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ON THE DIRECT INDECOMPOSABILITY OF INFINITE

IRREDUCIBLE COXETER GROUPS AND THE ISOMORPHISM

PROBLEM OF COXETER GROUPS

KOJI NUIDA

Abstract. In this paper we prove that any irreducible Coxeter group of infi-
nite order is directly indecomposable as an abstract group, without the finite
rank assumption. The key ingredient of the proof is that we can determine, for
an irreducible Coxeter group W , the centralizers in W of the normal subgroups
of W that are generated by involutions. As a consequence, we show that the
problem of deciding whether two general Coxeter groups are isomorphic, as
abstract groups, is reduced to the case of irreducible Coxeter groups, without
assuming the finiteness of the number of the irreducible components or their
ranks. We also give a description of the automorphism group of a general
Coxeter group in terms of those of its irreducible components.

1. Introduction

In this paper, we prove that all infinite irreducible Coxeter groups are directly
indecomposable as abstract groups (Theorem 3.3).

Regarding direct indecomposability of Coxeter groups, it is well known that there
exist finite irreducible Coxeter groups which are directly decomposable (such as the
Weyl group G2). On the other hand, for infinite irreducible Coxeter groups, no gen-
eral result has been known until recently. In a recent paper [9], L. Paris proved
the direct indecomposability of all infinite irreducible Coxeter groups of finite rank,
by using certain special elements called essential elements which are examined also
in [6]. However, by definition, a Coxeter group of infinite rank never possesses an
essential element, so that the proof cannot be applied directly to the case of infinite
rank.

Our result here is obtained by a different approach. Let W be an irreducible
Coxeter group whose order is infinite, possibly of infinite rank. We give a complete
description of the centralizer C of any normal subgroupN ofW which are generated
by involutions (Theorem 3.1). From the description it follows that, unless N = {1}
or C = {1}, there is a subgroup H ( W which contains both N and C. Once this
is proved, the direct indecomposability of W is clear, since any direct factor of W
is a normal subgroup and is generated by involutions (since it is a quotient of W ),
and its centralizer contains the complementary factor.

As a consequence of the direct indecomposability of infinite irreducible Coxeter
groups, we give results on the isomorphisms between two Coxeter groups (Theorem
3.4). Since we also know how each finite irreducible Coxeter group decomposes into
directly indecomposable factors, our results imply that we can determine whether
or not two given Coxeter groups are isomorphic if we can determine which infinite
irreducible Coxeter groups are isomorphic. In addition, our results also give cer-
tain decompositions of an automorphism of a general Coxeter group W (Theorem
3.10). One decomposition describes its form from the viewpoint of the directly in-
decomposable decomposition of W ; another decomposition describes its form from
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the viewpoint of the decomposition W = Wfin ×Winf , where Wfin (resp. Winf) is
the product of the finite (resp. infinite) irreducible components of W in the given
Coxeter system. Note that these results can also be deduced from the Krull-Remak-
Schmidt Theorem in group theory, if the Coxeter group has a composition series.
Theorem 3.4 is also a generalization of Theorem 2.1 of [9]; our proof here is similar
to, but slightly more delicate than that in [9], by the lack of finiteness of the ranks.
Note also that, in another recent paper [7], M. Mihalik, J. Ratcliffe and S. Tschantz
also examined the “Isomorphism Problem” (namely, the problem of deciding which
Coxeter groups are isomorphic) for the case of finite ranks, by a highly different
approach.

Contents. Section 2 collects the preliminary facts and results. In Section 2.1,
we give some remarks on general groups, especially on the definition and proper-
ties of the core subgroups. Sections 2.2 and 2.3 summarize definitions, notations
and properties of Coxeter systems, Coxeter graphs and root systems of Coxeter
groups. In Section 2.4, we recall a method, given by V. Deodhar [2], for decompos-
ing the longest element of any finite parabolic subgroup into pairwise commuting
reflections. Owing to this decomposition, we can compute easily the action of the
longest element on a root, even if it is not contained in the root system of the
parabolic subgroup. As an application, in Section 2.5, we determines all irreducible
Coxeter groups of which the center is a nontrivial direct factor. (This is not a new
result, but is included there since the result is used in the following sections.) Some
properties of normalizers of parabolic subgroups are summarized as Section 2.6.

Our main results are stated and proved in Section 3. The direct indecompos-
ability of infinite irreducible Coxeter groups is shown in Section 3.1 (Theorem 3.3).
Note that the theorem also determines all nontrivial direct product decompositions
of finite irreducible Coxeter groups. In Section 3.2, we reduce the Isomorphism
Problem of general Coxeter groups to the case of infinite irreducible ones (Theorem
3.4). In the proof, we consider such a problem in a slightly wider context (Theorem
3.9) and then our result is deduced. Moreover, another result in Section 3.3 de-
scribes the automorphism group of a general Coxeter group in terms of those of the
irreducible components (Theorem 3.10 (ii)). Note that a Coxeter group possesses
some ‘natural’ automorphisms, which map each irreducible component onto a com-
ponent isomorphic to the original one. We also give a characterization of Coxeter
groups for which the group of the ‘natural’ automorphisms has finite index in the
whole automorphism group (Theorem 3.10 (iii)).

Our proof of Theorem 3.3 is based on our description of the centralizers of the
normal subgroups, which are generated by involutions, in irreducible Coxeter groups
(Theorem 3.1). This theorem is proved in Section 4.1, by using a description (given
in Sections 4.2–4.4) of core subgroups of normalizers of parabolic subgroups.

Acknowledgement. I would like to express my deep gratitude especially to
Itaru Terada and Kazuhiko Koike, for their precious advice and encouragement.

2. Preliminaries

2.1. Notes on general groups. In this paper, we treat two kinds of direct prod-
ucts of groups Gλ with (possibly infinite) index set Λ; the complete direct product
(whose elements (gλ)λ are all the maps Λ → ⊔

µ∈ΛGµ, λ 7→ gλ such that gλ ∈ Gλ)

and the restricted direct product (consisting of all the elements (gλ)λ such that gλ
is the unit element of Gλ for all but finitely many λ ∈ Λ). Note that these two
products coincide if |Λ| < ∞. Since here we treat mainly the latter type rather
than the former one, we let the term “direct product” alone and the symbol

∏
mean

the restricted direct product throughout this paper. (The complete one also appears
in this paper, always together with notification.)
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For two groups G, G′, let Hom(G,G′), Isom(G,G′) denote the sets of all ho-
momorphisms, isomorphisms G→ G′ respectively. Put End(G) = Hom(G,G) and
Aut(G) = Isom(G,G). The following lemma is easy, but will be referred later.

Lemma 2.1. Assume that the center Z(G) of a group G is either trivial or a cyclic
group of prime order. Then the following three conditions are equivalent:
(I) Z(G) = 1 or Z(G) is not a direct factor of G.
(II) If f ∈ Hom(G,Z(G)), then f(Z(G)) = 1.
(III) If G′ is a direct product of (arbitrarily many) cyclic groups of prime order
and f ∈ Hom(G,G′), then f(Z(G)) = 1.

Proof. This is trivial if Z(G) = 1, so that we assume that Z(G) is a cyclic group
of prime order. Note that the implication (III) ⇒ (II) is obvious.
(I) ⇔ (II): If (I) is not satisfied, and G = Z(G) × H , then the projection G →
Z(G) does not satisfy the conclusion of (II). Conversely, if f ∈ Hom(G,Z(G)) and
f(Z(G)) 6= 1, then f(Z(G)) = Z(G), ker f ∩ Z(G) = 1 (since Z(G) is simple) and
so we have G = Z(G) × ker f .
(II) ⇒ (III): This is clear if G′ itself is a cyclic group of prime order (by noting
that Hom(Z/pZ,Z/ℓZ) = 1 for distinct primes p, ℓ). For a general case, apply it to
the composite map π ◦ f for every projection π from G′ to one of its factors. �

Here we define the following multiplication for the set Hom(G,Z(G)) by which
it forms a monoid. First, we define a map Hom(G,Z(G)) → End(G), f 7→ f ♭ by

f ♭(w) = wf(w)−1 for all w ∈ G.

This is well defined since Z(G) is abelian. The image of H ⊂ Hom(G,Z(G))
by the map is denoted by H♭. Now define the product f ∗ g of two elements
f, g ∈ Hom(G,Z(G)) by

(f ∗ g)(w) = f(w)g(w)f ◦ g(w)−1 for all w ∈ G.

This is also well defined, and then Hom(G,Z(G)) forms a monoid with the trivial
map (denoted by 1) as the unit element (for example, we have the associativity

(
(f ∗ g) ∗ h

)
(w) =

(
f ∗ (g ∗ h)

)
(w)

= f(w)g(w)h(w)f ◦ g(w)−1f ◦ h(w)−1g ◦ h(w)−1f ◦ g ◦ h(w)

= (f ∗ h)(w)f ♭ ◦ g ◦ h♭(w)

(1)

for f, g, h ∈ Hom(G,Z(G))). Let Hom(G,Z(G))× denote the group of invertible
elements of Hom(G,Z(G)) with respect to the multiplication ∗. On the other hand,
End(G) also forms a monoid with composition of maps as multiplication; then the
group of invertible elements in the monoid End(G) is precisely the group Aut(G).

Moreover, the group Aut(G) acts on the monoids Hom(G,Z(G)) and End(G) by

h · f = h ◦ f ◦ h−1 for h ∈ Aut(G), f ∈ Hom(G,Z(G)) or End(G).

Lemma 2.2. (i) The map f 7→ f ♭ is an injective homomorphism Hom(G,Z(G)) →
End(G) of monoids compatible with the action of Aut(G).
(ii) For f ∈ Hom(G,Z(G)), the following three conditions are equivalent:

(I) f ∈ Hom(G,Z(G))×. (II) f ♭ ∈ Aut(G).
(III) The restriction f ♭|Z(G) is an automorphism of Z(G).

(iii) If H ⊂ Hom(G,Z(G))× is a subgroup invariant under the action of Aut(G),
then its image H♭ is a normal subgroup of Aut(G).

Proof. The claim (i) is straightforward, while (iii) follows from (i), (ii) and definition
of the action of Aut(G). From now, we prove (ii). The implication (I) ⇒ (II) is
obvious. On the other hand, (II) implies (III) since any automorphism preserves
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the center. Moreover, if (III) is satisfied, then we can construct the inverse element

f ′ of f ∈ Hom(G,Z(G)) by f ′(w) = (f ♭|Z(G))
−1
(
f(w)

)−1
(w ∈ G); we have

(f ′ ∗ f)(w) = f ′(w)f(w)f ′(f(w))−1 = f ′(wf(w)−1)f(w)

= (f ♭|Z(G))
−1
(
f(wf(w)−1)

)−1
f(w)

= (f ♭|Z(G))
−1
(
f ♭(f(w))

)−1
f(w)

= f(w)−1f(w) = 1,

so that f ′ ∗ f = 1. Similarly, we have f ∗ f ′ = 1. Hence the claim holds. �

Lemma 2.3. If a group G is abelian, then the embedding Hom(G,Z(G)) → End(G),
f 7→ f ♭, is an isomorphism with inverse map f 7→ f ♭. Moreover, its restriction is
an isomorphism Hom(G,Z(G))× → Aut(G).

Proof. Note that Z(G) = G, so that Hom(G,Z(G)) = End(G) as sets. Thus the
map End(G) → Hom(G,Z(G)), f 7→ f ♭ is well defined. Now we have (f ♭)♭(w) =
wf ♭(w)−1 = f(w) for all f ∈ End(G) and w ∈ G, so that (f ♭)♭ = f . Thus the first
claim holds. Now the second one follows from Lemma 2.2 (ii). �

Note that, if G = G1 × G2, then the sets Hom(Gi, Z(G)) (i = 1, 2) are em-
bedded into Hom(G,Z(G)) via the map f 7→ f ◦ πi (where πi is the projection
G → Gi). Each Hom(Gi, Z(G)) forms a submonoid of Hom(G,Z(G)). Moreover,
the above formula of the inverse element f ′ of f ∈ Hom(G,Z(G)) implies that,
f ∈ Hom(Gi, Z(G)) is invertible in Hom(Gi, Z(G)) if and only if it is invertible in
Hom(G,Z(G)). Thus the notation Hom(Gi, Z(G))× is unambiguous.

Lemma 2.4. (i) Let f, g ∈ Hom(G,Z(G)) such that f(Z(G)) = g(Z(G)) = 1.
Then f, g ∈ Hom(G,Z(G))× and (f ∗ g)(w) = f(w)g(w) for all w ∈ G (so that
f ∗ g = g ∗ f by symmetry). Moreover, the map w 7→ f(w)−1 is the inverse element
of f in Hom(G,Z(G))×.
(ii) Suppose that G = G1 ×G2 and Z(G2) = 1. Then Hom(G,Z(G))× = H1 ⋊H2

where H1 = Hom(G2, Z(G)), H2 = Hom(G1, Z(G1))
×. Moreover, H1 is abelian,

(f ∗ g)(w) = f(w)g(w) for f, g ∈ H1 and f ∗ g ∗ f ′ = f ♭ ◦ g ◦ (f ♭)−1 for f ∈ H2 and
g ∈ H1, where f ′ is the inverse element of f ∈ H2.

Proof. (i) By the hypothesis, f ♭ is identity on Z(G), so that f is invertible by
Lemma 2.2 (ii) (and g is so). The other claims follow from definition (note that
now f ◦ g = 1).
(ii) Note that Z(G) = Z(G1) by the hypothesis. Then by (i), H1 is an abelian
subgroup of Hom(G,Z(G))× in which the multiplication is as in the statement.

For f ∈ H2 and g ∈ H1, the formula (1) implies that f∗g∗f ′ is as in the statement

(note that f ∗ f ′ = 1 and f ′♭ = (f ♭)−1). In particular, we have f ∗ g ∗ f ′(G1) ⊂
f ♭ ◦g(G1) = 1, since f ′ ∈ H2 and so f ′♭(G1) ⊂ G1. This means that f ∗g ∗f ′ ∈ H1.
Since obviously H1 ∩H2 = 1, we have H1H2 = H1 ⋊H2.

Finally, let f ∈ Hom(G,Z(G))×. Take g ∈ H1 such that g(w) = f ◦ π2(w)−1

where π2 is the projection G → G2 (this is the inverse element of f ◦ π2 ∈ H1).
Then for w ∈ G2, we have

(g ∗ f)(w) = g(w)f(w)g
(
f(w)

)−1
= f(w)−1f(w) = 1

since g(Z(G)) = 1. This means that g ∗ f ∈ Hom(G1, Z(G1)), while it is invertible
since both f and g are so. Thus we have g ∗f ∈ H2 and f = (f ◦π2)∗g ∗f ∈ H1H2.
Hence Hom(G,Z(G))× = H1 ⋊H2. �

In the proof of our results, we use the following notion. For a group G, we write
H ≤ G, H ⊳G if H is a subgroup, normal subgroup of G, respectively.
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Definition 2.5. For H ≤ G, define the core CoreG(H) of H in G to be the unique
maximal normal subgroup of G contained in H (namely,

⋂
w∈GwHw

−1).

The following properties are deduced immediately from definition:

If H1 ≤ H2 ≤ G, then CoreG(H1) ⊂ CoreG(H2).(2)

If CoreG(H) ≤ H1 ≤ G, then CoreG(H) ⊂ CoreG(H1).(3)

If Hλ ≤ G (λ ∈ Λ), then CoreG(
⋂

λ∈Λ

Hλ) =
⋂

λ∈Λ

CoreG(Hλ).(4)

If H1 ≤ H2 ≤ G, w ∈ G and wH1w
−1 ∩H2 = 1, then H1 ∩ CoreG(H2) = 1.(5)

Lemma 2.6. Let G1 ≤ G2 ≤ · · · , H1 ≤ H2 ≤ · · · be two infinite chains of
subgroups of the same group such that Gi∩Hj = Hi for all i ≤ j. Put G =

⋃∞
i=1Gi

and H =
⋃∞
i=1Hi. Then CoreG(H) ⊂ ⋃∞

i=1 CoreGi
(Hi).

Proof. It is enough to show that CoreG(H) ∩Hi ⊂ CoreGi
(Hi) (or more strongly,

CoreG(H)∩Hi⊳Gi) for all i. Note that the hypothesis implies Gi∩H = Hi. Then
for g ∈ Gi and h ∈ CoreG(H) ∩Hi, we have ghg−1 ∈ CoreG(H) and ghg−1 ∈ Gi,
so that ghg−1 ∈ Gi ∩H = Hi. Thus the claim holds. �

The next lemma describes the centralizers of normal subgroups in terms of the
cores of certain subgroups. Before stating this, note the following easy facts:

If H ⊳G, then the centralizer ZG(H) of H is also normal in G.(6)

If X1, X2 ⊂ G are subsets and X1 ⊂ ZG(X2), then X2 ⊂ ZG(X1).(7)

Lemma 2.7. Let H be the smallest normal subgroup of G containing a subset
X ⊂ G. Then ZG(H) = CoreG(ZG(X)) =

⋂
x∈X CoreG(ZG(x)).

Proof. The second equality follows from (4). For the first one, the inclusion ⊂ is
deduced from (6) (since ZG(H) ⊂ ZG(X)). For the other inclusion, the centralizer
of CoreG(ZG(X)) in G is normal in G (by (6)) and contains X , so that it also
contains H . Thus the claim follows from (7). �

2.2. Coxeter groups and Coxeter graphs. Here we refer to [5] for basic defi-
nitions and properties. A pair (W,S) of a group W and its generating set S is a
Coxeter system (and W itself is a Coxeter group) if W has the presentation

W = 〈S | (st)m(s,t) = 1 if s, t ∈ S and m(s, t) <∞〉
where m : S × S → {1, 2, . . .} ∪ {∞} is a symmetric map such that m(s, t) = 1
if and only if s = t. (W,S) is said to be finite (infinite) if the group W is finite
(infinite, respectively). The cardinality of S is called the rank of (W,S) (or even of
W ). Throughout this paper, we do not assume, unless otherwise noticed, that the
rank of (W,S) is finite (or even countable). Note that, owing to the well-known
fact that the element st ∈ W above has precisely order m(s, t) in W , this map m
can be recovered uniquely from the Coxeter system (W,S).

Two Coxeter systems (W,S) and (W ′, S′) are said to be isomorphic if there
is some f ∈ Isom(W,W ′) such that f(S) = S′. Then there is a one-to-one
correspondence (up to isomorphism) between Coxeter systems and the Coxeter
graphs; which are simple(, loopless), undirected, edge-labelled graphs with labels in
{3, 4, . . .}∪ {∞}. The Coxeter graph Γ corresponding to (W,S) has the vertex set
S, and two vertices s, t ∈ S are joined in Γ by an edge with label m(s, t) if and only
if m(s, t) ≥ 3 (by convention, the labels ‘3’ are usually omitted). Γ (or (W,S)) is
said to be of finite type if W is finite. It is also well known that a full subgraph ΓI
of Γ with vertex set I ⊂ S corresponds to a parabolic subgroup WI of W generated
by I (or more precisely, to a Coxeter system (WI , I)).

5



Γ (A∞) = ◦ ◦ ◦ ◦ · · ·
1 2 3 4

Γ (B∞) = ◦ ◦ ◦ ◦ · · ·
1 2 3 4

4

Γ (D∞) =
◦

◦
◦ ◦ ◦

�
�

H
H · · ·

1

2 3 4 5
Γ (E8) = ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

1 3 4 5 6 7 8

2

Γ (F4) = ◦ ◦ ◦ ◦
1 2 3 4

4
Γ (H4) = ◦ ◦ ◦ ◦

1 2 3 4

5
Γ (I2(m)) = ◦ ◦

1 2

m

Γ (A∞,∞) = ◦ ◦ ◦ ◦ ◦ ◦ ◦· · · · · ·
−3 −2 −1 0 1 2 3

⊃ Γ (A∞)

Figure 1. Some connected Coxeter graphs

A Coxeter system (W,S) is called irreducible if the corresponding Coxeter graph
Γ is connected. In this case, W is also said to be irreducible. As is well known,
W is decomposed as the direct product of its irreducible components, which are the
parabolic subgroups WI of W corresponding to the connected components ΓI of
Γ (in this case, each subset I is also said to be an irreducible component of S). A
parabolic subgroup WI ⊂W is said to be irreducible if the Coxeter system (WI , I)
is irreducible. As we mentioned in Introduction, an irreducible Coxeter group may
be directly decomposable (as an abstract group) in general. Our main result deter-
mines which irreducible Coxeter group is indeed directly indecomposable.

In this paper, we use the following notations for some Coxeter graphs.

Definition 2.8. We use the notations in Fig. 1. For each of the Coxeter graphs,
let si denote the vertex having label i. Moreover, for each Coxeter graph Γ (Tn) in
Fig. 1 (T = A, B, D, E, F , H), let Γ (Tk) (k < n) be the full subgraph of Γ (Tn)
on vertex set {si | 1 ≤ i ≤ k}. For any T , let (W (T ), S(T )) be the Coxeter system
corresponding to the Coxeter graph Γ (T ).

By definition, Γ (T∞) (T = A,B,D) and Γ (A∞,∞) are Coxeter graphs with
countable (infinite) vertex sets. On the other hand, it is well known that the
Coxeter graphs Γ (An) (1 ≤ n < ∞), Γ (Bn) (2 ≤ n < ∞), Γ (Dn) (4 ≤ n < ∞),
Γ (E6), Γ (E7), Γ (E8), Γ (F4), Γ (H3), Γ (H4) and Γ (I2(m)) (5 ≤ m < ∞) are
all the connected Coxeter graphs of finite type (up to isomorphism). Note that
Γ (B1) = Γ (D1) = Γ (A1), while Γ (D2) ≃ Γ (A1 × A1) and Γ (D3) ≃ Γ (A3) (but
the vertex labels are different).

2.3. Root systems of Coxeter groups. For a Coxeter system (W,S), let Π be
the set of symbols αs (s ∈ S) and V the vector space over R containing the set Π
as a basis. We define the symmetric bilinear form 〈 , 〉 on V for the basis by

〈αs, αt〉 = − cos(π/m(s, t)) if m(s, t) <∞, 〈αs, αt〉 = −1 if m(s, t) = ∞.

Then W acts faithfully on the space V by s · v = v− 2〈αs, v〉αs (s ∈ S, v ∈ V ). Let
Φ = W · Π, the root system of (W,S). The above rule implies that the action of
W preserves the bilinear form; as a consequence, any element (root) of Φ is a unit
vector. It is a crucial fact that Φ is a disjoint union of the set Φ+ of positive roots
(i.e. roots in which the coefficient of every αs ∈ Π is ≥ 0) and the set Φ− = −Φ+ of
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negative roots. It is known that the set Φ [w] = {γ ∈ Φ+ | w ·γ ∈ Φ−} characterizes
the element w ∈ W ; namely,

(8) if w, u ∈ W and Φ [w] = Φ [u] , then w = u

(cf. Lemma 2.9 of [8], etc. for the proof). Moreover, it is also well known that the
cardinality of the set Φ [w] is (finite and) equal to the length ℓ(w) of w ∈ W with
respect to the generating set S.

The reflection along a root γ = w · αs ∈ Φ is defined by sγ = wsw−1 ∈ W .
This definition does not depend on the choice of w and s, and sγ indeed acts as a
reflection on the space V ; sγ · v = v − 2〈γ, v〉γ for v ∈ V . Note that sαs

= s for
s ∈ S. The following fact is easy to show (by the fact that Φ = Φ+ ⊔ Φ−):

(9) if s ∈ S, γ ∈ Φ+ and 〈αs, γ〉 > 0, then sγ · αs ∈ Φ−.

For v ∈ V , put

v =
∑

s∈S

([αs] v)αs and supp(v) = {s ∈ S | [αs] v 6= 0}.

For I ⊂ S, let VI be the subspace of V spanned by the set ΠI = {αs | s ∈ I}
and ΦI = Φ ∩ VI (namely, the set of all γ ∈ Φ such that supp(γ) ⊂ I). Then it is
well known that ΦI coincides with the root system WI · ΠI of the Coxeter system
(WI , I) (cf. Lemma 4 of [3], etc. for the proof). This fact yields the following:

(10) If γ ∈ Φ, then (γ ∈ Φsupp(γ) and so) the set supp(γ) is connected in Γ.

Moreover, it is well known (cf. [5], Section 5.8, Exercise 4, etc.) that:

(11) If I ⊂ S and γ ∈ Φ, then sγ ∈ WI if and only if γ ∈ ΦI .

For I ⊂ S, let

I⊥ = {s ∈ S r I | st = ts for all t ∈ I}
= {s ∈ S r I | s is adjacent in Γ to no element of I}
= {s ∈ S | αs is orthogonal to every αt ∈ ΠI}.

Then we have the following properties:

If γ ∈ Φ+ and supp(γ) 6⊂ I ⊂ S, then w · γ ∈ Φ+ for all w ∈ WI .(12)

If γ ∈ Φ, I = supp(γ) and s ∈ S r (I ∪ I⊥), then supp(s · γ) = I ∪ {s}.(13)

(For (12), take some t ∈ supp(γ) r I, then w · γ has the same (positive) coefficient
of αt as γ. For (13), note that 〈αs, γ〉 < 0 by the hypothesis.)

For I ⊂ S and w ∈W , let Φ+
I = ΦI∩Φ+, Φ−

I = ΦI∩Φ− and ΦI [w] = ΦI∩Φ [w].

Lemma 2.9. Let w ∈ W , I, J ⊂ S and suppose that I ∩ J = ∅, w · ΠI = ΠI and
w · ΠJ ⊂ Φ−. Then ΦI∪J [w] = Φ+

I∪J r ΦI .

Proof. Let γ ∈ Φ+
I∪J such that [αs] γ > 0 for at least one s ∈ J (note that w · αs ∈

Φ−). Now if w · αs ∈ Φ−
I , then αs = w−1 · (w · αs) must be a linear combination

of ΠI (since w · ΠI = ΠI), but this is impossible. Thus we have [αt] (w · αs) < 0
for some t ∈ S r I. Moreover, the hypothesis implies that [αt] (w · αs′) = 0 for all
s′ ∈ I and [αt] (w · αs′) ≤ 0 for all s′ ∈ J . Thus we have

[αt] (w · γ) = [αt]

(
w ·

∑

s′∈I∪J

([αs′ ] γ)αs′

)

=
∑

s′∈I∪J

([αs′ ] γ) [αt] (w · αs′) ≤ [αs] γ [αt] (w · αs) < 0.

Hence the claim holds, since w · Φ+
I ⊂ Φ+ by the hypothesis. �

7



Definition 2.10. For a Coxeter system (W,S), we define the odd Coxeter graph
Γ odd of (W,S) to be the subgraph of Γ obtained by removing all edges labelled by
an even number or ∞.

It is well known (cf. [5], Section 5.3, Exercise, etc.) that, for s, t ∈ S,

(14) αt ∈ W ·αs if and only if s, t are in the same connected component of Γ odd.

Moreover, the following lemma is deduced immediately from the definition that all
fundamental relations of W are of the form (st)m(s,t) = 1 (s, t ∈ S).

Lemma 2.11. Any f ∈ Hom(W, {±1}) assigns the same value to every vertex
s ∈ S of a connected component of Γ odd. Conversely, any mapping S → {±1}
having this property extends uniquely to a homomorphism W → {±1}.

2.4. Reflection decompositions of longest elements. If WI is a finite para-
bolic subgroup of a Coxeter group W , then let w0(I) denote the longest element of
WI . This element is an involution and maps the set ΠI onto −ΠI , so that there is
an involutive graph automorphism σI of the Coxeter graph ΓI such that

w0(I) · αs = −ασI (s) for all s ∈ I.

It is well known that, for an irreducible Coxeter system (W,S), we have Z(W ) 6= 1
if and only if W ≃ W (T ) for one of T = A1, Bn (n < ∞), Dk (k ≥ 4 even),
E7, E8, F4, H3, H4 and I2(m) (m ≥ 6 even). This condition is also equivalent to
that |W | < ∞ and σS = idS . Moreover, Z(W ) = {1, w0(S)} if Z(W ) 6= 1, while
σS is determined as the unique non-identical automorphism of Γ whenever W is
finite, irreducible and Z(W ) = 1. Note that any automorphism τ ∈ Aut(Γ ) induces
naturally an automorphism of W , which maps each element w0(I) to w0(τ(I)).

In the paper [2], Deodhar established a method (in the proof of Theorem 5.4) for
decomposing any involution w ∈ W as a product of commuting reflections. From
now, we apply this method and then obtain a decomposition of any longest element
w0(I), which we call here a reflection decomposition. First, to each finite irreducible
Coxeter system (W,S) = (W (T ), S(T )) of type T , we associate a (or two) positive

root(s) α̃T = α̃
(1)
T (and α̃

(2)
T ), as follows (where we abbreviate c1α1 + c2α2 + · · · +

cnαn ∈ V to (c1, c2, . . . , cn) in some cases):

α̃An
=

n∑

i=1

αi (1 ≤ n <∞), α̃Dn
= α1 + α2 +

n−1∑

i=3

2αi + αn (4 ≤ n <∞),

α̃
(1)
Bn

= α1 +

n∑

i=2

√
2αi, α̃

(2)
Bn

=
√

2α1 +

n−1∑

i=2

2αi + αn (2 ≤ n <∞),

α̃E6 = (1, 2, 2, 3, 2, 1), α̃E7 = (2, 2, 3, 4, 3, 2, 1), α̃E8 = (2, 3, 4, 6, 5, 4, 3, 2),

α̃
(1)
F4

= (2, 3, 2
√

2 ,
√

2 ), α̃
(2)
F4

= (
√

2 , 2
√

2 , 3, 2),

α̃H3 = (c+ 1, 2c, c), α̃H4 = (3c+ 2, 4c+ 2, 3c+ 1, 2c) (where c = 2 cos
π

5
),

α̃I2(m) =
1

2 sin(π/2m)
α1 +

1

2 sin(π/2m)
α2 (m ≥ 5 odd),

α̃
(i)
I2(m) =

cos(π/m)

sin(π/m)
αi +

1

sin(π/m)
α3−i (m ≥ 5 even, i = 1, 2).

8



To check that each of these is actually a root of (W (T ), S(T )), note the equality
c2 = c+ 1 and the following formula for the root system of type I2(m):

If w = (· · · s2s1s2) ∈W (I2(m)) (k elements), then

w · α1 =





sin(kπ/m)
sin(π/m) α1 + sin((k+1)π/m)

sin(π/m) α2 if k is odd,

sin((k+1)π/m)
sin(π/m) α1 + sin(kπ/m)

sin(π/m) α2 if k is even.

For example, we have

α̃
(1)
F4

= s1s2s3s4s2s3s2 · α1, α̃
(2)
F4

= s4s3s2s1s3s2s3 · α4,

α̃H3 = s2s1s2s1s3s2 · α1, α̃H4 = s4s3s2s1s2s1s3s2s1s4s3s2s1s2s3s4 · α̃H3 ,

α̃I2(2k+1) = (· · · s2s1s2) · α1 (k elements), α̃
(i)
I2(4k) = (s3−isi)

k−1s3−i · αi.
By (14), if T 6= Bn, F4, I2(m) (m even), then Φ consists of a single orbit W (T ) ·α1

(and so it contains α̃T ). On the other hand, if T = Bn, F4 or I2(4k), then (14)
implies that Φ consists of two orbits (namely, W ·α1 and W ·α2 if T = Bn, I2(4k),

and W · α1 and W · α4 if T = F4). In these case, α̃
(1)
T lies in the orbit W · α1 and

α̃
(2)
T lies in the other one.
In contrast with the above cases, if T = I2(4k+2), then Φ consists of two orbits

W (T ) · α1 and W (T ) · α2, and now we have α̃
(1)
T ∈ W (T ) · α2 (and α̃

(2)
T lies in the

other orbit). In fact, we have α̃
(i)
I2(4k+2) = (s3−isi)

k · α3−i for i = 1, 2.

To simplify the description, we denote the reflection along the root α̃
(i)
T by r̃(T , i).

If we have only one root α̃
(i)
T , namely T 6= Bn, F4, I2(m) (m even), then we also

write r̃(T ) = r̃(T , 1).

Remark 2.12. By the above observation, if T = Bn, F4 or I2(4k), then r̃(T , 1) is
conjugate to s1, and r̃(T , 2) is conjugate to s2 (if T = Bn or I2(4k)) or to s4 (if
T = F4). On the other hand, if T = I2(4k+ 2), then r̃(T , 1), r̃(T , 2) are conjugate
to s2, s1, respectively.

Lemma 2.13. (i) If T 6= An (n ≥ 2), I2(m) (m odd), then for the root α̃
(i)
T , there

is an index N(T , i) such that 〈α̃(i)
T , αj〉 = 0 for all j 6= N(T , i). Moreover, we have

〈α̃(i)
T , αN(T ,i)〉 > 0 and Φ [ r̃(T , i) ] = Φ+ r ΦS(T )r{sN(T ,i)}. (If we have only one

root α̃
(i)
T , then we also write N(T ) = N(T , 1).)

(ii) If T = An (n ≥ 2) or I2(m) (m odd), then there are two indices N1(T ), N2(T )
such that 〈α̃T , αNj(T )〉 > 0 for j = 1, 2 and 〈α̃T , αj〉 = 0 for all j 6= N1(T ), N2(T ).

Moreover, we have Φ [ r̃(T , i) ] = Φ+ r ΦS(T )r{sN1(T ),sN2(T )}.

Proof. (i) The first claim follows from a direct computation, by putting

N(A1) = 1, N(Bn, 1) = n, N(Bn, 2) = n− 1, N(Dn) = n− 1,

N(E6) = 2, N(E7) = 1, N(E8) = 8, N(F4, 1) = 1, N(F4, 2) = 4,

N(H3) = 2, N(H4) = 4, N(I2(2k), 1) = 2, N(I2(2k), 2) = 1.

For the second one, expand the equality 〈α̃(i)
T , α̃

(i)
T 〉 = 1 and use the first claim.

Now the third one follows from (9) and Lemma 2.9.
(ii) The former claim also follows from a direct computation, by putting

N1(An) = 1, N2(An) = n, N1(I2(2k + 1)) = 1, N2(I2(2k + 1)) = 2.

The remaining proof is similar to (i). �

Now Deodhar’s method can be described, for the element w0(I), as follows:

(I) If I = ∅, then this algorithm finishes with the (trivial) decomposition w0(I) =
9



1. If I 6= ∅, choose an irreducible component J of I. Let J = S(T ).

(II) If T 6= An (n ≥ 2), I2(m) (m odd), take the (or one of the two) root(s) α̃
(i)
T .

By Lemma 2.13 (i), r̃(T , i) commutes with all elements of K = I r {sN(T ,i)}, and

we have w0(I) = r̃(T , i)w0(K) (since both sides map ΠI into Φ−; cf. (8)). Then
apply this algorithm inductively to the (smaller) set K.

(III) If T = An (n ≥ 2) or I2(m) (m odd), then similarly, r̃(T ) commutes with
all elements of K = Ir{sN1(T ), sN2(T )} and w0(I) = r̃(T , 1)w0(K) by Lemma 2.13
(ii). Then apply this algorithm inductively to the (smaller) set K.

By collecting the subset K ⊂ I appearing in the step (II) or (III) of every turn,
we obtain a decreasing sequence (K0 = I,) K1, . . . ,Kr−1,Kr = ∅. We call this a
generator sequence (of length r) for the set I.

Example 2.14. Let (W,S) = (W (Dn), S(Dn)). By using a reflection decomposi-
tion of w0(S(Di)), we compute the root si+1w0(S(Di))si+1 · αi (3 ≤ i < n). First,
assume that i is odd. By the algorithm, we have a decomposition

w0(S(Di)) = r̃(Di)sir̃(Di−2)si−2 · · · r̃(D5)s5r̃(D3)s3

(where we put r̃(D3) = sα1+α2+α3 ; note that Γ (D3) ≃ Γ (A3)). The corresponding
generator sequence is

S(Di−2) ∪ {si}, S(Di−2), S(Di−4) ∪ {si−2}, S(Di−4), . . .

. . . , S(D5), S(D3) ∪ {s5}, S(D3), {s3}, ∅.
Now since σS(Di)(si) = si, we have

w0(S(Di))si+1 · αi = w0(S(Di)) · (αi + αi+1)

= w0(S(Di)) · αi + w0(S(Di)) · αi+1 = −αi + w0(S(Di)) · αi+1.

Since all the reflections except r̃(Di), si in the decomposition fix the root αi+1, and
all roots corresponding to the reflections are orthogonal (by definition), we have

w0(S(Di)) · αi+1 = αi+1 − 2〈α̃Di
, αi+1〉α̃Di

− 2〈αi, αi+1〉αi = α̃Di+1

(where we put α̃D3 = α1 + α2 + α3). Thus we have

si+1w0(S(Di))si+1 · αi = si+1 · (α̃Di+1 − αi) = α̃Di
.

On the other hand, if i ≥ 3 is even, then we have a different decomposition

w0(S(Di)) = r̃(Di)sir̃(Di−2)si−2 · · · r̃(D4)s4s2s1.

However, we obtain the same result; namely, we have

si+1w0(S(Di))si+1 · αi = α̃Di
.

By a similar argument, it can be checked that si+1w0(S(Di))si+1 (i ≥ 3) maps
the roots αi+1, αi, αj (j < i) to −α̃Di+1 , α̃Di

, −αj′ (where j′ is the index such that
sj′ = σS(Di)(sj)) respectively. The element w0(S(Di−1))w0(S(Di))w0(S(Di+1))
has the same property. Thus we have

si+1w0(S(Di))si+1 = w0(S(Di−1))w0(S(Di))w0(S(Di+1)) (i ≥ 3).

Similarly, we have the following relations:

si+1w0(S(Bi))si+1 = w0(S(Bi−1))w0(S(Bi))w0(S(Bi+1)) (i ≥ 2),

s2s1s2 = s1w0(S(B2)),

s3w0(S(D2))s3 = w0(S(D2))w0(S(D3)),

w0(S(Di))w0(S(Dj)) = w0(S(Dj))w0(S(Di)) (2 ≤ i < j),

s1w0(S(D2k+1))s1 = s2w0(S(D2k+1))s2 = w0(S(D2))w0(S(D2k+1)).
10



(The last row follows from the relations w0(S(D2k+1)) · αi = −α3−i (i = 1, 2).)
Moreover, note that w0(S(Bi)) ∈ Z(W (Bi)) and w0(S(D2k)) ∈ Z(W (D2k)), and
w0(S(D2k+1)) commutes with all sj (3 ≤ j ≤ 2k + 1).

By these relations, we have the following:

Lemma 2.15. (See Definition 2.8 for notations.)
(i) Let 1 ≤ n ≤ ∞. Then the subgroup GBn

of W (Bn) generated by all w0(S(Bi))
(1 ≤ i ≤ n, i <∞) is normal in W (Bn).
(ii) Let 1 ≤ n ≤ ∞. Then the smallest normal subgroup GDn

of W (Dn) containing
all w0(S(D2k)) (1 ≤ k < ∞, 2k ≤ n) is the subgroup generated by all w0(S(Di))
(2 ≤ i ≤ n, i <∞).
(iii) Moreover, each of the above normal subgroups is an elementary abelian 2-group
with the generating set given there as the basis.

These normal subgroups GBn
, GDn

will appear in later sections.

2.5. Direct product decompositions of finite Coxeter groups. Owing to the
reflection decomposition given in Section 2.4, we can determine easily which finite
irreducible Coxeter groups have the center as a nontrivial direct factor. (This is
never a new result, but we restate it here since the result is used in later sections.)

For a Coxeter system (W,S), let W+ denote the normal subgroup of W (of index
two) consisting of elements of even length. This coincides with the kernel of the
map sgn ∈ Hom(W, {±1}) such that sgn(w) = (−1)ℓ(w). Since any reflection in W
has odd length, the following lemma follows from (the proof of) Lemma 2.1:

Lemma 2.16. If (W,S) is a finite irreducible Coxeter system and Z(W ) 6= 1, then
we have W = Z(W ) × W+ if and only if some (or equivalently, any) generator
sequence for S (cf. Section 2.4) has odd length.

Theorem 2.17. Let (W,S) be an irreducible Coxeter system such that Z(W ) 6= 1
(so that |W | < ∞). Then Z(W ) (≃ W (A1)) is a proper direct factor of W if and
only if W ≃ W (T ) for T = B2k+1, I2(4k + 2) (k ≥ 1), E7 or H3. In the first two
cases, W is isomorphic to W (A1)×W (D2k+1), W (A1)×W (I2(2k+1)) respectively.
In the last two cases, we have W = Z(W ) ×W+.

Proof. Note that Z(W ) ≃ {±1} by the hypothesis. Since Z(W (A1)) = W (A1), we
may assume W 6= W (A1).

Case 1. W = W (Bn) (n ≥ 2): First, we have Hom(W, {±1}) = {1, sgn, ε1, ε2}
by Lemma 2.11, where 1 denotes the trivial map, ε1(s1) = −1, ε1(si) = 1, ε2(s1) = 1
and ε2(si) = −1 (i 6= 1). Now we consider the following reflection decomposition:

w0(S) = r̃(Bn, 1)r̃(Bn−1, 1) · · · r̃(B2, 1)s1.

By Remark 2.12, each reflection r̃(Bk, 1) is conjugate to s1. This implies that any
expression of r̃(Bk, 1) as a product of generators contains an odd number of s1 and
an even number of si (i 6= 1). Thus we have

sgn(r̃(Bk, 1)) = ε1(r̃(Bk, 1)) = −1 and ε2(r̃(Bk, 1)) = 1.

If n is even, then all f ∈ Hom(W, {±1}) maps w0(S) to 1 by the above property.
Thus by Lemma 2.1, Z(W ) is not a direct factor.

On the other hand, if n is odd, then we have ε1(w0(S)) = −1 and so W =
Z(W ) × ker ε1 by the proof of Lemma 2.1. Note that ker ε1 consists of elements
in which s1 appears an even number of times. Since s1 commutes with all si
(3 ≤ i ≤ n), it can be deduced directly that ker ε1 is generated by s′1 = s1s2s1 and
all s′i = si (2 ≤ i ≤ n). Moreover, ker ε1 forms a Coxeter group of type Dn; in fact,
s′1, . . . , s

′
n satisfy the fundamental relations of type Dn (so that ker ε1 is a quotient

of W (Dn)), while the order |W (Bn)|/2 of ker ε1 coincides with |W (Dn)|. Hence
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the claim holds in this case.
Case 2. W = W (T ) for T = D2k (k ≥ 2), E7, E8, H3, H4: Since Γ odd is

connected in this case, we have Hom(W, {±1}) = {1, sgn} by Lemma 2.11. Thus
the claim follows from Lemmas 2.1 and 2.16, by taking the following generator
sequence for S (where we abbreviate the set {si1 , si2 , . . . , sir} to i1i2 · · · ir):




S(D2k−2) ∪ {s2k}, S(D2k−2), . . . , S(D4), 124, 12, 1, ∅ if T = D2k,

S(E7), 234567, 23457, 2345, 235, 23, 2, ∅ if T = E8,

234567, 23457, 2345, 235, 23, 2, ∅ if T = E7,

S(H3), 13, 1, ∅ if T = H4,

13, 1, ∅ if T = H3

(note that the first sequence consists of 2k terms).
Case 3. W = W (F4): We have a generator sequence 234, 23, 2, ∅ for S and

the corresponding decomposition of w0(S) into four reflections, all of which are
conjugate to s1 and s2 (cf. Remark 2.12). This (and Lemma 2.11) implies that any
f ∈ Hom(W, {±1}) maps all the four reflections to the same element f(s1), so that
f(w0(S)) = 1. Hence the claim follows from Lemma 2.1.

Case 4. W = W (I2(2k)) (k ≥ 3): We have a reflection decomposition w0(S) =
r̃(I2(2k), 1)s1. If k is even, then r̃(I2(2k), 1) is conjugate to s1 (cf. Remark 2.12).
Now by a similar argument to the previous case, any f ∈ Hom(W, {±1}) maps
w0(S) to 1. Thus Z(W ) is not a direct factor by Lemma 2.1.

On the other hand, if k is odd, then r̃(I2(2k), 1) is conjugate to s2 (cf. Remark
2.12). Thus ε1 ∈ Hom(W, {±1}) (ε(s1) = −1, ε(s2) = 1) sends w0(S) to −1, so
that W = Z(W )× ker ε1 by the proof of Lemma 2.1. Moreover, ker ε1 is generated
by two reflections s1s2s1 and s2, and so ker ε1 is a Coxeter system of type I2(k)
(since s1s2s1s2 has order k). Hence the claim holds in all cases. �

Since the groups W (E7)
+ and W (H3)

+ are known to (be isomorphic to) the
well-examined simple groups S6(2) and A5 respectively (cf. [5], Sections 2.12–13,
etc.), we omit the proof of the following properties of these groups. Note that these
properties can also be proved by using Theorems 2.17 and 3.3 below.

Lemma 2.18. Let G = W (T )+, T ∈ {E7, H3}. Then G has trivial center, is
directly indecomposable and is generated by involutions. Moreover, G is not iso-
morphic to a Coxeter group.

2.6. Notes on normalizers in Coxeter groups. In this subsection, we summa-
rize some properties of normalizers NW (WI) of parabolic subgroups WI in Coxeter
groups W . In the paper [1] (or [4], for the case |W | <∞), the structure of NW (WI)
is well examined so that we can in fact determine the precise structure of the nor-
malizer. In particular, here we use the following results in those papers:

Proposition 2.19 ([1], Proposition 2.1). If I ⊂ S, then NW (WI) is the semidirect
product of WI by the group NI = {w ∈ W | w · ΠI = ΠI}.
Proposition 2.20 ([1], remarked between Theorems A and B). If I ⊂ J ⊂ S and
WI is an infinite irreducible component of WJ , then NW (WJ ) ⊂WI∪I⊥ .

By using these, we can prove the following corollary. (This is also a consequence
of a result in [1], but we include the proof here since it is sufficiently short.)

In the proof, we also use the following result. (This result was originally given
by Deodhar [2], in the proof of Proposition 4.2, for the case |S| < ∞. See also [8],
Proposition 2.14, etc. for the case |S| = ∞.)

Proposition 2.21. If (W,S) is irreducible and |W | = ∞, then |Φ r ΦI | = ∞ for
all proper subsets I ⊂ S.
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Corollary 2.22. Let s ∈ S and I = S r {s}.
(i) If 1 6= w ∈ NI, then Φ [w] = Φ+ r ΦI . Hence by (8), such an element w is
unique if it exists.
(ii) If |W | <∞ and w0(S) ∈ NW (WI), then NW (WI) = WI ⋊ {1, w0(S)}.
(iii) If (W,S) is irreducible and |W | = ∞, then NI = 1 and NW (WI) = WI .

Proof. (i) In this case, we have w · αs ∈ Φ− (otherwise, we have w · Φ+ ⊂ Φ+ but
this is a contradiction). Now the claim follows from Lemma 2.9.
(ii) Note that w0(S) 6∈WI , while |NI | ≤ 2 by (i). Thus by Proposion 2.19, NW (WI)
is generated by WI and w0(S). Now the claim holds, since w0(S)2 = 1.
(iii) In this case, we have |Φ+rΦI | = ∞ by Proposition 2.21. Thus we haveNI = 1
by (i), since the set Φ [w] is always finite. Hence the claim holds. �

Owing to this description, we have the following:

Corollary 2.23. (i) If W = W (Bn), 2 ≤ n <∞, then
⋂n−1
i=1 NW (WS(Bi)) = GBn

.

(ii) If W = W (Dn), 3 ≤ n <∞, then
⋂n−1
i=2 NW (WS(Di)) = GDn

⋊ 〈s1〉.
Proof. Note that, by Lemma 2.15, GBn

is generated by all w0(S(Bk)) (1 ≤ k ≤ n).
On the other hand, by Lemma 2.15 again, the product GDn

〈s1〉 is a semidirect
product with GDn

normal, and it is generated by all w0(S(Dk)) (1 ≤ k ≤ n).
We prove the two claims in parallel. Let T = B and L = 1 (for (i)), T = D

and L = 2 (for (ii)), respectively. By the above remark, it is enough to show
that the group in the left side is generated by all w0(S(Tk)) (1 ≤ k ≤ n). We use
induction on n. First, note that w0(S(Tn)) ∈ NW (WS(Ti)) for all L ≤ i ≤ n−1. Put
W ′ = WS(Tn−1). Then by Corollary 2.22 (ii), we haveNW (W ′) = W ′⋊〈w0(S(Tn))〉.
Thus the claim holds if n = L + 1; in fact, in this case, W ′ = WS(TL) is generated
by all w0(S(Ti)) (1 ≤ i ≤ L).

If n > L+ 1, then the above equality implies that

n−1⋂

i=L

NW (WS(Ti)) =

(
n−2⋂

i=L

NW (WS(Ti))

)
∩
(
W ′ ⋊ 〈w0(S(Tn))〉

)

=

(
n−2⋂

i=L

NW ′(WS(Ti))

)
⋊ 〈w0(S(Tn))〉

since w0(S(Tn)) ∈ ⋂n−2
i=L NW (WS(Ti)). By the induction, the first factor of the

semidirect product is generated by all w0(S(Ti)) (1 ≤ i ≤ n − 1). Thus the claim
also holds in this case. Hence the proof is concluded. �

On the other hand, we have some more properties of the normalizers, which can
be deduced without results in [1] and [4]. First, we have:

If I, J ⊂ S, then NW (WI) ∩NW (WJ ) ⊂ NW (WI∩J ).(15)

For I ⊂ S,w ∈ NW (WI) if and only if w · ΦI = ΦI .(16)

((15) follows from the well-known fact WI ∩WJ = WI∩J . (16) follows immediately
from (11).) Moreover, we have the following:

Lemma 2.24. Let I ⊂ J ⊂ S such that J r I ⊂ I⊥. Then

NW (WJ ) ∩NW (WI) ⊂ NW (WJrI).

Proof. Let w ∈ NW (WJ ) ∩ NW (WI) and s ∈ J r I. Then w · ΦJ = ΦJ and
w · ΦI = ΦI by (16), so that we have w · αs ∈ ΦJ and w · αs 6∈ ΦI . Now by the
hypothesis and (10), we have supp(w · αs) ⊂ J r I and so w · αs ∈ ΦJrI . Hence
the claim follows from (16). �
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3. Main results

3.1. Direct indecomposability. In this subsection, we give the main result of
this paper that all infinite irreducible Coxeter groups are in fact directly indecom-
posable, even if it has infinite rank (Theorem 3.3). As is mentioned in Introduction,
this result was already shown in [9] for the case of finite rank, in which the finiteness
of the ranks is essential and so cannot be removed immediately.

Our proof is based on the following complete description (proved in later sec-
tions) of the centralizers of normal subgroups, which are generated by involutions,
in irreducible Coxeter groups (possibly of infinite rank):

Theorem 3.1. (cf. Definition 2.8 for notations.) Let (W,S) be an irreducible
Coxeter system of an arbitrary rank, and H ⊳W a normal subgroup generated by
involutions. Then:
(i) If H ⊂ Z(W ), then ZW (H) = W .
(ii) If (W,S) = (W (Bn), S(Bn)), 2 ≤ n ≤ ∞, τ ∈ Aut(Γ (Bn)), H 6⊂ Z(W ) and
H ⊂ τ(GBn

), then ZW (H) = τ(GBn
). (cf. Lemma 2.15 for definition of GBn

.)
(iii) If (W,S) = (W (Dn), S(Dn)), 3 ≤ n ≤ ∞, τ ∈ Aut(Γ (Dn)), H 6⊂ Z(W ) and
H ⊂ τ(GDn

), then ZW (H) = τ(GDn
). (cf. Lemma 2.15 for definition of GDn

.)
(iv) Otherwise, ZW (H) = Z(W ).

This theorem yields the following corollary. A group G is said to be a central
product of two subgroups H1, H2 if G = H1H2 and H2 ⊂ ZG(H1) (or equivalently
H1 ⊂ ZG(H2)). Note that H1 ∩H2 ⊂ Z(G) in this case.

Corollary 3.2. Let (W,S) be an irreducible Coxeter system of an arbitrary rank,
and suppose that W is a central product of two subgroups G1, G2 generated by
involutions. Then either G1 ⊂ Z(W ) or G2 ⊂ Z(W ).

Proof. By definition, we have G2 ⊂ ZW (G1), W = G1ZW (G1) and G1 ⊳W . Now if
G1 satisfies the condition of cases (ii) or (iii) of Theorem 3.1, then G1 and ZW (G1)
are contained in the same proper subgroup of W . This is impossible, so that we
have G1 ⊂ Z(W ) (case (i)) or G2 ⊂ ZW (G1) = Z(W ) (case (iv)). �

Now our main result follows immediately:

Theorem 3.3. The only nontrivial direct product decompositions of an irreducible
Coxeter group W (of an arbitrary rank) are the ones given in Theorem 2.17. In
particular, W is directly indecomposable if and only if W 6≃W (T ) for T = B2k+1,
I2(4k + 2) (k ≥ 1), E7, H3.

Proof. Assume that W = G1 × G2 for nontrivial subgroups G1, G2 ⊂ W . Then
both G1 and G2 are generated by involutions, since W is so. Thus by Corollary
3.2, we have either G1 = Z(W ) or G2 = Z(W ) (since G1, G2 6= 1 and |Z(W )| ≤ 2).
Hence Z(W ) 6= 1 and so the claim follows from Theorem 2.17. �

3.2. The Isomorphism Problem. By using these results, we give some results
on the Isomorphism Problem of general Coxeter groups. Let (W,S) be a Coxeter
system with canonical direct product decompositionW =

∏
ω∈ΩWω into irreducible

components Wω. Then we put

Ωfin = {ω ∈ Ω | |Wω | <∞}, Ωinf = Ω r Ωfin,Wfin =
∏

ω∈Ωfin

Wω , Winf =
∏

ω∈Ωinf

Wω.

(Note that W = Wfin ×Winf .) Moreover, we write ΩT = {ω ∈ Ω | Wω ≃ W (T )}
for any type T . Now our result (proved later) is as follows:

Theorem 3.4. (See notations above.) Let (W,S), (W ′, S′) be two Coxeter systems
with the decompositions W =

∏
ω∈ΩWω, W ′ =

∏
ω′∈Ω′ W ′

ω′ into irreducible com-
ponents. Let πω : W →Wω, π′

ω′ : W ′ →W ′
ω′ denote the projections.

14



(i) W ≃W ′ if and only if the following two conditions are satisfied:
(I) There is a bijection ϕ : Ωinf → Ω′

inf such that Wω ≃W ′
ϕ(ω) for all ω ∈ Ωinf.

(II) Each of the following subsets of Ω has the same cardinality as the corre-
sponding subset of Ω′:

ΩA1 ∪
(⋃

k≥1

ΩB2k+1

)
∪ ΩE7 ∪ ΩH3 ∪

(⋃

k≥1

ΩI2(4k+2)

)
, ΩB3 ∪ ΩA3 ,

ΩB2k+1
∪ ΩD2k+1

, ΩI2(6) ∪ ΩA2 , ΩI2(4k+2) ∪ ΩI2(2k+1) (k ≥ 2),

ΩT for T = An (4 ≤ n <∞), Bn (n <∞ even), Dn (4 ≤ n <∞ even),

E6, E7, E8, F4, H3, H4, I2(4k) (2 ≤ k <∞).

(ii) Suppose that W ≃W ′, and let f ∈ Isom(W,W ′). Then:
(I) f(Wfin) = W ′

fin (and so the map gfin defined by gfin = f |Wfin
is an isomor-

phism Wfin →W ′
fin).

(II) There is a bijection ϕ : Ωinf → Ω′
inf such that for all ω ∈ Ωinf, the map

gω = π′
ϕ(ω) ◦ f |Wω

is an isomorphism Wω → W ′
ϕ(ω).

(III) Moreover, there is a map gZ ∈ Hom(Winf , Z(W ′)) such that

f(w) =

{
gω(w)gZ (w) if ω ∈ Ωinf , w ∈ Wω,

gfin(w) if w ∈Wfin.

Note that this is an analogue of the Krull-Remak-Schmidt Theorem on direct
product decompositions of groups, and follows from that (and Theorem 3.3) if W
has a composition series. (More precisely, the key property in the proof of the
K-R-S Theorem, which follows from the existence of composition series, is that any
surjective normal endomorphism of an indecomposable factor is either nilpotent or
isomorphic. However, it is not clear whether or not an irreducible Coxeter group
has this property.) Our result here is also a generalization of a result of [9].

In order to prove this theorem, we introduce the following “modified version” of
irreducible components. Here a group G is said to be admissible if either G is a
nontrivial directly indecomposable irreducible Coxeter group (cf. Theorem 3.3) or
G is isomorphic to one of W (E7)

+, W (H3)
+.

Remark 3.5. Let W =
∏
ω∈ΩWω be the usual decomposition of a Coxeter group

W into irreducible components. Then, by subdividing every directly decomposable
Wω into the direct factors (cf. Theorem 3.3), we can obtain another decomposition
W =

∏
λ∈ΛGλ into admissible subgroups Gλ. Moreover, since any infinite Wω is

directly indecomposable, we can take the index set Λ so that Ωinf ⊂ Λ and Gω = Wω

for all ω ∈ Ωinf .

From now, we consider a family G of groups which includes all the components
of given direct product decompositions. In our argument below, this family G is
assumed to satisfy the following conditions:

If G =
∏

λ∈Λ

Gλ, Gλ, G
′ ∈ G (λ ∈ Λ) and f ∈ Hom(G,G′) is surjective,

then f maps a Gλ onto G′ (so that it maps all other Gµ into Z(G′)).

(17)

(18) If G ∈ G, then Z(G) = 1 or Z(G) is a cyclic group of prime order.

(Actually, the condition (18) can be slightly weakened to the form that Z(G) is
either trivial or a finite elementary abelian p-group with p prime. But we omit the
detail here, since we do not need such a generalization in this paper.)

Remark 3.6. (i) If G satisfies (17), then all groups G ∈ G are directly indecompos-
able. In fact, if G admits a nontrivial decomposition G = G1 ×G2 with projections
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πi : G→ Gi (i = 1, 2), then the map G×G→ G, (w, u) 7→ π1(w)π2(u) is surjective
but does not satisfy the conclusion of (17).
(ii) If G satisfies (17) and (18), then any G ∈ G has the three properties (I)–(III)
in Lemma 2.1 whenever Z(G) 6= G. This follows immediately from (i).

Lemma 3.7. Any family G of admissible groups satisfies the two conditions.

Proof. The condition (18) follows from Lemma 2.18. For (17), we may assume
G′ 6≃ W (A1) (so that Z(G′) 6= G′), since otherwise the conclusion is obvious.
Then there is an index λ ∈ Λ such that f(Gλ) 6⊂ Z(G′). Put G1 = Gλ and
G2 =

∏
µ∈Λr{λ}Gµ. Then the hypothesis of (17) implies that G′ is a central

product (cf. Section 3.1) of f(G1) and f(G2), so that f(G1) ∩ f(G2) ⊂ Z(G′).
Thus the conclusion follows from Lemma 2.18 if G′ ≃ W (E7)

+ or W (H3)
+ (in

fact, the central product is a direct product since Z(G′) = 1, while G′ is directly
indecomposable).

On the other hand, suppose that G′ is a directly indecomposable irreducible
Coxeter group. Since both G1 and G2 are generated by involutions (cf. Lemma
2.18), f(G1) and f(G2) also have this property. Thus we have f(G2) ⊂ Z(G′)
by Corollary 3.2 (since f(G1) 6⊂ Z(G′)). Now if Z(G′) 6⊂ f(G1) (so that f(G1) ∩
Z(G′) = 1 since |Z(G′)| ≤ 2), then the central product becomes a (nontrivial)
direct product, but this is impossible. This implies that f(G2) ⊂ Z(G′) ⊂ f(G1)
and so f(G1) = G′. Hence the claim holds. �

Remark 3.8. By a similar argument, it is deduced that any family G, consisting of
cyclic groups of prime order and directly indecomposable groups with trivial center,
also satisfies the conditions (17) and (18).

We prepare some more notations. For a decomposition G =
∏
λ∈ΛGλ of G, put

GΛ′ =
∏

λ∈Λ′

Gλ (for Λ′ ⊂ Λ), ΛZ = {λ | Z(Gλ) = Gλ}, Λ¬Z = Λ r ΛZ ,

Λp = {λ | |Z(Gλ)| = p},ΛZ,p = ΛZ ∩ Λp,Λ¬Z,p = Λ¬Z ∩ Λp (p prime or 1).

(19)

Note that the proof of the following theorem is essentially the same as the proof of
Theorem 2.1 of [9], but slightly more delicate by lack of the assumption on finiteness
of the index sets (not only by generality of the context). Note also that this is also
an analogue of the Krull-Remak-Schmidt Theorem.

Theorem 3.9. (See notations above.) Let G =
∏
λ∈ΛGλ, G

′ =
∏
λ′∈Λ′ G′

λ′ be
decompositions of two groups G, G′ into nontrivial subgroups. Let πλ : G→ Gλ and
π′
λ′ : G′ → G′

λ′ be the projections. Suppose that G = {Gλ | λ ∈ Λ} ∪ {G′
λ′ | λ′ ∈ Λ′}

satisfies the conditions (17) and (18). Let f ∈ Isom(G,G′). Then:
(i) There is a bijection ϕ : Λ → Λ′ such that Gλ ≃ G′

ϕ(λ) for all λ ∈ Λ. Moreover,

for any λ ∈ Λ¬Z, the map gλ = π′
ϕ(λ) ◦ f |Gλ

is an isomorphism Gλ → G′
ϕ(λ).

(ii) Moreover, there is a map gZ ∈ Hom(G,Z(G′)) such that

f(w) =

{
gλ(w)gZ(w) if λ ∈ Λ¬Z , w ∈ Gλ,

gZ(w) if w ∈ GΛZ

and that π′
ϕ(λ) ◦ gZ(Gλ) = 1 for all λ ∈ Λ¬Z .

(iii) If
⋃
p6=1 Λp ⊂ Λ♮ ⊂ Λ, then

⋃
p6=1 Λ′

p ⊂ ϕ(Λ♮) and f(GΛ♮) = G′
ϕ(Λ♮).

Proof. Note that
⋃
p6=1 Λp = {λ ∈ Λ | Z(Gλ) 6= 1}. Then the claim (iii) is deduced

from the other claims (since now Z(G) ⊂ GΛ♮ and Z(G′) ⊂ G′
ϕ(Λ♮)).

From now, we prove the claims (i) and (ii). First, we put (symmetrically)

fλ′ = π′
λ′ ◦ f ∈ Hom(G,G′

λ′ ) (λ′ ∈ Λ′), f ′
λ = πλ ◦ f−1 ∈ Hom(G′, Gλ) (λ ∈ Λ),
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and define (symmetrically)

A′
λ = {λ′ ∈ Λ′ | fλ′(Gλ) 6⊂ Z(G′

λ′)} ⊂ Λ′
¬Z for λ ∈ Λ¬Z ,

Aλ′ = {λ ∈ Λ | f ′
λ(G

′
λ′) 6⊂ Z(Gλ)} ⊂ Λ¬Z for λ′ ∈ Λ′

¬Z .

Note that A′
λ 6= ∅ since f(Gλ) 6⊂ Z(G′) (and Aλ′ 6= ∅ by symmetry). Moreover,

since fλ′ : G→ G′
λ′ is surjective, the condition (17) implies that

if λ′ ∈ A′
λ, then fλ′(Gλ) = G′

λ′ and fλ′(Gµ) ⊂ Z(G′
λ′) for all µ ∈ Λ r {λ}.

By symmetry, a similar property holds for λ ∈ Aλ′ (with respect to the map f ′
λ).

We prove the following claims:
Claim 1: If λ, µ ∈ Λ¬Z and λ 6= µ, then A′

λ ∩ A′
µ = ∅.

Claim 2: If λ′ ∈ A′
λ, then λ ∈ Aλ′ . (Thus |A′

λ| = 1 for all λ ∈ Λ¬Z , by Claim
1 and symmetry. Moreover, by symmetry, the map ϕ : Λ¬Z → Λ′

¬Z defined by
A′
λ = {ϕ(λ)} is a bijection with inverse map satisfying Aλ′ = {ϕ−1(λ′)}.)
Claim 3: The map gλ (λ ∈ Λ¬Z) in (i) is an isomorphism Gλ → G′

ϕ(λ).

Claim 4: f(Z(GΛ¬Z,p
)) = Z(G′

Λ′

¬Z,p
) for all primes p.

Claim 5: For each prime p, ΛZ,p and Λ′
Z,p have the same cardinality.

Proof of Claim 1: Assume contrary that λ′ ∈ A′
λ ∩ A′

µ. Then the relation
λ′ ∈ A′

λ means that fλ′(Gλ) 6⊂ Z(G′
λ′ ), while the relation λ′ ∈ A′

µ implies (by the
above property) that fλ′(Gλ) ⊂ Z(G′

λ′ ) (since λ 6= µ). This is a contradiction.
Proof of Claim 2: Since G′

λ′ 6= Z(G′
λ′), we can take an element w ∈ G′

λ′ r

Z(G′
λ′). Put uµ = f ′

µ(w) ∈ Gµ for µ ∈ Λ, so that we have w = f(
∏
µ∈Λ uµ). Now

fλ′(uµ) ∈ Z(G′
λ′ ) for all µ ∈ Λ r {λ}, while w = π′

λ′(w) 6∈ Z(G′
λ′ ). Thus we have

fλ′(uλ) 6∈ Z(G′
λ′) and so uλ 6∈ Z(Gλ) (since fλ′(Gλ) = G′

λ′). Hence λ ∈ Aλ′ .
Proof of Claim 3: Note that gλ : Gλ → G′

ϕ(λ) is surjective (as above). Now

the following equivalence holds for all w ∈ Gλ:

fϕ(λ)(w) ∈ Z(G′
ϕ(λ)) ⇐⇒ f(w) ∈ Z(G′) ⇐⇒ w ∈ Z(G) ⇐⇒ w ∈ Z(Gλ)

(we use the fact A′
λ = {ϕ(λ)} for the first equivalence). This implies that ker gλ is

contained in the simple group Z(Gλ) (cf. (18)), so that ker gλ = 1 or Z(Gλ). Thus
gλ is injective (and so an isomorphism) if Z(Gλ) = 1. Moreover, if Z(G′

ϕ(λ)) = 1,

then f ′
λ|G′

ϕ(λ)
is an isomorphism G′

ϕ(λ) → Gλ by symmetry, so that we have

Z(Gλ) = 1. Thus gλ is injective (as above) also in this case.
On the other hand, suppose Z(G′

ϕ(λ)) 6= 1. Then by the above equivalence, there

is an element w ∈ Z(Gλ) such that gλ(w) 6= 1 (since gλ is surjective). Thus we
have ker gλ 6= Z(Gλ) and so ker gλ = 1. Hence gλ is an isomorphism.

Proof of Claim 4: Note that Z(G) =
∏
p6=1 Z(GΛp

) and each Z(GΛp
) is an

elementary abelian p-group, by (18). Z(G′) also admits a similar decomposition.
Thus the isomorphism f |Z(G) : Z(G) → Z(G′) maps each Z(GΛp

) onto Z(G′
Λ′

p
).

Moreover, for any λ ∈ Λ¬Z,p, the composite homomorphism Gλ
f→ G′ → G′

Λ′

Z,p

(where the latter map is the projection) maps Z(Gλ) to 1, by Remark 3.6 (ii) (note
that Z(G′

Λ′

Z,p
) = G′

Λ′

Z,p
). Thus we have f(Z(Gλ)) ⊂ G′

Λ′

¬Z,p
for any λ ∈ Λ¬Z,p and

so f(Z(GΛ¬Z,p
)) ⊂ Z(G′

Λ′

¬Z,p
). Now this claim holds by symmetry.

Proof of Claim 5: Note that Z(GΛp
) = GΛZ,p

× Z(GΛ¬Z,p
) and Z(G′

Λ′
p
)

admits a similar decomposition. Moreover, we have f(Z(GΛp
)) = Z(G′

Λ′
p
) and

f(Z(GΛ¬Z,p
)) = Z(G′

Λ′

¬Z,p
) by Claim 4. Thus the complementary factors GΛZ,p

,

G′
Λ′

Z,p
, which are elementary abelian p-groups with basis having the same cardi-

nality as ΛZ,p, Λ′
Z,p respectively, are also isomorphic. Now this claim follows from

uniqueness of the dimension of a vector space.
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Conclusion. Since ΛZ , Λ′
Z are disjoint unions of ΛZ,p, Λ′

Z,p respectively (cf.

(18)), Claim 5 implies that this ϕ extends (not uniquely) to a bijection ϕ : Λ → Λ′

satisfying (i) (note that ΛZ,1 = Λ′
Z,1 = ∅ by the hypothesis). Moreover, define a

map gZ : G→ Z(G′) componentwise by

gZ(w) =

{∏
λ′∈Λ′

r{ϕ(λ)} fλ′(w) if λ ∈ Λ¬Z, w ∈ Gλ,

f(w) if w ∈ GΛZ
.

Note that GΛZ
⊂ Z(G), while in the above definition, we have fλ′(w) ∈ Z(G′

λ′)
by the fact A′

λ = {ϕ(λ)}. Since Z(G′) is abelian, these facts imply that gZ is a
well-defined group homomorphism. Now the claim (ii) follows from definition. �

Proof of Theorem 3.4. Let W =
∏
λ∈ΛGλ, W

′ =
∏
λ′∈Λ′ G′

λ′ be the decomposi-
tions into admissible groups given in Remark 3.5.
(i) Each of the sets in the condition (II), except ΩE7 and ΩH3 in the last row, has
the same cardinality as the set {λ ∈ Λ | Gλ ≃W (T ′)} where T ′ = A1, A3, D2k+1,
A2, I2(2k + 1) and T , respectively (note that no two admissible finite groups of
distinct types are isomorphic; cf. Lemma 2.18). Moreover, each of ΩE7 and ΩH3 has
the same cardinality as {λ ∈ Λ | Gλ ≃W (T ′)+} for T ′ = E7 and H3, respectively.
Similar relations also hold for W ′. Thus the two conditions (I), (II) are satisfied
if and only if there is a bijection ψ : Λ → Λ′ such that Gλ ≃ G′

ψ(λ) for all λ ∈ Λ.

Hence the claim follows from Theorem 3.9 (i) (which can be applied indeed to the
case, by Lemma 3.7).
(ii) Take ϕ : Λ → Λ′, gλ ∈ Isom(Gλ, G

′
ϕ(λ)) (λ ∈ Λ¬Z) and g′Z ∈ Hom(W,Z(W ′))

as in the conclusion of Theorem 3.9. By Remark 3.5, gω ∈ Isom(Wω ,W
′
ϕ(ω)) for all

ω ∈ Ωinf , so that the claim (II) holds. The claim (I) follows from Theorem 3.9 (iii)
(by putting Λ♮ = Λ r Ωinf). Moreover, the claim (III) also follows from Theorem
3.9, by putting gZ = g′Z |Winf

. Hence the proof is concluded. �

3.3. Automorphism groups. Owing to Theorems 3.4 and 3.9, we can examine
the automorphism groups of W =

∏
ω∈ΩWω and G =

∏
λ∈ΛGλ respectively (The-

orem 3.10), under the hypothesis in Section 3.2. In this subsection, the complete

direct product of groups is denoted by a symbol
∏

.
As is remarked in Section 2.1, if G′, G′′ are groups and G′ = G′

1 ×G′
2, then the

set Hom(G′
1, G

′′) is embedded naturally into Hom(G′, G′′). In this manner, each
Aut(Gλ), Aut(Wω) is embedded into Aut(G), Aut(W ) respectively. The group
Aut(Wfin) is also embedded into Aut(W ).

On the other hand, the symmetric group on each isomorphism class of compo-
nents of G or W is also embedded into the automorphism group, as follows. For the
case of G, we partition the index set Λ¬Z into subsets Λξ (ξ ∈ Ξ) so that λ, λ′ ∈ Λ¬Z

are in the same subset if and only if Gλ ≃ Gλ′ . Moreover, for ξ ∈ Ξ, we choose
an “identity map” idµ,λ ∈ Isom(Gλ, Gµ) for each λ, µ ∈ Λξ so that idλ,λ = idGλ

,

idλ,µ = idµ,λ
−1 and idν,µ ◦ idµ,λ = idν,λ for all λ, µ, ν ∈ Λξ. (This can be done by

taking a maximal tree in the category of groups Gλ (λ ∈ Λξ) and group isomor-
phisms.) Then each element τ of the symmetric group Sym(Λξ) on Λξ induces an
automorphism of the factor GΛξ

of G; namely,

τ(w) = idτ(λ),λ(w) ∈ Gτ(λ) for λ ∈ Λξ and w ∈ Gλ.

In this manner, Sym(Λξ) is embedded into Aut(GΛξ
), and so also into Aut(G).

Similarly, we write Ω =
⊔
υ∈Υ Ωυ, choose “identity maps” idω′,ω ∈ Isom(Wω ,Wω′)

and then embed every symmetric group Sym(Ωυ) into Aut(W ). Moreover, put

Υfin = {υ ∈ Υ | |Wω| <∞ for ω ∈ Ωυ} and Υinf = Υ r Υfin.
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For a group G′, recall (Section 2.1) the structure of the monoid Hom(G′, Z(G′)),
the action of Aut(G′) on it and the embedding f 7→ f ♭ into the monoid End(G′)
compatible with the action of Aut(G′). By this map, the group Hom(G′, Z(G′))×

of invertible elements of Hom(G′, Z(G′)) is embedded into Aut(G′).
Now for the group G, let

Hom(G,Z(G))o = {f ∈ Hom(G,Z(G)) |f(GΛZ
) = 1,

f(Gλ) ⊂ Z(Gλ) for all λ ∈ Λ¬Z}
(cf. (19) for notations). Since we assumed that each Gλ (λ ∈ Λ¬Z) satisfies the
three conditions in Lemma 2.1 (cf. Remark 3.6 (ii)), we have f(Z(G)) = 1 for all f ∈
Hom(G,Z(G))o. Thus by Lemma 2.4 (i), Hom(G,Z(G))o is an abelian subgroup of
Hom(G,Z(G))× with multiplication (f ∗g)(w) = f(w)g(w) (f, g ∈ Hom(G,Z(G))o,
w ∈ G).

On the other hand, since Z(Winf) = 1, Lemma 2.4 (ii) implies that the set
Hom(Winf , Z(W )) forms an abelian normal subgroup of Hom(W,Z(W ))× with mul-
tiplication (f ∗ g)(w) = f(w)g(w) (f, g ∈ Hom(Winf , Z(W )), w ∈Winf). Since now
Z(W ) is an elementary abelian 2-group, Hom(Winf , Z(W )) is also an elementary
abelian 2-group.

Now our result is stated as follows:

Theorem 3.10. (See notations above.)

(i) Put H1 = Hom(G,Z(G))×
♭
, H2 =

∏
λ∈Λ¬Z

Aut(Gλ), H3 =
∏
ξ∈ΞSym(Λξ) and

H4 = Hom(G,Z(G))♭o. Then

Aut(G) = (H1H2) ⋊H3, H1 ⊳ Aut(G), H2 ⊳H2H3, H1 ∩H2 = H4.

(ii) Put H ′
1 = Hom(Winf , Z(W ))♭, H ′

2 = Aut(Wfin), H ′
3 =

∏
ω∈Ωinf

Aut(Wω) and

H ′
4 =

∏
υ∈Υinf

Sym(Ωυ). Then

Aut(W ) = H ′
1 ⋊ (H ′

2 ×H ′
3) ⋊H ′

4, H
′
2H

′
4 = H ′

2 ×H ′
4, H

′
3H

′
4 = H ′

3 ⋊H ′
4.

(iii) The subgroup H =
(∏

ω∈ΩAut(Wω)
)(∏

υ∈ΥSym(Ωυ)
)

has finite index in

Aut(W ) if and only if, either Z(W ) = 1 or the odd Coxeter graph (cf. Definition
2.10) Γ odd of W consists of only finitely many connected components. (Hence the
index is finite whenever W has finite rank.)

From now, we prove this theorem. First, we prove (i) and (ii). Note that
H ′

2H
′
3 = H ′

2 ×H ′
3 and H ′

2H
′
4 = H ′

2 ×H ′
4 by definition. Moreover, by definition,

H2 = {f ∈ Aut(G) | f(w) = w (w ∈ GΛZ
), f(Gλ) = Gλ (λ ∈ Λ¬Z)},

H ′
3 = {f ∈ Aut(W ) | f(w) = w (w ∈Wfin), f(Wω) = Wω (ω ∈ Ωinf)}.

(20)

Claim 1. (i) Aut(G) = H1H2H3. (ii) Aut(W ) = H ′
1H

′
2H

′
3H

′
4.

Proof. (i) Let f ∈ Aut(G), and take ϕ, gλ, gZ as in Theorem 3.9. Note that
ϕ(Λξ) = Λξ for all ξ ∈ Ξ. Now define f1 ∈ Hom(G,Z(G)) by

f1(w) =

{
gZ ◦ g−1

ϕ−1(λ)(w)−1 for λ ∈ Λ¬Z , w ∈ Gλ,

wf(w)−1 for w ∈ GΛZ

(this is well defined since GΛZ
⊂ Z(G)). Then by definition and Theorem 3.9, we

have f = f1
♭ ◦ f2 ◦ f3, where

f2 = (gϕ−1(λ) ◦ idϕ−1(λ),λ)λ∈Λ¬Z
∈ H2, f3 = (ϕ|Λξ

)ξ∈Ξ ∈ H3.

Moreover, we have f1
♭ = f ◦ f−1

3 ◦ f−1
2 ∈ Aut(G) and so f1 ∈ Hom(G,Z(G))× by

Lemma 2.2 (ii). Hence f1
♭ ∈ H1 and so f ∈ H1H2H3.

19



(ii) Let f ∈ Aut(W ), and take ϕ, gfin, gλ, gZ as in Theorem 3.4 (ii). Note that
ϕ(Ωυ) = Ωυ for all υ ∈ Υ. Now define f1 ∈ Hom(Winf , Z(W )) by

f1(w) = gZ ◦ g−1
ϕ−1(ω)(w)−1 for ω ∈ Ωinf , w ∈Wω .

Then we have (by definition and Theorem 3.4 (ii))

f = f1
♭ ◦ gfin ◦ (gϕ−1(ω) ◦ idϕ−1(ω),ω)ω∈Ωinf

◦ (ϕ|Ωυ
)υ∈Υinf

∈ H ′
1H

′
2H

′
3H

′
4.

Hence the proof is concluded. �

Claim 2. (i) If f ♭ ∈ H1, λ, µ ∈ Λ¬Z and f ♭(Gλ) ⊂ Gµ, then λ = µ and f(Gλ) ⊂
Z(Gλ).
(ii) If f ♭ ∈ H ′

1, ω, ω
′ ∈ Ωinf and f ♭(Wω) ⊂Wω′ , then ω = ω′ and f(Wω) = 1.

Proof. (i) By the choice of λ, we can take w ∈ Gλ r Z(Gλ). Now we have
πλ(f(w)) ∈ Z(Gλ) (where πλ is the projection G → Gλ) and so πλ(f

♭(w)) =
wπλ(f(w))−1 6= 1. Since f ♭(w) ∈ Gµ, this implies that µ = λ. Now the latter part

follows from definition of the map f ♭.
(ii) By a similar argument to (i), we have ω = ω′ and f(Wω) ⊂ Z(Wω). Hence the
claim holds since Z(Wω) = 1. �

Claim 3. (i) (H1H2) ∩H3 = 1. (ii) (H ′
1H

′
2H

′
3) ∩H ′

4 = 1.

Proof. (i) Let f1 ∈ H1, f2 ∈ H2 such that f1 ◦ f2 ∈ H3. By (20) and definition of
H3, both f−1

2 and f1 ◦f2 map each component Gλ (λ ∈ Λ¬Z) onto a component, so
that f1 also does so. By Claim 2 (i), f1 maps each Gλ (λ ∈ Λ¬Z) onto itself, while
f2 also does so (cf. (20)). Thus f1 ◦ f2 ∈ H3 also has this property. By definition
of H3, this occurs only if f1 ◦ f2 = idG. Hence the claim holds.
(ii) The proof is similar to (i); if fi ∈ H ′

i (i = 1, 2, 3) and f4 = f1 ◦ f2 ◦ f3 ∈ H ′
4,

then f1 = f4 ◦ f−1
3 ◦ f−1

2 must map each Wω (ω ∈ Ωinf) onto some component,
which is Wω by Claim 2 (ii). This implies that f4 maps each Wω (ω ∈ Ωinf) onto
itself, so that f4 = idW by definition of H ′

4. Hence the claim holds. �

Claim 4. (i) H2 ⊳H2H3. (ii) H ′
3 ⊳H ′

3H
′
4.

Proof. For (i), it is enough to show that f3 ◦ f2 ◦ f−1
3 ∈ H2 for all f2 ∈ H2 and

f3 ∈ H3. By definition, f3 is identity on GΛZ
and maps each Gλ (λ ∈ Λ¬Z) onto a

component. Now by (20), f3 ◦ f2 ◦ f−1
3 also satisfies the condition in (20), so that

it belongs to H2. Hence the claim holds. The proof of (ii) is similar. �

Claim 5. (i) H1 ⊳ Aut(G). (ii) H ′
1 ⊳ Aut(W ).

Proof. (i) Note that Aut(G) acts on the monoid Hom(G,Z(G)). Thus its subgroup
Hom(G,Z(G))× of the invertible elements is invariant under the action. Now the
claim follows from Lemma 2.2 (iii).
(ii) By Lemma 2.2 (iii), it is enough to show that the subgroup Hom(Winf , Z(W )) of
Hom(W,Z(W )) is invariant under the action of Aut(W ). Moreover, by Claim 1, it
is enough to show that h◦f ◦h−1 ∈ Hom(Winf , Z(W )) for all f ∈ Hom(Winf , Z(W ))
and h ∈ H ′

2H
′
3H

′
4. Now we have h(Wfin) = Wfin by definition of H ′

2, H
′
3 and H ′

4,
so that h ◦ f ◦ h−1(Wfin) = h(f(Wfin)) = h(1) = 1. Hence the claim holds. �

Claim 6. (i) H1 ∩H2 = H4. (ii) H ′
1 ∩ (H ′

2H
′
3) = 1.

Proof. (i) Let f ♭ ∈ H1 ∩H2. Then by (20), we have f ♭(w) = w (or equivalently
f(w) = 1) for all w ∈ GΛZ

and f ♭(Gλ) = Gλ for all λ ∈ Λ¬Z . Thus we have
f ∈ Hom(G,Z(G))o by Claim 2 (i), so that f ♭ ∈ H4. Conversely, H4 ⊂ H1 by
definition, while H4 ⊂ H2 by (20) and definition of H4. Hence the claim holds.
(ii) Let f ♭ ∈ H ′

1 ∩ (H ′
2H

′
3). Then for any ω ∈ Ωinf , we have f ♭(Wω) = Wω by
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definition of H ′
2 and H ′

3. Thus we have f(Wω) = 1 by Claim 2 (ii). Hence f = 1
and f ♭ = idW . �

Now the claims (i) and (ii) of Theorem 3.10 hold. Namely:
(i) We have H1 ∩H2 = H4 (Claim 6), H1 ⊳ Aut(G) (Claim 5), H2 ⊳H2H3 (Claim
4) and so Aut(G) = (H1H2)H3 (Claim 1) = (H1H2) ⋊H3 (Claim 3).
(ii) We have H ′

2H
′
3 = H ′

2 ×H ′
3, H

′
2H

′
4 = H ′

2 ×H ′
4 (as the above remark), H ′

3H
′
4 =

H ′
3 ⋊H ′

4 (Claims 3, 4) and so Aut(W ) = H ′
1(H

′
2 ×H ′

3)H
′
4 (Claim 1) =

(
H ′

1(H
′
2 ×

H ′
3)
)

⋊H ′
4 (Claims 3, 5) = H ′

1 ⋊ (H ′
2 ×H ′

3) ⋊H ′
4 (Claims 5, 6).

Proof of Theorem 3.10 (iii). If Z(W ) = 1, then all irreducible components of W
are directly indecomposable (cf. Theorem 3.3), so that the decomposition W =∏
ω∈ΩWω itself satisfies the conditions (17) and (18) in Section 3.2. Thus we can

apply the result (i) to this decomposition. Now H1 = 1 since Z(W ) = 1. Moreover,
Ω = Ω¬Z in this case, so that we have H = H2H3 = Aut(W ).

From now, we assume that Z(W ) 6= 1. For f ∈ Aut(W ), let sep(f) be the set of
all ω ∈ Ω such that f(Wω) 6⊂Wω′ for all ω′ ∈ Ω. Since any element of H maps each
component Wω onto a component, the cardinality of the set sep(f) is invariant in
each coset of Aut(W )/H . Moreover, by definition, we have

H =

(∏
ω∈Ωfin

Aut(Wω)

)(∏
υ∈Υfin

Sym(Ωυ)

)
×H ′

3H
′
4 ⊂ H ′

2 × (H ′
3H

′
4).

Case 1. Γ odd consists of only finitely many connected components: This
implies that |Ω| < ∞ and |Hom(Winf , {±1})| < ∞ (cf. Lemma 2.11). Since Z(W )
is now a finite elementary abelian 2-group, (ii) implies that H ′

2H
′
3H

′
4 has index

|H ′
1| = |Hom(Winf , Z(W ))| < ∞ in Aut(W ). Moreover, since now |Wfin| < ∞, the

index of H in H ′
2H

′
3H

′
4 is ≤ |H ′

2| <∞. Thus H has finite index also in Aut(W ).
Case 2. Γ odd consists of infinitely many connected components: Now

we have to show that H has infinite index in Aut(W ).
Subcase 2-1. The odd Coxeter graph of some Wω consists of infinitely

many connected components: Note that ω ∈ Ωinf in this case. Now by Lemma
2.11, we have |Hom(Wω , {±1})| = ∞ and so |Hom(Winf , Z(W ))| = ∞ (since we
assumed that Z(W ) 6= 1). Thus by (ii), the subgroup H ′

2H
′
3H

′
4 (⊃ H) has index

|H ′
1| = ∞, so that H also has infinite index in Aut(W ).
Subcase 2-2. The odd Coxeter graph of every Wω consists of only

finitely many connected components: Then we have |Ω| = ∞ by the hypothesis
of Case 2. Since we assumed that Z(W ) 6= 1, we can take an infinite sequence
ω0, ω1, ω2, . . . of distinct elements of Ω such that Z(Wω0) 6= 1. Let u denote the
unique element of Z(Wω0) r {1}. Now for k ≥ 1, we define fk ∈ Hom(W,Z(W ))
componentwise by

fk(w) =

{
uℓ(w) if ω ∈ {ω1, . . . , ωk} and w ∈Wω ,

1 if ω ∈ Ω r {ω1, . . . , ωk} and w ∈Wω .

Then we have fk ◦ fk = 1 and so fk ∗ fk = 1 since Z(W ) is an elementary abelian

2-group. This implies that fk ∈ Hom(W,Z(W ))× and so fk
♭ ∈ Aut(W ), while

sep(fk
♭) = {ω1, . . . , ωk} by definition. Thus by the above remark, all fk

♭ belong to
distinct cosets in Aut(W )/H and so H has infinite index in Aut(W ). Hence the
proof is concluded. �

Example 3.11. Let m = (m1,m2, . . . ) be an infinite sequence of nonnegative in-
tegers. Here we examine Aut(Wm) for the group Wm =

∏
n≥1(Symn)mn by using

our result, where Symn = Sym({1, 2, . . . , n}) is the symmetric group of degree n.
Note that Sym1 = 1.
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Since Symn (n ≥ 2) is the Coxeter group W (An−1), which is directly indecompos-
able (cf. Theorem 3.3), we can apply Theorem 3.10 (i) to this decomposition of Wm.
In this case, we have Z(Symn) = 1 unless Z(Symn) = Symn (namely n = 1, 2), so
that Hom(Wm, Z(Wm))o = 1. Thus we have Aut(Wm) = H1 ⋊H2 ⋊H3.

Note that Z(Wm) = (Sym2)
m2 ≃ {±1}m2, while |Hom(Symn, {±1})| = 2 for all

n ≥ 2 by Lemma 2.11. Thus Lemmas 2.3 and 2.4 (ii) imply that

H1 = Hom

(∏

n≥3

(Symn)
mn , Z(Wm)

)♭
⋊ Hom(Symm2

2 , Z(Wm))×
♭

=

(∏
n≥3

Hom
(
(Symn)

mn , Z(Wm)
))♭

⋊ Aut((Sym2)
m2)

≃
(∏

n≥3
{±1}m2mn

)
⋊ GLm2(F2).

Secondly, recall the well-known fact that Aut(Symn) = Inn(Symn) (the group of
inner automorphisms) if n 6= 6 and |Aut(Sym6)/Inn(Sym6)| = 2. This implies that
Aut(Sym2) = 1, |Aut(Sym6)| = 2|Sym6| and Aut(Symn) ≃ Symn if n 6= 2, 6. Thus
we have

H2 ≃
∏

n≥3
Aut(Symn)

mn ≃
(∏

3≤n6=6
Symn

mn

)
× Aut(Sym6)

m6 .

Moreover, by definition, we have H3 ≃∏n≥3Symmn
.

As a special case, if all but finitely many terms in m are 0, then (by putting
|m| =

∑
nmn <∞) we have

|H1| = 2m2(|m|−m1−m2)
m2−1∏

i=0

(2m2 − 2i) = 2m2(|m|−m1−m2)+(m2
2 )

m2∏

i=1

(2i − 1),

|H2| = 2m6

∏

n≥3

(n!)mn , |H3| =
∏

n≥3

mn!.

Hence we have

|Aut(Wm)| = |H1| · |H2| · |H3|

= 2m2(|m|−m1−m2)+(m2
2 )+m6

m2∏

i=1

(2i − 1)
∏

n≥3

((n!)mnmn!)

=

(
2m2(|m|−m1−m2−1)+(m2

2 )+m6

m2∏

i=1

(2i − 1)
∏

n≥3

mn!

)
|Wm|.

4. Centralizers of normal subgroups generated by involutions

4.1. Proof of Theorem 3.1. In this section, we prove Theorem 3.1. From now,
(W,S) always denotes a Coxeter system. In the proof, we use the notion of core
subgroups (cf. Section 2.1). For a subgroup G ≤ W , let XG be the set of all
elements in G of the form w0(I) (I ⊂ S) such that 1 6= w0(I) ∈ Z(WI). Then we
have the following relation (proved below):

Proposition 4.1. Let H⊳W be a normal subgroup generated by involutions. Then
H is the smallest normal subgroup of W containing XH , and

ZW (H) =
⋂

w0(I)∈XH

CoreW (NW (WI)).
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On the other hand, the subgroups CoreW (NW (WI)) are determined completely
(for irreducible (W,S)) by the following theorem, which we prove in later subsec-
tions. Here we use the notation (W (D3), S(D3)) instead of (W (A3), S(A3)).

Theorem 4.2. (cf. Definitions 2.5 and 2.8.) Let (W,S) be an irreducible Coxeter
system of an arbitrary rank, and I nonempty proper subset of S. Then:
(i) If (W,S) = (W (Bn), S(Bn)), 1 ≤ k < n ≤ ∞, τ ∈ Aut(Γ (Bn)) and I =
τ(S(Bk)), then CoreW (NW (WI)) = τ(GBn

).
(ii) If (W,S) = (W (Dn), S(Dn)), 2 ≤ k < n ≤ ∞, τ ∈ Aut(Γ (Dn)) and I =
τ(S(Dk)), then CoreW (NW (WI)) = τ(GDn

).
(iii) Otherwise, CoreW (NW (WI)) = Z(W ).
(cf. Lemma 2.15 for definition of GBn

and GDn
.)

Note that, on the other hand, CoreW (NW (WI)) = NW (WI) = W if I = ∅ or S.
Theorem 3.1 will be proved by combining Proposition 4.1 and Theorem 4.2.

In the proof of Proposition 4.1, we use the following two results:

Theorem 4.3 ([10], Theorem A). Let w be an involution in W . Then w is conju-
gate in W to some element w0(I) (I ⊂ S) such that w0(I) ∈ Z(WI).

Lemma 4.4. Let WI be a finite parabolic subgroup of W such that w0(I) ∈ Z(WI).
Then ZW (w0(I)) = NW (WI).

Proof. First, assume u ∈ ZW (w0(I)). Then u−1w0(I)u = w0(I) ∈ Z(WI) and so
w0(I) · (u · αs) = uw0(I) · αs = −u · αs for all s ∈ I. This implies that u · αs ∈ ΦI
for all s ∈ I, so that u ∈ NW (WI) by (16).

Conversely, assume u ∈ NW (WI). Put u′ = uw0(I)u
−1 ∈ WI . Then we have

u′ ·αs = −αs for all s ∈ I (since w0(I) maps u−1 ·αs ∈ ΦI (cf. (16)) to −u−1 ·αs).
Hence we have u′ = w0(I) and so u ∈ ZW (w0(I)). �

Proof of Proposition 4.1. By Theorem 4.3, every involution in H is conjugate to
some element of XH (since H ⊳W ). This implies that any normal subgroup of W
containing XH also contains all the generators of H . Thus the first claim follows.
For the second one, apply Lemmas 2.7 and 4.4. �

Proof of Theorem 3.1. The claim (i) is obvious. From now, we assume H 6⊂ Z(W ).
Note that Z(W ) ⊂ ZW (H). Note also that, by Proposition 4.1,

(21) ZW (H) ⊂ CoreW (NW (WI)) for all w0(I) ∈ XH .

Case 1. (W,S) = (W (Bn), S(Bn)), n ≥ 2 or (W (Dn), S(Dn)), n ≥ 3: Let
T = B, L = 1 for the former case, T = D, L = 2 for the latter case.

Subcase 1-1. T = B, n 6= 2 or T = D, n 6= 4: Note that in this case, any
automorphism of Γ (Tn) preserves the sets S(Tk), elements w0(S(Tk)) (k ≥ L) and
so the subgroup GTn

.
Subsubcase 1-1-1. H ⊂ GTn

: This is a case (ii) or (iii) (for τ identity), and
so we have to show ZW (H) = GTn

. The inclusion ⊃ holds since GTn
is abelian.

Conversely, since H 6⊂ Z(W ), XH contains an element other than w0(S), so that
we have ZW (H) ⊂ GTn

by (21) and Theorem 4.2.
Subsubcase 1-1-2. H 6⊂ GTn

: By the above remark, this is actually not a case
(ii) or (iii), so that we have to show ZW (H) ⊂ Z(W ). Now XH contains an element
w0(I) such that I 6= S(Tk) for any L ≤ k ≤ n, since otherwise H ⊂ GTn

by Lemma
2.15. For this I, we have CoreW (NW (WI)) = Z(W ) by Theorem 4.2, so that the
claim follows from (21).

Subcase 1-2. T = B, n = 2: Note that XH ⊂ {s1, s2, w0(S)} in this case.
Moreover, XH 6⊂ {w0(S)} since H 6⊂ Z(W ).

Subsubcase 1-2-1. s1 ∈ XH and s2 6∈ XH: In this case, we have XH ⊂
23



{s1, w0(S)} and so H ⊂ GB2 by Lemma 2.15. This is a case (ii) (for τ identity).
Now we have GB2 ⊂ ZW (H) since GB2 is abelian, while ZW (H) ⊂ GB2 by (21)
and Theorem 4.2 (applying to {s1} ⊂ S). Thus the claim holds.

Subsubcase 1-2-2. s1 6∈ XH and s2 ∈ XH: By symmetry, this is also a case
(ii) (for the unique τ 6= idS) and the claim holds similarly.

Subsubcase 1-2-3. s1 ∈ XH and s2 ∈ XH : Note that H = W . This is not a
case (ii) or (iii), and actually ZW (H) = Z(W ).

Subcase 1-3. T = D, n = 4: Note that (by definition)

XH ⊂ {s1, s2, s3, s4, s1s2s4, s1s2, s2s4, s4s1, w0(S)}.
Subsubcase 1-3-1. XH contains one of the first five elements: Now we

have H 6⊂ τ(GD4 ) for any τ , so that this is not a case (iii) and we have to show
ZW (H) ⊂ Z(W ). This claim follows from (21) (applying to the element of XH

given in the hypothesis here) and Theorem 4.2.
Subsubcase 1-3-2. XH contains at least two of the elements s1s2, s2s4,

s4s1: Now we have H 6⊂ τ(GD4 ) for any τ , so that this is not a case (iii) and we
have to show ZW (H) ⊂ Z(W ). Let XH contain two such elements sisj , sjsk, and
put I = {si, sj}, J = {sj, sk}. Then we have

CoreW (NW (WI)) ∩ CoreW (NW (WJ )) ⊂ CoreW (NW (W{sj}))

by (4), (15) and (2). Thus we have ZW (H) ⊂ CoreW (NW (W{sj})) = Z(W ) by (21)
and Theorem 4.2.

Subsubcase 1-3-3. XH contains none of the first five elements and at
most one of s1s2, s2s4, s4s1: Note that XH 6⊂ {w0(S)} since H 6⊂ Z(W ). Thus
we have sisj ∈ XH ⊂ {sisj , w0(S)} for one of (i, j) = (1, 2), (2, 4), (4, 1). Lemma
2.15 implies that this is a case (iii) (namely H ⊂ τ(GD4 )), by taking τ ∈ Aut(Γ )
mapping s1, s2 to si, sj respectively. Now τ(GD4 ) ⊂ ZW (H) since τ(GD4 ) is
abelian. Conversely, we have CoreW (NW (W{si,sj})) = τ(GD4 ) by Theorem 4.2, so
that ZW (H) ⊂ τ(GD4 ) by (21). Thus the claim holds.

Case 2. (W,S) 6≃ (W (Bn), S(Bn)) (n ≥ 2), (W (Dn), S(Dn)) (n ≥ 3): This is
not a case (ii) or (iii), so that we have to show ZW (H) ⊂ Z(W ). Since H 6⊂ Z(W ),
XH contains an element other than w0(S), so that we have ZW (H) ⊂ Z(W ) by
(21) and Theorem 4.2. Hence the proof is concluded. �

4.2. Some lemmas. In the rest of this paper, we prove Theorem 4.2. In this
subsection, we prepare some lemmas used in our proof. From now, we abbreviate
the notation CoreW (NW (WI)) to CI .

First, by combining Lemma 2.24, (4) and (2), we have:

(22) If I ⊂ J ⊂ S and J r I ⊂ I⊥, then CJ ∩ CI ⊂ CJrI .

Lemma 4.5 (Expanding Lemma). If I ⊂ S and s ∈ Sr(I∪I⊥), then CI ⊂ CI∪{s}.

Proof. It is enough (by (3)) to show that CI ⊂ NW (WI∪{s}). Let w ∈ CI . By
the hypothesis, we have c = 〈αs, αt〉 < 0 for some t ∈ I. Now since sws ∈ CI ⊂
NW (WI), we have sws · αt ∈ ΦI (by (16)) and so ws · αt ∈ ΦI∪{s}. On the other
hand, we have ws · αt = w · αt − 2cw · αs. Thus w · αs ∈ ΦI∪{s} since w · αt ∈ ΦI
(by (16)). Hence we have w ∈ NW (WI∪{s}) by (16). �

For s ∈ S and I ⊂ S, let dΓ (s, I) = min{dΓ (s, t) | t ∈ I} denote the distance
from s to the set I in the Coxeter graph Γ of (W,S).

Lemma 4.6 (Cutting Lemma). Let (W,S) be irreducible, I ⊂ S and s ∈ S r I.
Then for dΓ (s, I) < k <∞, we have CI ⊂ CJ , where J = {t ∈ I | dΓ (s, t) ≥ k}.
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Proof. It is enough (by (3) and (16)) to show that w · ΦJ ⊂ ΦJ (or equivalently,
w · ΠJ ⊂ ΦJ ) for all w ∈ CI . Assume contrary that t ∈ J and w · αt 6∈ ΦJ . Note
that w ·αt ∈ ΦI (by (16)) and so s 6∈ supp(w ·αt). Then by definition of J , we have

(d =) dΓ (s, supp(w · αt)) < k ≤ dΓ (s, t).

Take a shortest path s0 = s, s1, . . . , sd−1, sd ∈ supp(w · αt) in Γ from s to the set
supp(w ·αt). Then by the above inequality, we have si ∈ {t}⊥ for all 0 ≤ i ≤ d− 1.
Put u = ss1 · · · sd−1 ∈W . Then we have uwu−1 · αt = uw · αt and so (by (13))

supp(uwu−1 · αt) = supp(w · αt) ∪ {s, s1, . . . , sd−1} 6⊂ I

(note that s 6∈ I). On the other hand, we have uwu−1 ∈ CI and so uwu−1 ·αt ∈ ΦI
(by (16)). This is a contradiction. Hence the claim holds. �

Lemma 4.7 (Shifting Lemma). Suppose that s, t ∈ S are in the same connected
component of the odd Coxeter graph Γ odd of (W,S). Then C{s} = C{t}.

Proof. By definition of Γ odd, and by symmetry, it is enough to show that C{s} ⊂
C{t} for any s, t such that m(s, t) = 2k+ 1 is odd. Now by putting u = (st)k ∈ W ,

we have t = usu−1. Thus for w ∈ C{s}, we have

wtw−1 = wusu−1w−1 = u(u−1wu)s(u−1wu)−1u−1 = usu−1 = t

since u−1wu ∈ C{s}. Thus w ∈ NW (W{t}). Hence the claim follows from (3). �

Moreover, we have:

Lemma 4.8. Let (W,S) be irreducible and I a nontrivial proper subset of S. Then
CoreW (WI) = 1.

Proof. Assume contrary that 1 6= w ∈ CoreW (WI) (so that w · ΦI = ΦI by (16)).
Fix s ∈ S r I and take γ ∈ Φ+

I such that w · γ ∈ Φ−
I .

Case 1. (d =) dΓ (s, supp(γ)) ≤ dΓ (s, supp(w · γ)): Take a shortest path s0 =
s, s1, . . . , sd−1, sd ∈ supp(γ) in Γ from s to the set supp(γ). Then by the above
inequality, we have si 6∈ supp(w · γ) for all 0 ≤ i ≤ d− 1. Put u = ss1 · · · sd−1 ∈ W .
Then we have u · γ ∈ Φ+ (by (12)), supp(u · γ) = supp(γ) ∪ {s, s1, . . . , sd−1} 6⊂ I
(by (13)) and so u · γ ∈ Φ+ r ΦI . On the other hand, we have uwu−1 · (u · γ) =
u ·(w ·γ) ∈ Φ− (by (12)). This is a contradiction, since uwu−1 ∈ CoreW (WI) ⊂WI .

Case 2. dΓ (s, supp(γ)) > dΓ (s, supp(w · γ)): Now by applying Case 1 to the
elements w−1 ∈ CoreW (WI) and −w ·γ ∈ ΦI [w−1 ], we have a contradiction again.
Hence the claim holds in any case. �

Owing to Lemma 4.8, we have the following results:

If (W,S) is irreducible, |W | = ∞ and s ∈ S, then CSr{s} = 1.(23)

If I is an irreducible component of J ⊂ S and |WI | = ∞, then CJ = 1.(24)

(Here we use Corollary 2.22 (iii), Proposition 2.20, respectively.)

4.3. Proof for finite case. In this subsection, we prove Theorem 4.2 for the case
|W | <∞. From now, we abbreviate often the terms “Expanding Lemma”, “Cutting
Lemma”, “Shifting Lemma” to ‘EL’, ‘CL’, ‘SL’, respectively.

Lemma 4.9. Let (W,S) be irreducible, |W | < ∞ and s ∈ S. Suppose that no
condition below is satisfied: (I) W = W (Bn), n ≥ 2, s = s1, (II) W = W (B2),
s = s2, (III) W = W (I2(m)), m even. Then C{s} = Z(W ).
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Proof. Since Z(W ) ⊂ C{s} and
⋂
t∈S NW (W{t}) = Z(W ), it is enough to show that

C{s} ⊂ C{t} for all t ∈ S.

Case 1. The odd Coxeter graph Γ odd of (W,S) is connected: Then the
claim follows from the Shifting Lemma.

Case 2. W = W (Bn), n ≥ 3 and s 6= s1: We have C{s}
SL
= C{si} for all

2 ≤ i ≤ n, while C{s2}

EL⊂ C{s1,s2}

CL⊂ C{s1} (since n ≥ 3). Thus the claim holds.
Case 3. W = W (F4): By symmetry, we may assume s = s1 or s2. Now we have

C{s1}
SL
= C{s2}

EL⊂ C{s2,s3}

CL⊂ C{s3}
SL
= C{s4}. Hence the claim holds. �

Corollary 4.10. Let (W,S) be irreducible, |W | <∞, s ∈ S and suppose that there
is a unique vertex t of Γ farthest from s. Suppose further that W and t do not
satisfy any of the three conditions (I)–(III) in Lemma 4.9. Then CSr{s} = Z(W ).

Proof. Now we have CSr{s}

CL⊂ C{t} by the choice of t. Then apply Lemma 4.9. �

Lemma 4.11. Suppose that one of the following conditions is satisfied: (I) W =
W (B3), s = s2, (II) W = W (D4), s = s3, (III) W = W (H3), s = s2, (IV)
W = W (I2(m)) (m ≥ 6 even), s ∈ S. Then CI = Z(W ), where I = S r {s}.
Proof. By the hypothesis and Corollary 2.22 (ii), we have NW (WI) = WI ×Z(W ).
Now a direct computation shows that sWIs ∩NW (WI) = 1, so that WI ∩ CI = 1
by (5). Since Z(W ) ⊂ CI , we have CI = Z(W ). �

Lemma 4.12. (i) If W = W (Bn), 1 ≤ n <∞, then CoreW (GBn
) = GBn

.
(ii) If W = W (Dn), 3 ≤ n <∞, then CoreW (GDn

⋊ 〈s1〉) = GDn
.

Proof. The claim (i) is obvious, since GBn
⊳W (cf. Lemma 2.15). For (ii), we have

GDn
⊂ CoreW (GDn

⋊ 〈s1〉) since GDn
⊳W , while s1 6∈ CoreW (GDn

⋊ 〈s1〉) since
s1s3s1s3s1 = s3 6∈ GDn

⋊ 〈s1〉. Thus the claim holds. �

Proof of Theorem 4.2 (for finite W ). Note that Z(W ) ⊂ CI by definition.
Case 1. (W,S) = (W (Tn), S(Tn)) for T = B, n ≥ 3 or T = D, 3 ≤ n 6= 4:

Put L = 1 in the former case, L = 2 in the latter case. Note that in this case, any
automorphism of Γ (Tn) preserves the sets S(Tk), elements w0(S(Tk)) (k ≥ L) and
so the subgroup GTn

.
Subcase 1-1. I = S(Tk) for some L ≤ k < n: This is a case (i) or (ii) of

Theorem 4.2 (for τ identity), so that we have to show CI = GTn
. Note that

CS(Ti)

EL⊂ CS(Tj)

CL⊂ CS(Ti) and so CS(Ti) = CS(Tj) for all L ≤ i < j < n.

Thus we may assume I = S(TL), and we have CI ⊂
⋂n−1
i=L NW (WS(Ti)). By Corol-

lary 2.23, (3) and Lemma 4.12, we have CI ⊂ GTn
. Conversely, since GTn

is abelian
and contains w0(I), we have GTn

⊂ ZW (w0(I)) = NW (WI) by Lemma 4.4. Thus
GTn

⊂ CI since GTn
⊳W . Hence CI = GTn

.
Subcase 1-2. I 6= S(Tk) for all L ≤ k < n: By the above remark, this is

not a case (i) or (ii), and so we have to show CI ⊂ Z(W ). Note that I 6= S. Let
M be the first index ≥ 1 such that sM 6∈ I, so that S(TM−1) ⊂ I (where we put

S(T0) = ∅). If T = D and M = 2, then we have CI
EL⊂ CSr{sM} since I 6= ∅.

Otherwise, there is some M < i ≤ n such that si ∈ I (since otherwise we have a

contradiction I = S(TM−1)), and so M < n and CI
EL⊂ CSr{sM}. In any case, we

may assume that I = S r {sM}. Now there are the following three cases:
Subsubcase 1-2-1. M ≤ L + 1: Note that M < n, and so (Tn,M) 6= (D3, 3).

If Tn = B3 and M = 2, then CI = Z(W ) by Lemma 4.11. Otherwise, we have a
unique vertex of Γ farthest from s; that is s3−M if Tn = D3 and M ≤ 2, and sn
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otherwise (note that Tn 6= D4). Thus CI = Z(W ) by Corollary 4.10.
Subsubcase 1-2-2. L+ 2 ≤M ≤ n− 2: This hypothesis implies that

CI
CL⊂ CIr{sM−1,sM+1}

EL⊂ CSr{sM−1},

so that the claim follows inductively from the case of smaller M .
Subsubcase 1-2-3. L + 2 ≤ M = n − 1: Note that n ≥ L + 3 and I =

S(Tn−2) ∪ {sn}. Now we have CI
CL⊂ CS(Tn−3)

EL⊂ CS(Tn−2) and so CI ⊂ C{sn} by
(22). Thus CI ⊂ C{sn} = Z(W ) by Lemma 4.9.

Case 2. (W,S) = (W (B2), S(B2)): Since I is proper and nonempty, we have
I = {si} (i = 1 or 2). This is a case (i), by taking τ = idS (if i = 1), τ 6= idS (if
i = 2). Now we have to show CI = τ(GB2 ). We have CI ⊂ NW (Wτ({s1})) = τ(GB2 )
by Corollary 2.23 (i). Conversely, we have τ(GB2 ) ⊂ CI by a similar argument to
Subcase 1-1. Thus CI = τ(GB2 ).

Case 3. (W,S) = (W (D4), S(D4)): Note that I is proper and nonempty.
Subcase 3-1. |I| = 1: This is not a case (i) or (ii), so that we have to show

CI ⊂ Z(W ). This follows from Lemma 4.9.
Subcase 3-2. |I| = 2 and s3 ∈ I: This is also not a case (i) or (ii), so that

we have to show CI ⊂ Z(W ). Let I = {s3, si}. Then we have CI
CL⊂ C{si}, while

C{si} = Z(W ) by the previous case. Thus CI ⊂ Z(W ).
Subcase 3-3. |I| = 2 and s3 6∈ I: Note that there is τ ∈ Aut(Γ ) such that

τ(S(D2)) = I. This is a case (ii), so that we have to show CI = τ(GD4 ). By

symmetry, we may assume τ = idS . First, we have CI
EL⊂ CS(D3) and so CI ⊂⋂3

i=2NW (WS(Di)) = GD4 ⋊ 〈s1〉 by Corollary 2.23 (ii). Thus we have CI ⊂ GD4

by (3) and Lemma 4.12. Conversely, we have GD4 ⊂ CI by a similar argument to
Subcase 1-1. Hence we have CI = GD4 .

Subcase 3-4. |I| = 3 and s3 ∈ I: Note that there is τ ∈ Aut(Γ ) such that
τ(S(D3)) = I. This is a case (ii), so that we have to show CI = τ(GD4 ). By

symmetry, we may assume τ = idS . Now we have CI
CL⊂ CS(D2)

EL⊂ CI , while
CS(D2) = GD4 by the previous subcase. Thus CI = GD4 .

Subcase 3-5. I = S r {s3}: This is not a case (i) or (ii), so that we have to
show CI ⊂ Z(W ). This follows from Lemma 4.11.

Case 4. (W,S) 6≃ (W (Bn), S(Bn)) (n ≥ 2), (W (Dn), S(Dn)) (n ≥ 3): This is
not a case (i) or (ii), so that we have to show CI ⊂ Z(W ). Note that |S| ≥ 2 since
I is proper and nonempty.

Subcase 4-1. |S| = 2: Namely, (W,S) = (W (T ), S(T )), T = A2 or I2(m)
(5 ≤ m < ∞), and |I| = 1. Then we have CI = Z(W ) by Lemma 4.11 (for the
latter case, with m even) or Lemma 4.9 (the other cases).

Subcase 4-2. |S| = 3: Namely, (W,S) = (W (H3), S(H3)) (note that W (A3) ≃
W (D3)). Now we have CI

EL⊂ CSr{si} for some i, while CSr{si} = Z(W ) by Lemma
4.11 (if i = 2) or Corollary 4.10 (if i 6= 2). Thus CI ⊂ Z(W ).

Subcase 4-3. |S| ≥ 4: Namely, (W,S) = (W (T ), S(T )) for T = An (n ≥ 4),

En (n = 6, 7, 8), F4 or H4. Now we have CI
EL⊂ CSr{si} for some i. Thus we may

assume I = S r {si}.
Subsubcase 4-3-1. There is a unique vertex of Γ farthest from si: Now

we have CI = Z(W ) by Corollary 4.10.
Subsubcase 4-3-2. There are at least two vertices of Γ farthest from

si: Namely, we have (T , i) = (A2k+1, k+1) (k ≥ 2), (E6, 2), (E6, 4) or (E8, 5). Now
there are exactly two vertices s, t of Γ farthest from si, and there is a vertex 6= s, t
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adjacent to s and not adjacent to t. This implies that CI
CL⊂ C{s,t}

CL⊂ C{t}, while
C{t} = Z(W ) by Lemma 4.9. Thus CI ⊂ Z(W ). Hence the proof is concluded. �

4.4. Proof for infinite case. In this subsection, we prove Theorem 4.2 in the case
|W | = ∞. The key facts are (23) and (24).

In the proof, we use a characterization (Proposition 4.14) of certain infinite Cox-
eter systems, which is based on the characterization of connected Coxeter graphs
of finite type. Before stating this, we prepare the following graph-theoretic lemma.

Lemma 4.13. Let G be a connected acyclic graph (i.e. a tree) on nonempty vertex
set V (G) of an arbitrary cardinality (with no edge labels here).
(i) If all vertices of G have degree ≤ 2 and G has a terminal vertex (i.e. vertex of
degree 1) s0, then G ≃ Γ (An) (as unlabelled graphs) for some 1 ≤ n ≤ ∞.
(ii) If s0 ∈ V (G) and all vertices of G except s0 have degree ≤ 2, then each connected
component G′ of G r {s0} contains exactly one vertex s adjacent to s0, G′ ≃ Γ (An)
(as unlabelled graphs) for some 1 ≤ n ≤ ∞ and s is a terminal vertex of G′.
(iii) If all vertices of G have degree 2, then G ≃ Γ (A∞,∞) (as unlabelled graphs).

Proof. (i) By the hypothesis, for any s ∈ V (G), G contains a unique simple path

Ps = (t
(0)
s = s0, t

(1)
s , . . . , t

(ℓ−1)
s , t

(ℓ)
s = s) from s0 to s. Let ℓ(s) = ℓ, the length of

Ps. Then for all s1, s2 ∈ V (G), we have either Ps1 ⊂ Ps2 or Ps2 ⊂ Ps1 : Otherwise,

for the first index k such that t
(k)
s1 6= t

(k)
s2 , the vertex t

(k−1)
s1 = t

(k−1)
s2 is adjacent

to distinct vertices t
(k)
s1 , t

(k)
s2 (and t

(k−2)
s1 if k ≥ 2) but this is impossible by the

hypothesis on the degree of t
(k−1)
s1 .

This observation shows that the map ℓ : V (G) → {0, 1, 2, . . .} is injective and
satisfies that i ∈ ℓ(V (G)) whenever 0 ≤ i < j and j ∈ ℓ(V (G)). Thus the set V (G) is
finite or countable. Moreover, it also implies that two vertices s1, s2 are adjacent if
ℓ(s1) = ℓ(s2)±1, while by definition of ℓ, these are not adjacent if ℓ(s1) 6= ℓ(s2)±1.
Thus the claim holds.
(ii) First, take a vertex t of G′ and a simple path P in G from s0 to t. Then the
vertex s of P next to s0 is adjacent to s0 and contained in G′. On the other hand,
if G′ contains two vertices adjacent to s0, then s0 and a path in G′ between these
two vertices form a closed path in G. This is a contradiction, so that the first claim
follows. Since s has degree ≤ 2 in G and adjacent to s0 6∈ V (G′), s is a terminal
vertex of G′. Now the second claim is deduced by applying (i) to G′ and s.
(iii) This follows from (ii), since G is nonempty and has no terminal vertices. �

Proposition 4.14. Let (W,S) be an irreducible Coxeter system of an arbitrary
rank, with Coxeter graph Γ . Suppose that |W | = ∞ and |WI | < ∞ for all finite
subsets I ⊂ S. Then Γ ≃ Γ (A∞), Γ (B∞), Γ (D∞) or Γ (A∞,∞).

Proof. In this proof, a full subgraph ΓI of Γ is said to be forbidden if |I| <∞ and
|WI | = ∞. The hypothesis means that |W | = ∞ and Γ is connected and contains
no forbidden subgraphs. This implies |S| = ∞ immediately.

Step 1. Γ is acyclic: This follows immediately from the fact that any nontrivial
cycle in Γ forms a forbidden subgraph.

Step 2. No s ∈ S has degree ≥ 4 in Γ : Otherwise, this s and the four
adjacent vertices form a forbidden subgraph of Γ . This is a contradiction.

Step 3. At most one s ∈ S has degree 3 in Γ : Assume contrary that two
distinct vertices s, t ∈ S have degree 3. Since Γ is connected, there is a path P
in Γ between s and t. Then s, t, P and all the vertices adjacent to s or t form a
forbidden subgraph. This is a contradiction.

Step 4. If some s ∈ S has degree 3 in Γ , then Γ ≃ Γ (D∞): By Steps 1–3,
we can apply Lemma 4.13 (ii) to this case. This lemma shows that ΓSr{s} consists

28



of three connected components ≃ Γ (An1), Γ (An2), Γ (An3) (as unlabelled graphs)
respectively, of which a terminal vertex is adjacent to s in Γ . By symmetry, we
may assume n1 ≥ n2 ≥ n3 ≥ 1.

Now we have n1 = ∞ since |S| = ∞. If n2 ≥ 2, then Γ must contain a forbidden

subgraph (≃ Γ (Ẽ8) as unlabelled graphs), but this is a contradiction. Thus we
have n2 = n3 = 1 and so Γ ≃ Γ (D∞) as unlabelled graphs. Moreover, every edge
of Γ must have no label (or label ‘3’), since otherwise Γ must contain a forbidden
subgraph again. Hence Γ ≃ Γ (D∞) (as Coxeter graphs) in this case.

Step 5. If all vertices of Γ have degree ≤ 2, then Γ ≃ Γ (A∞), Γ (B∞)
or Γ (A∞,∞): First, we consider the case that Γ has a terminal vertex. Then
Lemma 4.13 (i) implies that Γ ≃ Γ (A∞) as unlabelled graphs (note that |S| = ∞).
Moreover, by a similar argument to Step 4, the hypothesis (Γ contains no forbidden
subgraphs) detects the edge-labels of Γ , so that we have Γ ≃ Γ (A∞) or Γ (B∞)
(as Coxeter graphs). The other case is similar; we have Γ ≃ Γ (A∞,∞) as Coxeter
graphs by Lemma 4.13 (iii) and the hypothesis. Hence the proof is concluded. �

Proof of Theorem 4.2 (for infinite W ). Note that Z(W ) = 1 in this case.
Case 1. (W,S) = (W (Tn), S(Tn)) for Tn = A∞, B∞, D∞ or A∞,∞: Put L = 1

if Tn = B∞, L = 2 if Tn = D∞. Moreover, for k ≥ 1, put

Jk = {s1, s2, . . . , sk} if Tn 6= A∞,∞, Jk = {s−k, s−k+1, . . . , sk} if Tn = A∞,∞.

Subcase 1-1. Tn = B∞ or D∞, and I = S(Tk) for some L ≤ k < ∞:
This is a case (i) or (ii) (for τ identity), so that we have to show CI = GT∞

. Put
Gi = WJk+i

and Hi = NGi
(WI) for i ≥ 1. Then we have

⋃∞
i=1Gi = W and⋃∞

i=1Hi = NW (WI), so that CI ⊂ ⋃∞
i=1 CoreGi

(Hi) by Lemma 2.6. Moreover, by
the result of finite case (Section 4.3), we have CoreGi

(Hi) = GTk+i
for all i ≥ 1.

Since
⋃∞
i=1GTk+i

= GT∞
(cf. Lemma 2.15), we have CI ⊂ GT∞

.

On the other hand, we have CS(TL)

EL⊂ CI , while GT∞
⊂ ZW (w0(S(TL))) since

w0(S(TL)) ∈ GT∞
and GT∞

is abelian. Thus GT∞
⊂ NW (WS(TL)) by Lemma 4.4,

GT∞
⊂ CS(TL) by (3) and so GT∞

⊂ CI . Hence CI = GT∞
.

Subcase 1-2. The hypothesis of Subcase 1-1 is not satisfied: This is not
a case (i) or (ii), so that we have to show CI = 1.

Subsubcase 1-2-1. |I| < ∞: Let w ∈ CI . Now take a sufficiently large 4 ≤
k <∞ so that I ⊂ Jk and w ∈WJk

. Put Gi = WJk+i
and Hi = NGi

(WI) for i ≥ 1,
so that

⋃∞
i=1Gi = W and

⋃∞
i=1Hi = NW (WI). Now by the hypothesis of Subcase

1-2, and by the result for finite case (Section 4.3), we have CoreGi
(Hi) ⊂ Z(Gi) ⊂

{1, w0(Jk+i)} for all i. Moreover, by Lemma 2.6, we have CI ⊂ ⋃∞
i=1 CoreGi

(Hi).
Since w0(Jk+i) 6∈ WJk

for any i ≥ 1, this implies that w = 1 by the choice of k.
Hence we have CI = 1.

Subsubcase 1-2-2. |I| = ∞: If I has an irreducible component J of infinite
cardinality, then CI = 1 by (24). Thus we may assume that I is a union of
infinitely many irreducible components of finite cardinality. Now we can choose
indices 4 ≤ i ≤ j < ∞ so that sk 6∈ I for all i ≤ k ≤ j, si−1 ∈ I and sj+1 ∈ I.
Let K1, K2 be the (distinct) irreducible components of I containing si−1, sj+1

respectively. Then we have CI
CL⊂ CIr(K1∪K2) and so CI ⊂ CK1∪K2 by (22).

Moreover, we have CK1∪K2 = 1 by Subsubcase 1-2-1. Thus CI = 1.
Case 2. (W,S) 6≃ (W (T ), S(T )) for T = A∞, B∞, D∞, A∞,∞: This is not

a case (i) or (ii), so that we have to show CI = 1. By Proposition 4.14, there is a
finite subset J0 ⊂ S such that |WJ0 | = ∞. This J0 consists of only finitely many
irreducible components, and so we have |WJ | = ∞ for some irreducible component
of J0. Since Γ is connected and |J | < ∞, there is a (finite) sequence s1, s2, . . . , sr
of elements of S such that si 6∈ Ii−1 ∪ Ii−1

⊥ for all 1 ≤ i ≤ r and J ⊂ Ir, where we
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put I0 = I and Ii = Ii−1 ∪ {si} (1 ≤ i ≤ r) inductively. Now we have CIi−1

EL⊂ CIi

for all 1 ≤ i ≤ r, so that CI ⊂ CIr−1 and CI ⊂ CIr
.

Subcase 2-1. Ir 6= S: Now an irreducible component of Ir (namely, the one
containing J) generates an infinite group. Thus CI ⊂ CIr

= 1 by (24).
Subcase 2-2. Ir = S: Note that r ≥ 1 since I is proper. Since (W,S) is

irreducible, we have CI ⊂ CIr−1 = 1 by (23). Hence the proof is concluded. �
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