii) (H|H,H}) N Hj = 1.

Proof. (i) Let f1 € Hy, fo € Hs such that f; o fo € Hs. By [20) and definition of
Hj3, both f;l and f1 o fo map each component G (A € A_z) onto a component, so
that f; also does so. By Claim 2 (i), f1 maps each G (A € A_z) onto itself, while
f2 also does so (cf. @)). Thus fi o fo € Hj also has this property. By definition
of Hjs, this occurs only if fi o fo =idg. Hence the claim holds.

(ii) The proof is similar to (i); if f; € H, (i = 1,2,3) and fy = f10 foo f3 € Hj,
then fi = fio f3 ' o fy ' must map each W, (w € Qinf) onto some component,
which is W, by Claim 2 (ii). This implies that f; maps each W,, (w € Qin¢) onto
itself, so that f; = idw by definition of Hj. Hence the claim holds. O

Proof. For (i), it is enough to show that f3o fs o fgl € Hs for all fo € Hy and
f3 € Hs. By definition, f3 is identity on G, and maps each G (A € A_z) onto a
component. Now by @0), f3 o fao fi 1 also satisfies the condition in @0, so that
it belongs to Hy. Hence the claim holds. The proof of (ii) is similar. O

Claim 5. (i) H; < Aut(G). (ii) H} < Aut(W).

Proof. (i) Note that Aut(G) acts on the monoid Hom(G, Z(G)). Thus its subgroup
Hom(G, Z(G))™ of the invertible elements is invariant under the action. Now the
claim follows from Lemma (iii).

(ii) By Lemma[Z2 (iii), it is enough to show that the subgroup Hom(Wiye, Z(W)) of
Hom (W, Z(W)) is invariant under the action of Aut(W). Moreover, by Claim 1, it
is enough to show that ho foh™ € Hom(Wipt, Z(W)) for all f € Hom(Wipt, Z(W))
and h € HYHLH). Now we have h(Whgy) = Wy, by definition of H), H. and Hj,
so that ho foh ™ (Wgy,) = h(f(Waa)) = h(1) = 1. Hence the claim holds. O

Claim 6. (i) H; N Hy = Hy. (ii) H] N(H5H3) =1

Proof. (i) Let f> € H; N Hy. Then by @0), we have f’(w) = w (or equivalently

flw) = 1) for all w € G, and fb(GA) = Gy for all A € A_z. Thus we have

f € Hom(G, Z(G)), by Claim 2 (i), so that f*> € H,. Conversely, Hy C H; by

definition, while Hy C Hs by [£0) and definition of Hy. Hence the claim holds.

(ii) Let f° € H| N (H4YH,). Then for any w € Qinp, we have f°(W,) = W, by
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definition of H} and Hj. Thus we have f(WW,) = 1 by Claim 2 (ii). Hence f =1
and f° = idyy . O

Now the claims (i) and (ii) of Theorem B0 hold. Namely:
(i) We have Hy N Hy = Hy (Claim 6), H; < Aut(G) (Claim 5), Ho < HoH3 (Claim
4) and so Aut(G) = (HlHQ)Hg (Clalm 1) = (HlHQ) X Hg (Clalm 3)
(ii) We have HYH, = H) x H}, H,H) = H), x H) (as the above remark), H{H) =
H} x Hj (Claims 3, 4) and so Aut(W) = H{(H4 x H5)H} (Claim 1) = (H{(H} x
H})) x H} (Claims 3, 5) = H{ x (H} x Hj) x Hj (Claims 5, 6).

Proof of Theorem [BIQ (iii). If Z(W) = 1, then all irreducible components of W
are directly indecomposable (cf. Theorem B3), so that the decomposition W =
[L,co W itself satisfies the conditions () and ([I¥) in Section Thus we can
apply the result (i) to this decomposition. Now H; = 1 since Z(W) = 1. Moreover,
Q= Q.7 in this case, so that we have H = HyHs = Aut(W).

From now, we assume that Z(W) # 1. For f € Aut(W), let sep(f) be the set of
all w € Q such that f(W,,) ¢ W, for all o' € Q. Since any element of H maps each
component W, onto a component, the cardinality of the set sep(f) is invariant in
each coset of Aut(W)/H. Moreover, by definition, we have

H= <Hw€(zﬁnAu‘E(Ww)> <HU€TﬁnSym(Qv)> x HYH) C HYy x (H,H}).

Case 1. 1°% consists of only finitely many connected components: This
implies that || < oo and |[Hom(Wipg, {£1})| < 0o (cf. Lemma EZT)). Since Z(W)
is now a finite elementary abelian 2-group, (ii) implies that H,H}H) has index
|H1| = [Hom(Wint, Z(W))| < 0o in Aut(W). Moreover, since now |Wgy| < 00, the
index of H in HYH}H) is < |H}| < co. Thus H has finite index also in Aut(W).

Case 2. 1 consists of infinitely many connected components: Now
we have to show that H has infinite index in Aut(W).

Subcase 2-1. The odd Coxeter graph of some W, consists of infinitely
many connected components: Note that w € (¢ in this case. Now by Lemma
211 we have [Hom(W,,{£1})| = oo and so [Hom(Wins, Z(W))| = oo (since we
assumed that Z(W) # 1). Thus by (ii), the subgroup HH5H) (D H) has index
|H1| = o0, so that H also has infinite index in Aut(W).

Subcase 2-2. The odd Coxeter graph of every W, consists of only
finitely many connected components: Then we have |2| = co by the hypothesis
of Case 2. Since we assumed that Z(W) # 1, we can take an infinite sequence
wo, w1, wa, ... of distinct elements of Q such that Z(W,,) # 1. Let u denote the
unique element of Z(W,,,) ~ {1}. Now for k > 1, we define f, € Hom(W, Z(W))
componentwise by

fr(w) =

u? @) if w e {wr,...,wp} and w € W,
1 ifwe QN A{w,...,wr} and w € W,.

Then we have fi o fr =1 and so fj * fr, = 1 since Z(W) is an elementary abelian
2-group. This implies that fr € Hom(W, Z(W))* and so fi” € Aut(W), while
sep(fkb) ={w1,...,wr} by definition. Thus by the above remark, all fi belong to
distinct cosets in Aut(W)/H and so H has infinite index in Aut(W). Hence the

proof is concluded. O
Example 3.11. Let m = (mq1,ma,...) be an infinite sequence of nonnegative in-
tegers. Here we examine Aut(W,,) for the group Wy, = [[,,~,(Sym,, )™ by using
our result, where Sym, = Sym({1,2,...,n}) is the symmetric group of degree n.

Note that Sym; = 1.
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Since Sym,, (n > 2) is the Coxeter group W (A, 1), which is directly indecompos-
able (cf. Theorem[Z3), we can apply Theorem[ZI1 (i) to this decomposition of Wy, .
In this case, we have Z(Sym,,) =1 unless Z(Sym,,) = Sym,, (namely n=1,2), so
that Hom(W,,,, Z(Wp,))o = 1. Thus we have Aut(W,,,) = Hy x Hy x Hs.

Note that Z(W,,) = (Symy)™2 ~ {£1}™2, while |Hom(Sym,,, {£1})| = 2 for all
n > 2 by LemmalZIA Thus Lemmas[Z3 and[ZF) (ii) imply that

b
H, = Hom(H (Symn)m",Z(Wm)) x Hom(Sym3y'?, Z(I/Vm))Xb
n>3

pr— b
- (anz;HOm((Symn)mn’Z(Wm))) X Aut((Sme)mz)

~ (ﬁn>3{i1}mm> 3t GLon, (F).

Secondly, recall the well-known fact that Aut(Sym,) = Inn(Sym,,) (the group of
inner automorphisms) if n # 6 and |Aut(Symg)/Inn(Symg)| = 2. This implies that
Aut(Sym,) = 1, |[Aut(Symg)| = 2|Symg| and Aut(Sym,,) ~ Sym,, if n # 2,6. Thus
we have

Hy ~ ansAut(Symn)m” o~ <H3Sn#6Symnm"> x Aut(Symg)™e.

Moreover, by definition, we have Hs ~ ﬁn>3Symmn.
As a special case, if all but finitely many terms in m are 0, then (by putting
|m| =", m, < o00) we have

mo—1 ma

|H1| _ 2m2(\m|—m1—m2) H (2m2 o 21) _ 2m2(\m|7m1—m2)+(7’;2) ]:[(21 B 1)7

1=0
|Ha| =27 ] (n))™, |Hs| =[] mn!

n>3 n>3

i=1

Hence we have
|Aut(W,)| = [Hi| - [Ha| - [Hs|

ma

= gma(lml=m=ma)+ (52 tme TT27 — 1) TT ((a)™ma)
i=1 n>3
mao
_ (2’"2<ml—ml—mz—1>+(”;2>+m6 -0 mn!) Wi,
i=1 n>3

4. CENTRALIZERS OF NORMAL SUBGROUPS GENERATED BY INVOLUTIONS

4.1. Proof of Theorem Bl In this section, we prove Theorem Bl From now,
(W, S) always denotes a Coxeter system. In the proof, we use the notion of core
subgroups (cf. Section EZIl). For a subgroup G < W, let X be the set of all
elements in G of the form wy(I) (I C S) such that 1 # wo(I) € Z(Wy). Then we
have the following relation (proved below):

Proposition 4.1. Let H<1W be a normal subgroup generated by involutions. Then
H is the smallest normal subgroup of W containing Xpg, and

Zw(H)= ()  Corew (Nw(W0)).
wo(I)eXH
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On the other hand, the subgroups Coreyw (Nw (Wr)) are determined completely
(for irreducible (W, S)) by the following theorem, which we prove in later subsec-
tions. Here we use the notation (W (Ds3), S(D3)) instead of (W (As), S(As)).

Theorem 4.2. (c¢f. Definitions[Z3 and[Z8.) Let (W, S) be an irreducible Coxeter
system of an arbitrary rank, and I nonempty proper subset of S. Then:

(1) If (W,S) = (W(B,),S(Bn)), 1 <k <n<oo, 7€ Aut(I'(B,)) and I =
7(S(Bk)), then Corew (Nw (Wr)) = 7(Gp,).

(ii) If (W, S) = (W(D,,),S(D ))2<k<n<oo 7 € Aut(I'(Dy,)) and I =
7(S(Dy)), then Corew (Nw (Wr)) = 7(Gp,,).

(iii) Otherwise, Corew (Nw (Wr)) = Z(W).

(cf. LemmalZIA3 for definition of Gp, and Gp, .)

Note that, on the other hand, Corew (Nw (W) = Ny (W) =W if [ =0 or S.
Theorem Bl will be proved by combining Proposition Bl and Theorem
In the proof of Proposition Bl we use the following two results:

Theorem 4.3 ([I0], Theorem A). Let w be an involution in W. Then w is conju-
gate in W to some element wo(I) (I C S) such that wo(I) € Z(Wr).

Lemma 4.4. Let W be a finite parabolic subgroup of W such that wo(I) € Z(W7).

Proof. First, assume u € Zy (wo(I)). Then u™two(I)u = wo(I) € Z(Wr) and so
wo(I) - (u - as) = vwo(I) - as = —u - ay for all s € I. This implies that u - as €
for all s € I, so that u € Ny (Wr) by ([G).

Conversely, assume v € Ny (Wr). Put v/ = uwo(I) “lew. Then We have
u' -y = —ag for all s € I (since wo(I) maps u=!-as € @7 (cf. @) to —u=t - ay).
Hence we have u’ = wo(I) and so u € Zw (wo(I)). O

Proof of Proposition {1} By Theorem B3, every involution in H is conjugate to
some element of X (since H << W). This implies that any normal subgroup of W
containing X also contains all the generators of H. Thus the first claim follows.
For the second one, apply Lemmas BX and B2 O

Proof of Theorem [Zl. The claim (i) is obvious. From now, we assume H ¢ Z(W).
Note that Z(W) C Zw (H). Note also that, by Proposition Bl

(21) Zw (H) C Corew (Nw (Wr)) for all wo(I) € Xpg.

Case 1. (W,S) = (W(B,),S(By)), n > 2 or (W(D,,),S(Dy)), n > 3: Let
T = B, L =1 for the former case, 7 = D, L = 2 for the latter case.

Subcase 1-1. 7 = B, n # 2 or 7 = D, n # 4: Note that in this case, any
automorphism of I'(7,,) preserves the sets S(7}), elements wo(S(7x)) (k > L) and
so the subgroup G, .

Subsubcase 1-1-1. H C Gr,: This is a case (ii) or (iii) (for 7 identity), and
so we have to show Zy (H) = Gz,. The inclusion D holds since Gz, is abelian.
Conversely, since H ¢ Z(W), Xy contains an element other than wg(S), so that
we have Zw (H) C G, by @) and Theorem EEA

Subsubcase 1-1-2. H ¢ Gr,: By the above remark, this is actually not a case
(ii) or (iii), so that we have to show Zw (H) C Z(W). Now Xy contains an element
wo(I) such that I # S(7) for any L < k < n, since otherwise H C Gz, by Lemma
For this I, we have Corey (Nw (W7)) = Z(W) by Theorem B2, so that the
claim follows from (EZII).

Subcase 1-2. 7 = B, n = 2: Note that Xy C {s1, s2,wo(S5)} in this case.
Moreover, X ¢ {wo(S)} since H ¢ Z(W).

Subsubcase 1-2-1. s; € Xy and sy € Xpg: In this case, we have Xy C
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{s1,wo(S)} and so H C Gp, by Lemma This is a case (ii) (for 7 identity).
Now we have Gp, C Zw(H) since Gp, is abelian, while Zyw (H) C Gp, by EI)
and Theorem B2 (applying to {s1} C S). Thus the claim holds.

Subsubcase 1-2-2. s; € Xy and sy € Xp: By symmetry, this is also a case
(ii) (for the unique 7 # idg) and the claim holds similarly.

Subsubcase 1-2-3. s; € Xz and sy € Xpg: Note that H = W. This is not a
case (ii) or (iii), and actually Zw (H) = Z(W).

Subcase 1-3. T = D, n = 4: Note that (by definition)

XH C {31) S2, 83, S4, S15254, S1S52, S254, S4S51, 'LUQ(S)}

Subsubcase 1-3-1. Xy contains one of the first five elements: Now we
have H ¢ 7(Gp,) for any 7, so that this is not a case (iii) and we have to show
Zw(H) C Z(W). This claim follows from [ I) (applying to the element of Xy
given in the hypothesis here) and Theorem

Subsubcase 1-3-2. Xy contains at least two of the elements s;s2, 254,
s481: Now we have H ¢ 7(Gp,) for any 7, so that this is not a case (iii) and we
have to show Zw (H) C Z(W). Let Xy contain two such elements s;s;, s;sk, and
put I = {s;,s;}, J ={sj,sk}. Then we have

Coreyw (Nw (Wr)) N Coreyw (Nw (W) C Corew (Nw (Wys,}))

by @), ([[3) and @). Thus we have Zy (H) C Coreyw (Nw (Wy,,y)) = Z(W) by )
and Theorem L2

Subsubcase 1-3-3. Xy contains none of the first five elements and at
most one of s1s2, $284, s451: Note that Xy ¢ {wo(S)} since H ¢ Z(W). Thus
we have s;s; € Xy C {s;55,wo(S)} for one of (3,5) = (1,2), (2,4), (4,1). Lemma
implies that this is a case (iii) (namely H C 7(Gp,)), by taking 7 € Aut(I")
mapping s1, Sz to s;, s; respectively. Now 7(Gp,) C Zw(H) since 7(Gp,) is
abelian. Conversely, we have Corey (Nw (W, s,3)) = 7(Gp,) by Theorem B2, so
that Zw (H) C 7(Gp,) by ). Thus the claim holds.

Case 2. (W,S) # (W(B,),S(Bn)) (n >2), (W(D,),S(Dy)) (n > 3): This is
not a case (ii) or (iii), so that we have to show Zw (H) C Z(W). Since H ¢ Z(W),
Xp contains an element other than wg(S), so that we have Zy (H) C Z(W) by
&1 and Theorem EE2A Hence the proof is concluded. ]

4.2. Some lemmas. In the rest of this paper, we prove Theorem In this
subsection, we prepare some lemmas used in our proof. From now, we abbreviate
the notation Corew (Nw (Wr)) to Cf.

First, by combining Lemma 224 @) and @), we have:

(22) IfIcJcSand J~ICIt, then CyNCrC Cyy.
Lemma 4.5 (Expanding Lemma). IfI C S and s € S\ (IUI1), then C; C Crugsy-

Proof. Tt is enough (by (@))) to show that Cr C Nw (Wiygsy). Let w € Cr. By
the hypothesis, we have ¢ = {as, ) < 0 for some t € I. Now since sws € C; C
Nw (Wr), we have sws - oy € ®7 (by ([[H)) and so ws - a; € ®jyqsy. On the other
hand, we have ws - oy = w - ¢ — 2cw - as. Thus w - g € Pryysy since w - ay € Py
(by (@H)). Hence we have w € Nw (Wryysy) by (). O

For s € Sand I C S, let dr(s,I) = min{dp(s,t) | t € I} denote the distance
from s to the set I in the Coxeter graph I" of (W, S).

Lemma 4.6 (Cutting Lemma). Let (W,S) be irreducible, I C S and s € S\ 1.
Then for dr(s,I) < k < oo, we have C; C Cy, where J ={t € I | dp(s,t) > k}.
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Proof. Tt is enough (by @) and ([IH)) to show that w - ®; C ®; (or equivalently,
w1y C &) for all w € C7. Assume contrary that ¢ € J and w - oy € ® ;. Note
that w-a; € @7 (by ([[H)) and so s & supp(w - ay). Then by definition of J, we have

(d :) dF(Svsupp(w ' at)) <k < dF(Sat)'

Take a shortest path so = s,51,...,84-1,84 € supp(w - o) in I" from s to the set
supp(w - a). Then by the above inequality, we have s; € {t}* forall 0 <i < d—1.
Put u = ss1-+-54_1 € W. Then we have uwu~! - ay = uw - oy and so (by ([3))

supp(uwu" - ay) = supp(w - o) U {s,51,...,8q4_ 1} ¢ I

(note that s € I). On the other hand, we have vwu~! € C; and so uvwu™!-a; € ®;
(by ([@)). This is a contradiction. Hence the claim holds. O

Lemma 4.7 (Shifting Lemma). Suppose that s,t € S are in the same connected
component of the odd Coxeter graph I'° of (W, S). Then Cisy = Cryy-

Proof. By definition of I'°4, and by symmetry, it is enough to show that Cisy C
Cyyy for any s,t such that m(s,t) = 2k + 1 is odd. Now by putting u = (st)F e W,
we have t = usu~!. Thus for w € Cysy, we have

wtw™! = wusu ' w! = w(uwu)s(u T ww) e = usuT = ¢

since u™'wu € Cpsy. Thus w € Ny (Wyyy). Hence the claim follows from @). O

Moreover, we have:

Lemma 4.8. Let (W, S) be irreducible and I a nontrivial proper subset of S. Then
CoreW(W[) =1.

Proof. Assume contrary that 1 # w € Corew (Wy) (so that w - ®; = ®; by ([[H)).
Fix s € S\ I and take v € ® such that w-v € ®;.

Case 1. (d =) dr(s,supp()) < dr(s,supp(w - y)): Take a shortest path so =
$,81y--+,84—1,84 € supp(y) in I from s to the set supp(y). Then by the above
inequality, we have s; € supp(w-v) for all0 <i < d—1. Put u = s81---54-1 € W.
Then we have u -y € ®T (by ([@)), supp(u - v) = supp(y) U {s,81,...,8¢-1+ ¢ I
(by @) and so u -y € &\ ®;. On the other hand, we have uwu™! - (u-v) =
u-(w-vy) € ®~ (by (). This is a contradiction, since uwu~1 € Corey (W;) C Wi.

Case 2. dp(s,supp(vy)) > dr(s,supp(w - v)): Now by applying Case 1 to the
elements w~! € Corey (W) and —w -~y € ®; [w™!], we have a contradiction again.
Hence the claim holds in any case. O

Owing to Lemma EL8, we have the following results:

(23)  If (W,S) is irreducible, [W| = oo and s € S, then Cg_ 45 = 1.
(24)  If I is an irreducible component of J C S and |W;| = co, then Cj = 1.

(Here we use Corollary Z27 (iii), Proposition ZZ0 respectively.)

4.3. Proof for finite case. In this subsection, we prove Theorem B2 for the case
|W| < co. From now, we abbreviate often the terms “Expanding Lemma”, “Cutting
Lemma”, “Shifting Lemma” to ‘EL’, ‘CL’, ‘SL’, respectively.

Lemma 4.9. Let (W, S) be irreducible, |W| < oo and s € S. Suppose that no
condition below is satisfied: (I) W = W(By,), n > 2, s = s1, (II) W = W(Ba),
s = s, (III) W = W (Iz(m)), m even. Then Cyy = Z(W).
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Proof. Since Z(W) C Cyqy and (,cg Nw (Wysy) = Z(W), it is enough to show that
C{S} C C{t} forallt € S.

Case 1. The odd Coxeter graph I'°d9 of (W, S) is connected: Then the
claim follows from the Shifting Lemma.

Case 2. W = W(B,), n > 3 and s # s;: We have Cpy e Cys,y for all

EL CL
2 <i < n, while Cry,; C Cy, 5,3 C Cys,y (since n > 3). Thus the claim holds.
Case 3. W = W(Fj,): By symmetry, we may assume s = s or s2. Now we have

EL CL
C{Sl} 3L 0{52} C 0{52153} C 0{53} 3L 0{54}. Hence the claim holds. ]

Corollary 4.10. Let (W, S) be irreducible, |W| < oo, s € S and suppose that there
is a unique vertex t of I farthest from s. Suppose further that W and t do not
satisfy any of the three conditions (I)~(III) in Lemma[-d Then Cg (s = Z(W).

CL
Proof. Now we have Cg._ 53 C Cyyy by the choice of t. Then apply LemmaEd [

Lemma 4.11. Suppose that one of the following conditions is satisfied: (I) W =
W(Bs), s = s2, (II) W = W(Dy), s = s3, (III) W = W(Hs), s = s2, (IV)
W =W(Iz(m)) (m > 6 even), s € S. Then Cr = Z(W), where I = S~ {s}.

Proof. By the hypothesis and Corollary EZZ2 (ii), we have Ny (W) = Wi x Z(W).
Now a direct computation shows that sWrs N Ny (W;) =1, so that Wy nCr =1
by @). Since Z(W) C Cr, we have C; = Z(W). O

Lemma 4.12. (i) If W = W(B,), 1 < n < oo, then Corey (G, ) = Gp,, .
(i) If W = W(D,,), 3 <n < oo, then Corew (Gp, % (s1)) =Gp,, .

Proof. The claim (i) is obvious, since G, <W (cf. Lemma[ZTH). For (ii), we have
Gp, C Corew(Gp, % (s1)) since Gp, << W, while s; ¢ Corew (Gp, X (s1)) since
5183818381 = 83 € Gp, % {s1). Thus the claim holds. O

Proof of Theorem[£.3 (for finite W ). Note that Z(W) C Cr by definition.

Case 1. (W,S) = (W(7,),5(7,)) for T =B, n>30r T =D, 3<n#4:
Put L =1 in the former case, L = 2 in the latter case. Note that in this case, any
automorphism of I'(7,,) preserves the sets S(7}), elements wo(S(7x)) (k > L) and
so the subgroup G, .

Subcase 1-1. I = S(7;) for some L < k < n: This is a case (i) or (ii) of
Theorem (for 7 identity), so that we have to show Cr = G,. Note that

CS(’E) % CS(’Z}) CCL CS(TI-) and so CS(’Ti) = OS(’TJ-) forall L<i<j<n.
Thus we may assume I = S(77), and we have C; € (1=, Nw (Ws(t;))- By Corol-
lary 2223 @) and LemmaLTA we have C; C Gz,. Conversely, since G, is abelian
and contains wy(I), we have G, C Zw (wo(I)) = Nw (Wr) by Lemma EEA Thus
G, C C since G, <W. Hence Cr = G, .

Subcase 1-2. [ # S(7;) for all L < k < n: By the above remark, this is
not a case (i) or (i), and so we have to show C; C Z(W). Note that I # S. Let
M be the first index > 1 such that sy & I, so that S(7p/—1) C I (where we put

EL
S(7o) = 0). f T = D and M = 2, then we have C1 C Cg.(s,,} since I # 0.
Otherwise, there is some M < i < n such that s; € I (since otherwise we have a

contradiction I = S(7p-1)), and so M < n and C7 ECL Cs sy} In any case, we
may assume that I = S \ {sar}. Now there are the following three cases:
Subsubcase 1-2-1. M < L + 1: Note that M < n, and so (7,, M) # (Ds,3).
If 7,, = B3 and M = 2, then C; = Z(W) by Lemma EETTl Otherwise, we have a
unique vertex of I" farthest from s; that is s3_p; if 7, = D3 and M < 2, and s,
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otherwise (note that 7, # D4). Thus C; = Z(W) by Corollary EET0
Subsubcase 1-2-2. L +2 < M < n — 2: This hypothesis implies that

CL EL
Cr C CI\{SA4—1751\4+1} - CS\{S]M—l}’

so that the claim follows inductively from the case of smaller M.
Subsubcase 1-2-3. L +2 < M = n — 1: Note that n > L +3 and [ =

S(Tn—2) U {sn}. Now we have Cj e Cs(T,_s) < Cs(1,_,) and so C; C C,,y by
@2). Thus C; C Cy,,y = Z(W) by Lemma EJQ

Case 2. (W,S) = (W(B2),S(Bz2)): Since I is proper and nonempty, we have
I ={s;} (i=1or 2). This is a case (i), by taking 7 = idg (if i = 1), 7 # idg (if
i = 2). Now we have to show C; = 7(G',). We have C1 C Nw (W ((s,1)) = 7(GB,)
by Corollary 2223 (i). Conversely, we have 7(Gp,) C Cr by a similar argument to
Subcase 1-1. Thus C; = 7(Gp,).

Case 3. (W, S) = (W(D4), S(D4)): Note that I is proper and nonempty.

Subcase 3-1. |I| = 1: This is not a case (i) or (ii), so that we have to show
Cy C Z(W). This follows from Lemma B9

Subcase 3-2. |I| = 2 and s3 € I: This is also not a case (i) or (ii), so that

we have to show Cy C Z(W). Let I = {s3,s;}. Then we have C; CCL C{s,y, while
Cis;y = Z(W) by the previous case. Thus Cr C Z(W).

Subcase 3-3. |I| = 2 and s3 ¢ I: Note that there is 7 € Aut(I") such that
7(S(D3)) = I. This is a case (ii), so that we have to show C; = 7(Gp,). By

symmetry, we may assume 7 = idg. First, we have C; % Cs(p,) and so C1 C
ﬂ?ﬁ Nw (Ws(p,)) = Gp, x (s1) by Corollary 23 (ii). Thus we have C; C Gp,
by @) and Lemma EETA Conversely, we have Gp, C Ct by a similar argument to
Subcase 1-1. Hence we have C; = Gp,.

Subcase 3-4. |I| = 3 and s3 € I: Note that there is 7 € Aut(I") such that
7(S(D3)) = I. This is a case (ii), so that we have to show C; = 7(Gp,). By

symmetry, we may assume 7 = idg. Now we have C7 % Cs(p,) ECL Cr, while
Cs(p,) = Gp, by the previous subcase. Thus C; = Gp,.

Subcase 3-5. I = S ~\ {s3}: This is not a case (i) or (ii), so that we have to
show Cy € Z(W). This follows from Lemma ETTl

Case 4. (W,S) # (W(B,),S(B,)) (n > 2), (W(D,),S(Dy)) (n > 3): This is
not a case (i) or (ii), so that we have to show C; C Z(W). Note that |S| > 2 since
I is proper and nonempty.

Subcase 4-1. |S| = 2: Namely, (W,S) = (W(T),S(7)), T = Az or I(m)
(5 < m < o0), and |I| = 1. Then we have C; = Z(W) by Lemma BT (for the
latter case, with m even) or Lemma EE3l (the other cases).

Subcase 4-2. |S| = 3: Namely, (W, S) = (W (H;),S(Hs)) (note that W(As) ~

W(Ds3)). Now we have C; ECL Cs 5,3 for some i, while Cg_5,3 = Z(W) by Lemma
ETT (if « = 2) or Corollary EETO (if ¢ # 2). Thus C; C Z(W).
Subcase 4-3. |S| > 4: Namely, (W,S) = (W(7),S(7)) for T = A, (n > 4),

E, (n=6,7,8), Fy or Hy. Now we have C; ECL Cs s,y for some i. Thus we may
assume [ = S\ {s;}.

Subsubcase 4-3-1. There is a unique vertex of I farthest from s;: Now
we have C; = Z(W) by Corollary EET01

Subsubcase 4-3-2. There are at least two vertices of I farthest from
s;+ Namely, we have (7,4) = (A2k+1,k+1) (k > 2), (Fs,2), (Ee,4) or (Es,5). Now
there are exactly two vertices s,t of I' farthest from s;, and there is a vertex # s,t
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c c
adjacent to s and not adjacent to ¢. This implies that C} CL Cisty CL Cty, while
Ciyy = Z(W) by LemmaER} Thus Cr C Z(W). Hence the proof is concluded. [J

4.4. Proof for infinite case. In this subsection, we prove Theorem EE2in the case
|W| = co. The key facts are [3) and 24).

In the proof, we use a characterization (Proposition EET4)) of certain infinite Cox-
eter systems, which is based on the characterization of connected Coxeter graphs
of finite type. Before stating this, we prepare the following graph-theoretic lemma.

Lemma 4.13. Let G be a connected acyclic graph (i.e. a tree) on nonempty vertex
set V(G) of an arbitrary cardinality (with no edge labels here).

(i) If all vertices of G have degree < 2 and G has a terminal vertex (i.e. vertex of
degree 1) sg, then G ~ I'(A,) (as unlabelled graphs) for some 1 <n < co.

(ii) If so € V(G) and all vertices of G except so have degree < 2, then each connected
component G' of G~ {so} contains exactly one vertex s adjacent to so, G' ~ I'(Ay)
(as unlabelled graphs) for some 1 < n < oo and s is a terminal vertex of G'.

(iii) If all vertices of G have degree 2, then G ~ I'(Aco,00) (as unlabelled graphs).

Proof. (i) By the hypothesis, for any s € V(G), G contains a unique simple path
P, = (tgo) = so,tgl), ... ,tﬁ“’,t?’ = s) from sp to s. Let £(s) = ¢, the length of
P;. Then for all s1,s2 € V(G), we have either P;, C Ps, or Ps, C Ps,: Otherwise,
for the first index k such that tglf) #+ tg];), the vertex tg’f_l) = tgf_l) is adjacent
to distinct vertices tglf), t§’§> (and tglf?) if & > 2) but this is impossible by the
hypothesis on the degree of tg’ffl).

This observation shows that the map ¢ : V(G) — {0,1,2,...} is injective and
satisfies that ¢ € £(V(G)) whenever 0 < i < jand j € £(V(G)). Thus the set V(G) is
finite or countable. Moreover, it also implies that two vertices si, so are adjacent if
£(s1) = £(s2) £ 1, while by definition of ¢, these are not adjacent if ¢(s1) # £(s2) 1.
Thus the claim holds.

(i) First, take a vertex t of G’ and a simple path P in G from sg to t. Then the
vertex s of P next to sg is adjacent to sg and contained in G’. On the other hand,
if G’ contains two vertices adjacent to sg, then sy and a path in G’ between these
two vertices form a closed path in G. This is a contradiction, so that the first claim
follows. Since s has degree < 2 in G and adjacent to sop & V(G'), s is a terminal
vertex of G’. Now the second claim is deduced by applying (i) to G’ and s.

(iii) This follows from (ii), since G is nonempty and has no terminal vertices. [

Proposition 4.14. Let (W,S) be an irreducible Coxeter system of an arbitrary
rank, with Cozxeter graph I'. Suppose that |W| = oo and |W;| < oo for all finite
subsets I C S. Then I' ~ I'(Ax), I'(Bxo), I'(Doo) 01 I'(Aco,00)-

Proof. In this proof, a full subgraph I'y of I is said to be forbidden if |I| < oo and
|[Wi| = co. The hypothesis means that |W| = oo and I" is connected and contains
no forbidden subgraphs. This implies |S| = oo immediately.

Step 1. I is acyclic: This follows immediately from the fact that any nontrivial
cycle in I' forms a forbidden subgraph.

Step 2. No s € S has degree > 4 in I': Otherwise, this s and the four
adjacent vertices form a forbidden subgraph of I'. This is a contradiction.

Step 3. At most one s € S has degree 3 in I': Assume contrary that two
distinct vertices s,t € S have degree 3. Since I' is connected, there is a path P
in I' between s and t. Then s, ¢, P and all the vertices adjacent to s or ¢ form a
forbidden subgraph. This is a contradiction.

Step 4. If some s € S has degree 3 in ', then I' ~ I'(D,): By Steps 1-3,
we can apply Lemma LT3 (i) to this case. This lemma shows that I's. ;4 consists
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of three connected components ~ I'(A,,), I'(An,), I'(An;) (as unlabelled graphs)
respectively, of which a terminal vertex is adjacent to s in I'. By symmetry, we
may assume nj > ng > ns > 1.

Now we have ny = oo since |S| = co. If np > 2, then I' must contain a forbidden
subgraph (~ I' (E’;) as unlabelled graphs), but this is a contradiction. Thus we
have ng = ng =1 and so I' ~ I'(D) as unlabelled graphs. Moreover, every edge
of I must have no label (or label ‘3’), since otherwise I" must contain a forbidden
subgraph again. Hence I' ~ I'(D+,) (as Coxeter graphs) in this case.

Step 5. If all vertices of I have degree < 2, then I' ~ I'(Aw), I'(Bw)
or I'(As o0): First, we consider the case that I" has a terminal vertex. Then
Lemma EET3 (i) implies that I ~ I'(A) as unlabelled graphs (note that |S| = o).
Moreover, by a similar argument to Step 4, the hypothesis (I" contains no forbidden
subgraphs) detects the edge-labels of I', so that we have I' ~ I'(Ay) or I'(Bs)
(as Coxeter graphs). The other case is similar; we have I' ~ I'(Aoo o) as Coxeter
graphs by Lemma (iii) and the hypothesis. Hence the proof is concluded. O

Proof of Theorem -3 (for infinite W ). Note that Z(W) =1 in this case.
Case 1. (W,S) = (W(7,),5(7,)) for 7, = Aoy Booy Do O Ao ot Put L =1
if 7, = Boo, L = 2 if 7, = D,. Moreover, for k > 1, put

Jk = {81,82, . .,Sk} lf/];l 7& Aoo,om Jk = {S,k,S,kJrl, .. .,Sk} lf/[n = Aoo,oo'

Subcase 1-1. 7, = By or Dy, and I = S(7;) for some L < k < oot
This is a case (i) or (ii) (for 7 identity), so that we have to show C; = Gr._. Put
Gi; = Wy,,, and H; = Ng,(Wr) for i > 1. Then we have (J;2; G; = W and
U2, H; = Nw(Wy), so that C; C ;= Coreg, (H;) by Lemma X8 Moreover, by
the result of finite case (Section EZ3), we have Coreg, (H;) = G, for all i > 1.
Since ;2 G1,.,, = G1.. (cf. Lemma EZTH), we have Cr C Gr._.

On the other hand, we have Cg(7;) ECL Cr, while Gr, C Zw (wo(S(71))) since
wo(S(71)) € Gr,, and G, is abelian. Thus G7., C Nw (Ws(7,)) by Lemma EEZL
G1,. C Cy(1;y by @) and so Gz, C C1. Hence Cr = G, .

Subcase 1-2. The hypothesis of Subcase 1-1 is not satisfied: This is not
a case (i) or (ii), so that we have to show Cj; = 1.

Subsubcase 1-2-1. |I| < oo: Let w € C;. Now take a sufficiently large 4 <
k < oosothat I C J, and w € Wy,. Put G; = Wy, and H; = Ng, (W) for i > 1,
so that |J;o; Gi = W and ;2 ; H; = Nw(Wp). Now by the hypothesis of Subcase
1-2, and by the result for finite case (Section E3)), we have Coreg,(H;) C Z(G;) C
{1,wo(Jk+4)} for all i. Moreover, by Lemma EZH, we have C; C |J;=, Coreg, (H;).
Since wo(Jk+i) € Wy, for any ¢ > 1, this implies that w = 1 by the choice of k.
Hence we have C; = 1.

Subsubcase 1-2-2. |I| = oo: If I has an irreducible component J of infinite
cardinality, then C; = 1 by @4). Thus we may assume that I is a union of
infinitely many irreducible components of finite cardinality. Now we can choose
indices 4 < ¢ < j < oosothat sy € I foralli <k <j, s,1 €1 and s;11 € 1.
Let K;, K2 be the (distinct) irreducible components of I containing s;—1, Sj+1

respectively. Then we have Cf % Cro(x,uk,) and so Cr C Ck,uk, by E2).
Moreover, we have Cx, ux, = 1 by Subsubcase 1-2-1. Thus Cj = 1.

Case 2. (W,S) # (W(T),S(T)) for T = Ass Bsoy Dooy Aco,00t This is not
a case (i) or (i), so that we have to show C; = 1. By Proposition EET4, there is a
finite subset Jy C S such that |Wy,| = co. This Jy consists of only finitely many
irreducible components, and so we have |W;| = oo for some irreducible component
of Jy. Since I' is connected and |J| < oo, there is a (finite) sequence s1, s2,. .., S,
of elements of S such that s; & I;_1 U It forall1<i<randJC I., where we
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put [y =T and I; = I,_; U{s;} (1 < i <r) inductively. Now we have Cy,_, ECL Cr,
forall 1 <i<r,sothat C; C Cy._, and C; C C7,.

Subcase 2-1. I, # S: Now an irreducible component of I, (namely, the one
containing J) generates an infinite group. Thus C; C Cy. =1 by 4)).

Subcase 2-2. I, = S: Note that » > 1 since I is proper. Since (W,S) is
irreducible, we have C; C Cy._, =1 by Z3). Hence the proof is concluded. O
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